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SUMMARY

In cancer biology, the functional interpretation of genomic alterations is critical to achieve the 

promise of genomic profiling in the clinic. For chronic lymphocytic leukemia (CLL), a 

heterogeneous disease of B-lymphocytes maturing under constitutive B cell receptor (BCR) 
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stimulation, the functional role of diverse clonal mutations remains largely unknown. Here, we 

demonstrate that alterations in BCR signaling dynamics underlie the progression of B cells toward 

malignancy. We reveal emergent dynamic features—bimodality, hypersensitivity, and hysteresis—

in the BCR signaling pathway of primary CLL B cells. These signaling abnormalities in CLL 

quantitatively derive from BCR clustering and constitutive signaling with positive feedback 

reinforcement, as demonstrated through single-cell analysis of phospho-responses, computational 

modeling, and super-resolution imaging. Such dysregulated signaling segregates CLL patients by 

disease severity and clinical presentation. These findings provide a quantitative framework and 

methodology to assess complex and heterogeneous leukemia pathology and to inform therapeutic 

strategies in parallel with genomic profiling.

Graphical Abstract

In Brief

Using phospho-flow cytometry and computational modeling, Ziegler et al. find that B cell receptor 

clustering and positive feedback through SYK and LYN drive signaling hypersensitivity, 

bistability, and hysteresis in chronic lymphocytic leukemic B cells. Super-resolution microscopy 

confirms membrane auto-aggregation in leukemic B cells, and variability in signaling dysfunction 

predicts disease severity.
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INTRODUCTION

B cell survival, proliferation, and response to antigen relies on robust and tightly regulated 

activation of the B cell receptor (BCR) signaling pathway, initiated by engagement and 

multimerization of the BCR within a signaling complex. Recent studies have demonstrated 

that in chronic lymphocytic leukemia (CLL), a B cell neoplasm, the BCRs from malignant 

cells have the capacity to activate the BCR-proximal signaling pathway in a cell-autonomous 

manner (Binder et al., 2013; Dühren-von Minden et al., 2012). The emerging paradigm 

states that CLL B cells possess a cell-intrinsic capacity for auto-activation, and this 

alteration underlies oncogenic transformation and progression. Accordingly, studies of gene 

expression and signal transduction have consistently supported an “activated” phenotype 

among CLL B cells and suggested a link between cellular activation and disease 

progression. Functional snapshots of the CLL B cell phenotype suggest that CLL is a disease 

of skewed cellular physiology, in which cells become aberrantly “stuck” in a hyperactive 

state, akin to the signaling phenotypes of antigen-experienced B cells (Damle et al., 2002; 

Klein et al., 2001; Minici et al., 2017). However, sequencing of CLL B cells has failed to 

identify universally shared, signaling-relevant mutations in their BCR (Agathangelidis et al., 

2012; Hoogeboom et al., 2013) or genetic alterations among signaling components 

downstream of BCR (Landau et al., 2013; Nadeu et al., 2016). Hence, we hypothesized that 

a common disease etiology may exist as subtle and varied genomic alterations in the BCR, 

which may shift the dynamics of BCR signaling and underlie the altered physiology of CLL 

B cells in their malignant states.

Constitutive clustering of the BCR has been observed in an activated B cell-like subtype of 

diffuse large B cell lymphoma (Davis et al., 2010) and CLL (Gomes de Castro et al., 2019). 

Similar clustering upon antigen engagement in normal B cells (Harwood and Batista, 2010; 

Ketchum et al., 2014; Lee et al., 2017) drives the assembly of a signalosome, with the 

phosphorylation of BCR-associated chains and the accretion and phosphorylation of kinases 

such as spleen tyrosine kinase (SYK), phospholipase-Cγ2 (PLCγ2), Bruton’s tyrosine 

kinase (BTK), and adaptor molecules such as B cell linker (BLNK). In this context, 

multivalent soluble antigens are far more potent in eliciting B cell signaling compared to 

monovalent antigens (Harwood and Batista, 2010); cytoskeletal depolymerization fluidifies 

the membrane, renders the BCR more mobile, and drives activation (Ketchum et al., 2014), 

such that any clustering of surface BCRs can trigger a phosphorylation cascade. 

Alternatively, Reth and coworkers have proposed a model whereby oligomerization of the 

BCR occurs even in resting B cells and is critical to regulate signaling responses by auto-

inhibition (Yang and Reth, 2010a, 2010b). Overall, we conjecture that cell-autonomous BCR 

signaling in CLL lymphoma may relate to biophysical alterations in the BCR on the cell 

membrane, affecting dynamic behavior of the BCR-associated signalosome.

Single-cell proteomics has emerged in tandem with advanced genomic methods, with great 

promise to characterize the signaling responses and physiology of clinical samples (Irish et 

al., 2004). To provide functional context to observed genomic lesions in any cancer 

specimen, methods must be developed to integrate measurements of the signaling and 

differentiation status of biological and clinical samples at the single-cell level. Achieving 

such single-cell resolution in the study of biological systems has long been recognized as an 
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important step toward a quantitative understanding of biological responses, in particular 

when dissecting the phenotypic variability of cells within isogenic populations and 

identifying the most central mechanisms and factors in biological regulation (Cotari et al., 

2013b; Feinerman et al., 2008; Krishnaswamy et al., 2014).

Developmental biologists have already leveraged quantitative modeling at single-cell 

resolution in the study of emergent properties of biological systems. For example, the 

observation and manipulation of Xenopus oocytes at the single-cell level led to the discovery 

of the dynamics and mechanisms controlling the all-or-none commitment of individual eggs 

to enter mitosis (Ferrell and Machleder, 1998). Similar observations of bimodality in 

biological responses were reproduced for cells undergoing apoptosis (Spencer et al., 2009) 

or for lymphocytes responding to antigens (Altan-Bonnet and Germain, 2005; Das et al., 

2009). Exquisite control of threshold-based, switch-like behavior is ubiquitous across 

biological systems, yet such observations are challenging to dissect at the molecular level 

and hard to interpret in their ability to generate functional cell-to-cell heterogeneity 

(Feinerman et al., 2008; Vogel et al., 2016). In CLL, prior efforts have succeeded in using 

statistical methods to understand cellular heterogeneity by classifying clinical samples 

according to genomic or proteomic data (Damle et al., 1999; Döhner et al., 2000). However, 

full elucidation of the mechanistic molecular changes that drive clinical variability must use 

a “bottom-up” approach, relying on the precise characterization of protein-protein molecular 

events, biochemical models that reduce the complexity of signaling networks, and 

integration of high-dimensional data obtained from flow cytometry and other methods into a 

reductionist representation (Gunawardena, 2014; Machta et al., 2013).

In this study, we apply quantitative single-cell analysis to experimentally interrogate and 

theoretically model signal transduction in primary B cells from CLL patients and healthy 

donors. We observe that B cells respond in an all-or-none manner to phosphatase inhibition; 

we attribute this emergent behavior to SYK-kinase-dependent positive feedback, based on 

theoretical modeling of signaling responses in single cells and validated using small 

molecule inhibitors. Moreover, we demonstrate that unique B cells respond to phosphatase 

inhibition with hysteresis—they exhibit “memory” of prior signaling activation. As a cohort, 

primary tumor cells from CLL patients display robust enhancement in their response to 

stimuli: lower thresholds to all-or-none activation and more pronounced hysteresis, often 

with stable stimulus-independent activation. We introduce a mathematical model of 

signaling dynamics that analyzes mechanisms to generate signaling diversity through the 

alteration of biological entities (e.g., BCR clustering) and/or variable biochemical 

parameters (e.g., protein abundance and noise). We directly test these theoretical insights on 

a cohort of patient-derived tumor samples. As predicted by model simulations, varying 

degrees of constitutive signaling explain the diversity in cellular activation phenotypes from 

different patients with CLL. We validate this observation using biophysical and signaling 

assays and direct quantification of BCR constitutive multimerization using super-resolution 

microscopy. Finally, BCR multimerization and signaling dysfunction strongly predict 

clinical severity in CLL and other B cell leukemias. Hence, by unifying single-cell 

phosphoproteomic studies with mathematical modeling, we uncover a dysfunctional cellular 

behavior that underlies disease severity in primary B cell neoplasia.
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RESULTS

Single-Cell Analysis of B Cells upon Phosphatase Inhibition Reveals Bimodality and 
Hysteresis of Kinase Activation

We developed an ex vivo assay to probe the signaling capacities of primary B cells collected 

from CLL patients and healthy donors (see Table S1 for donor characteristics). We exposed 

peripheral blood mononuclear cells (PBMCs) to different concentrations of hydrogen 

peroxide (H2O2), an oxidizing agent that universally inhibits phosphatases in living cells 

(Khalil et al., 2012), for varying durations. We analyzed the BCR-proximal signaling 

response by quantifying the amount of phosphorylated LYN, SYK, and PLCγ2 kinases with 

single-cell resolution using flow cytometry (Figures 1A, 1B, S1A, and S1B) (Feinerman et 

al., 2008; Irish et al., 2004). Canonically, LYN kinase is responsible for mediating initial 

phosphorylation of the conserved tyrosine residues on immunoglobulin α/β (Igα/β) 

cytoplasmic domains, providing docking sites for other associated kinases such as FYN, 

CSK, and SYK. SYK engages with phosphorylated tyrosines via tandem SH2 domains and 

mediates additional phosphorylation events, leading to the assembly of a membrane-

proximal signalosome with diverse downstream outcomes of activation, including 

phosphatidylinositol 3-kinase (PI3K) activation, BTK recruitment and phosphorylation, and 

PLCγ2 phosphorylation. We observed that the response of primary B cells to stimulation 

(from both CLL patients and healthy donors) is strictly bimodal. For increasing 

concentrations of H2O2, the fraction of activated B cells increases, but the mode of the 

distribution of phosphorylated kinases (LYN, SYK, PLCγ2) remains unchanged (i.e., the 

quantity of phosphorylated kinase per cell is the same in all activated cells). This is in 

striking contrast to the graded and analog pLCK response within T cells from the same 

PBMC pool (Figures 1B and S1B). To fully characterize the kinetics and dynamics of B cell 

stimulation, we assessed the degree of responsiveness of B cells to increasing concentrations 

of phosphatase-inhibiting H2O2 by measuring EC50
up as the concentration of H2O2 that 

yielded 50% of the maximal fraction of SYK-phosphorylated B cells (Figures 1C, left panel, 

and 1E). CLL B cells are more sensitive to phosphatase inhibition (EC50
up = 4.4 ± 0.9mM), 

compared to B cells from healthy donors (EC50
up = 19 ± 0.5mM). Similar results were also 

obtained using sodium pervanadate, an alternate pan-phosphatase inhibitor (Figure S1C).

The kinetics of activation from rest and the threshold for stimulation only represent a subset 

of the dynamic properties of any signaling network. To further characterize this system, we 

next assessed the “relaxation” kinetics from full activation. We set healthy PBMCs into a 

highly activated state by exposing them to 30 mM H2O2 for 4 min, washing with complete 

RPMI, and exposing these pre-activated cells to lower concentrations of H2O2 to establish 

new steady states over 30 min (Figure 1C, right panel). As before, dephosphorylation of 

kinases by titrated reactivation of phosphatases proceeded in a digital fashion, with switch-

like toggling of the whole-cell activation phenotype (Figure 1D). Among B cells from 

healthy donors, we found EC50
down = 3.6 ± 0.5mM compared to EC50

up = 19 ± 0.5mM. This gap 

in the response of cells to increasing and decreasing doses of H2O2 is called hysteresis (Das 

et al., 2009; Mukherjee et al., 2013). This dynamic property is the hallmark of a system 
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whose state of activation is dependent on its perturbation history. Hysteresis is therefore an 

important factor in determining the contextual behavior for the signaling and cellular 

network of lymphocytes in vivo. A system whose intrinsic activation structure is highly 

sensitive to prior stimuli exhibits a memory of recent cellular context, making it inherently 

tunable by cell-specific microenvironmental stimuli (Das et al., 2009).

We found that B cells from CLL donors also display hysteresis in their phosphorylation of 

BCR signaling components (Figures 1C and 1D). An assessment of a cohort of CLL patients 

found that tumor clones responded to decreasing doses of H2O2 (“relaxation” from 

activation) with a substantially lower EC50
down compared to healthy B cells. In a majority of 

CLL samples, a large fraction of the neoplastic cells remained activated 30 min after the 

complete washout of H2O2 (Figures 1D, right panel, S1D, and S1E). To quantify hysteresis 

in CLL B cells, we defined % pSYKℎysteresis
+  as the percentage of B cells that remain SYK 

phosphorylated 30 min after phosphatase reactivation. We found that % pSYKℎysteresis
+  is 

practically null for B cells from healthy donors ( % pSYKℎysteresis
+ = 6.5 ± 0.74), while it is 

large and variable for CLL B cells ( % pSYKℎysteresis
+ = 75.2 ± 4.11) (Figure 1F). Crucially, 

we found that stimulus-free activation in CLL B cells is independent of the magnitude of 

H2O2 applied (Figures S1E and S1F).

By assaying CLL B cell signaling with single-cell resolution, we established that the 

magnitude of phosphatase inhibition determines the fraction of cells that pass the threshold 

for activation, and highly activated cells remain phosphorylated independent of reactivated 

membrane-proximal phosphatases. We observe that CLL B cells and healthy B cells differ in 

hypersensitivity (responsiveness of kinase phosphorylation from rest) and hysteresis 

(stimulus-free activation) in the phosphorylation patterns of the BCR signaling pathway 

upon phosphatase inhibition. Moreover, these quantitative readouts, as summarized in 

Figures 1E and 1F, uncover and describe substantial variability between CLL patients.

Small Molecule Inhibitors Identify SYK as Responsible for Enforcing Positive Feedback in 
BCR Signaling

Bistability and hysteresis in the response of cells to normal biological stimuli are the 

hallmarks of positive feedback regulation (Das et al., 2009). We used small molecule 

inhibitors against the BCR-associated tyrosine kinases LYN and SYK to confirm the 

existence of and rigorously characterize a potential molecular mechanism for positive 

feedback in the BCR signaling pathway. Pretreating cells with either a Src-family kinase 

(SFK) inhibitor (PP2), which targets LYN, or a SYK inhibitor (R406) before stimulating 

cells by phosphatase inhibition (H2O2 exposure) decreased both the frequency of cells 

responding to phosphatase inhibition and the per-cell abundance of pLYN, pSYK, and 

pPLCγ2 (Figures 2A, 2B, and S2A-S2C). This demonstrates that B cells depend on active 

SYK and LYN kinase for downstream phosphorylation and cellular activation when 

perturbed from a resting state. Next, we treated B cells with tyrosine kinase inhibitors after 

activation by H2O2 exposure, which we previously observed induces hysteresis in this 

signaling network. We found that SFK activity was not required to maintain CLL B cells in 

their activated state, while SYK kinase activity was critical to sustain the phosphorylation of 
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LYN, SYK, and PLCγ2 in CLL B cells (Figures 2C and S2C). These data suggest that SYK 

acts as robust positive feedback onto the BCR-associated tyrosine kinases LYN and SYK 

(Kläsener et al., 2014). Furthermore, these data support our hypothesis that SYK-mediated 

feedback accounts for the digital mode of activation in the BCR pathway, the partial 

hysteresis as measured by EC50
down in healthy donors, and the maintenance of CLL B cells in 

an active state, even after stimulus removal ( % pSYKℎysteresis
+ ≫ 0).

A Computational Model of Early Events in BCR Signaling Explains How Variability in 
Constitutive BCR Activation Generates Heterogeneity in B Cell Signaling

We developed a computational model of the proximal signaling events to deconvolve the 

modulation of phosphorylation by constitutive signaling and phosphatase inhibition (Figure 

3A). Our computational model was built on previous modeling efforts in B cell signaling 

(Das et al., 2009; Mukherjee et al., 2013) and focused on the specific dynamics of LYN and 

SYK phosphorylation upon phosphatase inhibition by H2O2 treatment. Our computational 

goals were as follows:

1. To account for the bimodal distribution of pLYN and pSYK upon exposure to 

H2O2

2. To account for hysteresis in LYN and SYK phosphorylation upon the addition 

and removal of H2O2

3. To account for the cell-to-cell variability in phosphorylation patterns

4. To account for the donor-to-donor and disease-to-healthy variability in B cell 

responsiveness and hysteresis

Using a modified single-cell phosphorylation assay, we observed that the variability in EC50
up

between CLL and healthy B cells was eliminated when tonic signaling through the BCR was 

maximized via the complete saturation of surface Ig with bivalent anti-human IgM F(ab′)2 

(Figure S3A). Therefore, we hypothesized that we could model the signaling networks and 

kinetic parameters downstream of the BCR as functionally identical. Additionally, this 

suggested that by altering the level of constitutive signaling (based on differential BCR 

clustering), we could eliminate the signaling differences between CLL B cells and B cells 

from healthy donors. Altered constitutive BCR signaling would, in theory, enable differential 

responsiveness to phosphatase (PTPx) inhibition. We also implemented the signaling 

feedback uncovered in Figure 2, which supports pSYK driving further LYN and SYK 

phosphorylation, to account for the bimodality and hysteresis in pLYN and pSYK.

We modeled the effective concentration of active phosphatase [PTPx]active within an 

individual cell as titrated down upon the addition of H2O2:

[PTPx]active = 1

1 +
koxidize
kreduce

⋅ [H2O2]
⋅ [PTPx]total .
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We calibrated the scaling between intracellular concentrations of H2O2 and varied 

extracellular concentrations (data not shown). Oxidation and reduction parameters were 

measured directly within our experiments using a cell-permeable fluorogenic dye, 

dichlorofluorescin diacetate (DCFDA), which detects hydroxyl, peroxyl, and other reactive 

oxygen species within primary B cells (Table 1; Figure S1D).

Oxidation of active phosphatases reduces the dephosphorylation rates for pLYN and pSYK 

and allows further LYN and SYK phosphorylation. To parameterize these dynamic 

equations, we built upon previous modeling studies (Mukherjee et al., 2013) and ad hoc 

measurements on our primary samples (Table 1). Our model represents the phosphorylation 

and dephosphorylation reactions for pLYN and pSYK:
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d[pLyn]
dt = − Rdepℎospℎorylation

pLyn

+Rpℎospℎorylation
pLyn (pSyk pLyn)

+Rpℎospℎorylation
constitutive (BCR∗ pLyn)

d[pSyk]
dt = − Rdepℎospℎorylation

pSyk

+Rpℎospℎorylation
pSyk (pLyn pSyk)

+Rpℎospℎorylation
pSyk (pSyk pSyk)

d[pLyn]
dt = − kcatP [pLyn]

Kmp + [pLyn]
[PTPx]active + ([Lyn]total − [pLyn]) ×

kcat
pLyn

KmBCR − Lyn . BCR∗

+
kcat

pSyk

KmpSyk − Lyn .
konpSyk − BCR

koff
pSyk − BCR . [pSyk] . BCR∗

d[pSyk]
dt = − kcatP [pSyk]

Kmp + [pSyk]
[PTPx]active + ([Syk]total − [pSyk]) ×

kcat
pLyn

KmpLyn − Syk .
konpLyn − BCR

koff
pLyn − BCR . [pLyn] . BCR∗

+
kcat

pSyk

KmpSyk − Syk .
konpSyk − BCR

koff
pSyk − BCR . [pSyk] . BCR∗

where [X] represents the intracellular concentration of protein species X (Figure 3A). The 

single free parameter in our model is BCR*, representing the number of constitutively 

activated BCRs on the cell surface. We could avoid overfitting, as all other parameters were 

measured or taken from the literature and assumed to be identical for all CLL and healthy B 

cell simulations (see Table 1).

We resolved this set of differential equations using the ode45 solver, a nonstiff ordinary 

differential equation solver in MATLAB. We simulated our experimental conditions: 
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responses of pSYK and pLYN for varied concentrations of H2O2 at steady state, starting 

from resting or fully activated states. As with our primary ex vivo experiments, relaxation 

from full H2O2 activation (phosphatase inhibition) permits the assessment of hysteresis 

within the BCR signaling pathway.

Our model established that for individual B cells, low levels of constitutive BCR activation 

yield a single steady state of LYN and SYK activation with minimal phosphorylation; high 

levels of constitutive BCR activation yield a single steady state of LYN and SYK activation 

with complete phosphorylation, whereas intermediate levels of constitutive BCR activation 

induce two stable fixed points in the (pLYN, pSYK) phase space (Figures 3B and S3B). Two 

stable fixed points enable bistability in phosphorylation patterns. Hence, we found that by 

varying only the level of constitutive BCR activation, we could transverse the phase space 

from dominant-monostable population behavior to dominant-bistable population behavior. 

Next, to match our experimental observations, we modeled the large endogenous variability 

in the abundances of LYN, SYK, and PTPx (e.g., SHP-1) among B cells from both CLL and 

healthy donors (Table 1). Such large variabilities in the expression of signaling components 

can be characterized by lognormal distributions with a coefficient of variation ~0.5, 

measured directly from single cells using flow cytometry (Figures S3C and S3D). Given 

these observations, we incorporated heterogeneous abundances of LYN, SYK, and PTPx 

proteins, and updated our dynamic model to take into account the natural phenotypic 

variability in isogenic populations of B cells. We typically modeled 1,000 cells with protein 

abundance parameters randomly chosen from the tri-variate distribution of signaling 

components and recorded their digital signaling output at the individual cell level (Figures 

S3E and S3F).

Our model successfully reproduced key aspects of the signaling responses of B cells, as 

documented in Figure 1. Modeled cells are bistable in their phosphorylation response to 

H2O2. Simulated activation of a population of B cells results in switch-like activation on a 

cell-to-cell basis (Figures 1B, 1D, and S3F). Our model reproduces the observation that 

higher degrees of constitutive signaling, here modeled as a larger abundance of 

constitutively active BCR, drives hypersensitivity to digital activation (Figures 3C, left 

panel, and 3D). Furthermore, simulations of this model successfully represent coupling 

between the hypersensitivity observation and the presence of more extreme hysteresis, 

observed as sustained kinase phosphorylation after H2O2 removal (Figures 3C, right panel, 

3E, and 3F). We observe that substantial phenotypic variation can be accessed without 

imposing altered signaling network structures. Notably, the hysteresis ranges from 0% to 

51% by altering the constitutive BCR signaling parameter BCR*. To assess the sensitivity of 

our results to parameter fluctuations, we varied each parameter from 0.1 to 10x compared to 

the original measured value and recorded how these alterations affected the H2O2 EC50
up

result for SYK phosphorylation (Figure S3G). As expected, BCR clustering and the 

abundance of active phosphatase critically affect signaling activity within our model, while 

variations in catalytic rates and binding constants had a limited effect. By simulating the 

outcomes of LYN or SYK inhibition after stimulation, our model supports our finding that 

bistability and hysteresis are fully dependent on a SYK positive feedback motif (Figure 

S5A).
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To conclude, we modeled BCR-proximal signaling using a two-equation dynamic model to 

account for the phosphorylation status of kinases LYN and SYK after phosphatase 

inhibition. We confirmed that bistability and hysteresis in BCR-proximal kinases are 

dominantly tuned by variations in the constitutive BCR stimulatory input, modeled as a 

generalized representation of altered BCR clustering. Finally, we confirmed that such 

phenomena are fully dependent on a proximal positive feedback motif, and each of our 

experimental observations can be recapitulated with a simple model of SYK-mediated 

feedback. These modeling efforts strengthen our hypothesis that signaling variability 

between B cells from healthy and CLL patients and between different CLL donors can arise 

purely from varied constitutive activation of the BCR without requiring genetic alterations in 

the downstream signaling network structure (Figure 3C). Thus, our theoretical effort 

encapsulates the salient features of CLL BCR dysfunction and makes testable predictions 

that further our understanding of CLL biology.

Crosslinking of BCR on B Cells from Healthy Individuals Phenocopies Signaling 
Dysfunction in CLL

Our model predicts that variability in B cell responses could stem from variable degrees of 

surface Ig clustering, which may be associated with the natural genomic heterogeneity in 

BCRs (i.e., somatic mutations in IgM during B cell development) or acquired hypermutation 

and auto-affinity due to the response to self or a pathogen (Dühren-von Minden et al., 2012) 

(Figures 3D-3F). To assess this prediction, we induced stable BCR clustering on the surface 

of B cells from healthy donors using a bivalent polyclonal anti-IgM antibody. We confirmed 

that this was sufficient to increase the responsiveness of B cells to lower concentrations of 

H2O2, and enabled hysteresis (Figures 4A and 4B). Moreover, by titrating the amount of 

anti-IgM crosslinking, healthy B cells could be induced to recapitulate the diversity in 

signaling observed in CLL B cells (Figure 4C). This confirmed our model prediction that 

BCR clustering can alone induce hyperresponsiveness to stimulation and hysteresis in the 

BCR-proximal signaling network. Further, this observation establishes that the two dynamic 

features, an increase in EC50
up and a decrease in % pSYKℎysteresis

+ , are directly linked (model: 

Figures 3D-3F; data: Figures 4C and 4D). We found that B cells from different CLL patients 

similarly obey this scaling property, whereby individual leukemic clones with the most 

robust % pSYKℎysteresis
+  exhibit the highest hypersensitivity to activation (model: Figure 3F; 

data: Figure 4D). Our theoretical model and experimental results suggest that dysfunctional 

signaling dynamics in CLL B cells could be phenocopied by inducing clustering of surface 

BCR in healthy B cells and that constitutive signaling represents a universal, tunable 

signaling mechanism underlying B cell activation dynamics.

Super-Resolution Microscopy Resolves BCR Clusters on the Surface of Cells and 
Quantifies CLL Constitutive Signaling

To understand the phenotype of surface Ig on CLL B cells, we visualized and quantified the 

degree of constitutive BCR clustering on the surface of B cells using super-resolution 

microscopy (d-STORM). B cells from CLL patients and healthy donors were stained at 4°C 

with a fluorescently coupled antibody against IgM, deposited on a coverslip, and imaged 

under total internal reflection illumination with a blink-inducing buffer (Figures S4A and 
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S4B) (Lee et al., 2017). d-STORM imaging of individual BCRs achieves a 15-nm resolution 

(Baddeley and Turner, 2005), which allowed us to quantify the total abundance of BCRs 

(Figure S4C) and their propensity to aggregate on the surface of B cells by measuring the 

fraction of individual BCRs that lay within this minimal binding radius of another BCR at 

steady state (Figures 4E and S4B). Compared to 31% ± 5% of BCRs on the surface of 

healthy donor derived B cells (n = 18), 58% ± 3% of BCRs on the surface of CLL B cells (n 

= 64) belong to a cluster (p < 0.0001 by Student’s t test; Figures 4F, S4B, and S4D). As 

predicted by our model, there is a strong correlation between the fraction of clustered BCRs 

(as a measure of constitutive BCR activation) and stimulation hypersensitivity and hysteretic 

signaling behavior induced by transient phosphatase inhibition (Figures 4G, p < 0.01, and 

4H, p < 0.01). As a positive control, we crosslinked BCRs on healthy donor B cells at 37°C 

with a bivalent anti-IgM antibody before staining cells at 4°C. Crosslinked healthy B cells 

demonstrated enhanced clustering of BCRs, which is on par with the degree of clustering 

observed in CLL B cells (n = 12) (p < 10−4 compared to uncrosslinked healthy B cells by 

Student’s t test; Figures 4E and 4F). Again, enhanced BCR clustering on healthy B cells 

correlated with hypersensitivity and hysteresis in the signaling patterns after phosphatase 

inhibition (Figures 4G and 4H). Thus, the percentage of BCRs engaged in a cluster can be 

considered an experimental estimate of the level of constitutive activation of a cell, which 

drives differential responsiveness to phosphatase inhibition.

Finally, using the predicted scaling between BCR constitutive signaling and 

% pSYKℎysteresis
+ , we applied our dynamic model to the % pSYKℎysteresis

+  measured from 

patient-derived B cells and generated calibrated predictions of the degree of BCR clustering 

on the surface of cells (Figure 4I). Super-resolution imaging of the BCR membrane 

phenotype strongly confirmed this model prediction and established our single-cell assay of 

BCR signaling dynamics as sufficient to estimate the unique degrees of constitutive 

activation for each leukemic clone.

A Biophysical Assay Demonstrates the Propensity for BCRs to Cluster on the Surface of 
CLL B Cells

We confirmed our observation of BCR membrane clustering in CLL clones with a custom 

qualitative biophysical assay (Figure S4E). We reasoned that enhanced clustering on the 

surface of CLL B cells may rely on intrinsic auto-affinity between BCRs or affinity to 

another feature on the cellular surface. We collected plasma from whole-blood isolates from 

CLL patients and healthy donors and coated magnetic beads with soluble IgM/IgG. Next, we 

tested whether the soluble Ig from both neoplastic and healthy cells exhibited affinity toward 

a polyclonal pool of B cells derived from healthy donors (Figures S4E and S4F). We used 

flow cytometry to assess the relative binding affinity between Ig-coated beads and B cells, as 

cells bound to beads could be readily distinguished from unbound cells by light-scattering 

properties. By costaining with surface markers, we could measure the “depletion” of B cells 

from the unbound cellular pool, providing a proxy for affinity between the Ig captured on 

the beads and healthy B cells. We calibrated our measurements using negative control beads 

coated with mouse gamma globulin, which was expected to exhibit negligible affinity toward 

human B cells and anti-IgM coated beads, which we expected to strongly bind to the surface 

of B cells. As expected, anti-IgM coated beads had the capacity to selectively deplete B cells 
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from the unbound cellular fraction, while mouse gamma globulin-coated beads exhibited 

negligible B cell binding (Figures S4F and S4G). Similarly, we observed that secreted Ig 

isolated from healthy plasma exhibited little affinity for healthy B cells. In contrast, beads 

coated with serum Ig isolated from representative sets of CLL patients bound to the surface 

of B cells at high affinity relative to healthy donor-derived Ig, at similar rates in our assay to 

anti-IgM bivalent antibodies, and resulted in the near-complete depletion of B cells from the 

unbound cellular fraction (p < 0.001; Figures S4F and S4G). Such auto-reactive binding 

capacity, combined with the bivalency of surface Ig, correlates qualitatively with enhanced 

IgM clusters on the surface of CLL B cells, as observed by super-resolution microscopy 

(Figure 4F). Notably, we found that this unique property of CLL-derived Ig is not patient 

specific. Ig derived from a given CLL patient has the capacity to bind non-specifically to the 

surface of any B cell tested, including other CLL leukemic clones and healthy donor B cells. 

Hence, the antigen driving Ig clustering on the surface of CLL B cells may be due to 

mutations in a constant region of Ig or it may reflect affinity to other surface proteins. 

Clustering of surface Ig is thus ubiquitous, variable, and sufficient to account for the 

magnitude of proximal-BCR signaling that is characteristic of primary CLL B cells.

Cell-to-Cell Variability Analysis Validates the Role of Phosphatases in Defining the 
Threshold for BCR Activation

Our understanding of signaling hypersensitivity within CLL B cells is supported by our 

computational model of the early events in signal transduction at and downstream of BCR 

clustering. To further our understanding of signaling dysregulation in CLL, we applied cell-

to-cell variability analysis (CCVA) (Cotari et al., 2013a, 2013b) to quantify how variability 

in B cell signaling relates to the abundance of phosphatases at the single-cell level (Figure 

5A). Briefly, this technique allows us to leverage the diversity in protein abundance within 

isogenic cell populations to learn regulatory mechanisms of signaling responses. Here, we 

apply this method to better understand how altered negative regulators may affect kinase 

activation. We stimulated PBMCs with varied doses of H2O2 for 4 min and measured the 

signaling response using phospho-flow cytometry. We co-stained cells for pPLCγ2 and 

SHP-1 (i.e., PTPN6) abundance. SHP-1 is a phosphatase of critical relevance in antigenic 

signaling responses in lymphocytes and, crucially, the phosphatase responsible for mediating 

signaling repression via CD5 upregulation in lymphocytes and thus relevant for CLL 

signaling dynamics (Feinerman et al., 2008; Khalil et al., 2012). A coarse-grained approach 

to CCVA is illustrated in Figures 5B and 5C, in which the distribution of SHP-1 abundance 

in a B cell population is partitioned into discrete subpopulations, termed “SHP-1low,” 

“SHP-1int,” and “SHP-1high.” Each B cell subset displays unique and reproducible 

deviations in their signaling responses measured by pPLCγ2, wherein cells with high 

concentrations of SHP-1 are hyporesponsive to H2O2 stimulation, as observed by fewer 

pPLCγ2+ cells (red lines, Figure 5C). We applied CCVA to the distribution of SHP-1 

abundance. We binned our single-cell data for varied levels of SHP-1 and measured the 

amount of phosphorylated PLCγ2 within each subpopulation for increasing concentrations 

of H2O2 (Figure 5D). This analysis permits B cell stimulation to be analyzed as a “dose 

response” of phosphatase abundance, and B cells from distinct donors can be directly 

compared within similarly binned SHP-1 (Figure 5E). These experimental measurements 

confirmed a prediction from our model (Figures 5F, S5B, and S5C): increasing levels of 
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SHP-1 correlate with blunted activation within populations of CLL or healthy B cells. 

However, we do not And that changes in the abundance of SHP-1 between healthy and CLL 

B cells are responsible for disease-specific differences in sensitivity to phosphatase 

inhibition. Furthermore, model simulations do not support alterations in phosphatase 

functionality, such as mutations in dominant BCR-proximal phosphatases, or upregulation or 

downregulation at the cell membrane, to enable hysteretic behaviors as we observe in our 

data (Figures S5C and S5D). This further validated our model and emphasized how 

phenotypic variability within isogenic populations of tumor cells can result from 

heterogeneous abundances of signaling regulators.

Clinical Correlates of BCR Dysfunction in CLL and Other B Cell Neoplasms

The reported measurements of signaling dysfunction capture large and reproducible 

variability between B cells from CLL patients and healthy counterparts, and subsequent 

investigation revealed that signaling alteration is potentially linked to a prior response to an 

antigen or a pseudo-antigen. As the typical impact of BCR stimulation and downstream 

PLCγ2 phosphorylation and PI3K activation is enhanced cell survival and proliferation, we 

examined whether BCR signaling dynamics were related to clinical phenotypes. We 

measured the degree of hysteresis in SYK phosphorylation in B cells from 91 patients 

afflicted with B cell leukemias and lymphomas of a diverse nature (Table S1). In this 

expanded cohort, we again found that the % pSYKℎysteresis
+  is significantly higher in B cells 

from CLL patients compared to healthy donors (p < 0.01; Figure 6A). We similarly observed 

elevated and variable hysteresis among B cells from patients with mantle cell lymphoma 

(MCL); a notable commonality between these lymphoma subtypes is the surface expression 

of CD5 on B cells, and each exhibit a similar clinical presentation (p < 0.05; Figures 6A and 

S6A) (Puente et al., 2018). Hysteresis was negligible (within the healthy donor range) in B 

cells from patients with follicular lymphoma (FL) and marginal zone lymphoma (MZL) 

(Figure 6A). Within the cohort of CLL patients, we also found that % pSYKℎysteresis
+  was 

associated with the severity of the disease, as determined retrospectively by estimating the 

clinical need of treatment at the time of blood draw (p < 0.0038; Figures 6B and S6B) or the 

probability of remaining progression free (p < 0.0040; Figure 6C). It has been previously 

proposed that unmutated heavy-chain immunoglobulin variable regions in clonal CLL B 

cells are more responsive to antigenic stimulation and are associated with poorer prognoses 

(Damle et al., 1999; Hamblin et al., 1999; Oscier et al., 2002). However, in the cohort we 

tested, we did not find a significant association between the BCR mutation status and the 

magnitude of % pSYKℎysteresis
+  (Figure S6C). In addition, a longitudinal study of patients 

whose CLL required treatment (“Progressors”) versus patients whose CLL could remain 

untreated and under observation (“Non Progressors”) yielded a marked difference in the 

dynamics of % pSYKℎysteresis
+  (p < 0.0022; Figure 6D). We found that independent of initial 

BCR signaling status, B cells from Progressors increased in their % pSYKℎysteresis
+  over time, 

while B cells from the Non Progressors remained stable.

Our findings open up new opportunities in clinical immunology, whereby assessing the 

response of leukemic clones to phosphatase inhibition could be used to infer the degree of 
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BCR clustering and predict clinical presentation (Figure 6E). The origin and functional 

significance of the dichotomy of disease progression reflected in BCR hyperresponsiveness 

will require additional study to assess its relevance in the treatment of CLL.

DISCUSSION

In this study, we used a combination of single-cell phospho-profiling and computational 

modeling to uncover signaling dysregulation within B cells in primary tumors from CLL 

patients. This methodology enabled us to quantitatively assess aberrant signaling, model and 

validate specific molecular drivers of signaling dysfunction, and conclude that increased 

constitutive activation of the BCR signalosome differentiates CLL B cells from their healthy 

counterparts. Our data support this dynamic phenotype as a hallmark of CLL pathobiology, 

connect constitutive levels of BCR activation to variability in the behavior of single cells, 

and strongly correlate with overall clinical outcome.

Concurrently, our study demonstrates the strength of systems immunology, in particular, 

simple mathematical modeling, to quantitatively dissect the pathophysiology of tumor cells. 

Through dynamic modeling, we assessed the impact of diverse mutational backgrounds with 

unbiased filtering and were able to pinpoint important “nodes” of dysregulation across 

heterogeneous patient samples. In our study of CLL, we demonstrated that the interplay 

between constitutive signaling through BCR clustering and a positive feedback in the early 

signaling events was sufficient to account for the variability of responsiveness in the BCR 

signaling pathway.

While other groups have attempted more comprehensive and systematic modeling of cellular 

function (Karr et al., 2012), our study highlights the degree of biochemical precision that is 

required to capture functionally relevant aspects to leukocyte physiology, which can be 

achieved only by limiting signaling networks to those components or motifs that directly 

filter and propagate relevant stimuli. In the present case of CLL, a small increase in 

constitutive BCR signaling led to great changes in signal responsiveness after phosphatase 

inhibition. Recent results from the field of network biology have demonstrated that cell 

responsiveness may be fully determined by a few “critical modes” (Machta et al., 2013); 

instead of requiring a full accounting of all of the molecular events, systems immunologists 

can focus on a few critical modes whose dynamics encapsulate most relevant biological 

functions. In CLL, subclonal evolution occurs within a population of B cells that maintains 

clonality within the BCR (Landau et al., 2013). We therefore surmise that the BCR-driven 

hyperresponsiveness of CLL B cells may be the dominant mode onto which additional 

oncogenic transformations become fixed (e.g., p53 mutation, chromosomal deletion; 

Chiorazzi et al., 2005).

Our findings also augment the recent insights about the role of the BCR in CLL 

pathobiology, emerging from genomic (Agathangelidis et al., 2012), functional (Dühren-von 

Minden et al., 2012), and mouse genetic modeling studies (Chen et al., 2015; Dühren-von 

Minden et al., 2012; Iacovelli et al., 2015). In particular, our method demonstrates that the 

cell-autonomous antigen-independent signaling response associated with CLL is highly 

variable and specific for each individual CLL B cell clone. Our data and model imply that 
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increased BCR clustering (evident in CLL B cells) is a perturbed cell state along the natural 

continuum of healthy B cell biology—an extreme and malignant phenotype arising due to 

signaling dynamics (proximal positive feedback engendering hysteresis and bistability) as 

opposed to a concrete, singular mutational event. This observation potentially puts to rest the 

long-unresolved finding of dysfunctional kinase activation and phosphorylation in CLL B 

cells without mutational “hits” in these pathways. Moreover, our observation opens up the 

possibility that other B cell neoplasms, auto-inflammatory conditions, or even natural 

benchmarks along B cell development rely on tunable scaling between locally perturbed 

membrane clustering and the capacity for cell-autonomous sustained activation (Minguet et 

al., 2017). Finally, our methodology may provide an additional clinical tool to stratify CLL 

patients by severity according to the degree of constitutive signaling in their B cell clone. 

Future studies will be needed to couple our quantitative assessment of BCR dysfunction 

with compensatory mechanisms and downstream mutations to lead to better classification, 

diagnosis, and treatment of CLL on a personalized basis.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Gregoire Altan-Bonnet (gregoire.altan-bonnet@nih.gov).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Peripheral blood samples were obtained from 57 CLL patients, 14 healthy donors, 28 Mantle 

Cell Lymphoma (MCL) patients, 2 Follicular Lymphoma (FL) patients, and 4 Marginal Zone 

Lymphoma (MZL) patients. Samples were collected from Memorial Sloan Kettering Cancer 

Center. All donors consented for PBMCs to be used for research purposes, in accordance 

with the Declaration of Helsinki and approval by the Memorial Sloan Kettering Cancer 

Center institutional review board. Patients were not selected on the basis of disease 

characteristics or treatment history, nor were they treated uniformly under a specific clinical 

trial. The median age of CLL patients was 71, range: 44-91. Details on disease attributes can 

be found in Table S1. 37% of CLL patients identified as female, and 50% of healthy donors 

identified as female. In the study described in Figure 6A, the gender of the donor was not 

predictive of % pSYKℎysteresis
+ : female: 66.5 ± 7.3, male: 61.5 ± 5.3, p = 0.57 by Student’s t 

test.

METHOD DETAILS

Cell Preparation and Perturbation—Peripheral blood mononuclear cells (PBMCs) 

were isolated using density gradient separation (Ficoll-Paque Plus; GE Healthcare) and 

frozen within 6 hours of collection. Cells were thawed, rested and stimulated as previously 

described (Irish et al., 2004; Khalil et al., 2012; Palomba et al., 2014). Briefly: frozen cells 

were thawed by gentle resuspension in RPMI 1640 media supplemented with 10% fetal 

bovine serum (FBS, Thermo Fisher Scientific), and plated at 107 cells/mL. Cells were rested 

for 2 hours at 37°C, and stimulated with a range of doses of hydrogen peroxide (H2O2, 

Sigma) for 4 minutes at 37°C. For assessment of sensitivity to stimulation from rest, cells 
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were immediately fixed after 4-minute stimulation by addition of pre-warmed (37°C) 

paraformaldehyde (PFA, BD Biosciences). For assessment of hysteresis (phosphorylated 

kinase activity following removal of stimulus), instead of fixing cells following 4-minute 

stimulation, cells were placed in either RPMI with 10% FBS media alone, or in addition to a 

range of concentrations of H2O2. Doses for H2O2 stimulation and timing post-stimulation is 

specified in figures or figure captions. Cells were stimulated with polyclonal Goat anti-

Human anti-IgM F(ab’)2 (Invitrogen) by adding 1 μg/mL anti-IgM to cells at 37°C for 4 

minutes in parallel with H2O2 stimulation. Alternative concentrations of anti-IgM 

stimulation are noted in figures or figure captions. Pervanadate (Sigma) was prepared for 

cell stimulation as described (Huyer et al., 1997), and cells were stimulated identically to 

H2O2 stimulation. The inhibitors of kinase signaling, PP2 (Sigma) and R406 (Santa Cruz 

Biotech), and vehicle-control DMSO, were applied to cellular media at concentrations and 

timing as noted in figure captions.

Phospho-Flow Cytometry—Antibodies with the following specificities were purchased 

from BD Biosciences: pPLCγ2 (Alexa Fluor 488, pY759), pSYK (PE, pY348), pLCK/

pLYN (Alexa Fluor 647, pY505). Phosphatase abundance was estimated by SHP-1 antibody 

(Santa Cruz Biotechnology). Detection of PBMC subsets was achieved with Pacific Blue-

conjugated anti-CD3 (clone UCHT1) and PerCPCy5.5 conjugated anti-CD20 (clone H1), 

and CLL circulating tumor was confirmed for CD5 positivity with PE-Cy7-conjugated anti-

CD5 (clone L17F12, all BD Biosciences). Intracellular reactive oxygen species was 

measured under resting and H2O2-stimulated conditions using 2′,7’-dichlorofluorescin 

diacetate (DCFDA) (Abcam). For assessment of intracellular species, cells were 

permeabilized following fixation with PFA with cold methanol at −20°C for 10 minutes. 

Intracellular staining was carried out at 4°C in PBS + 2% FBS. Cells were washed twice 

with PBS + 2% FBS and analyzed on an LSRII cytometer (BD Biosciences). Analysis was 

carried out using FlowJo software (TreeStar), Prism (Graphpad), and with custom tools 

written in R statistical computing language (R project) and MATLAB (Mathworks). Code is 

available upon request.

Bead Affinity Assay—To develop a qualitative test to assess the specificity of secreted Ig, 

we modified the protocol presented in Coelho et al. (Figure S4E) (Coelho et al., 2013). 

Magnetic Protein A coated beads (Dynabeads, Life Technologies) were saturated with Ig 

from plasma frozen in parallel to above PBMC freezing protocol, according to the 

manufacturer’s instructions. This permitted generation of beads coated with specific secreted 

Ig from different CLL and healthy donors. Mouse gamma globulin (Jackson 

ImmunoChemicals) and purified recombinant human IgM (Sigma) were used as negative 

controls, for which affinity for molecules on B cell membranes is negligible and non-

specific. Conversely, beads coated with Goat anti-Human anti-IgM (Invitrogen) were used as 

a positive control for bead-Ig-B cell binding. Beads were incubated with mouse gamma 

globulin to block any unoccupied protein A binding sites. All incubations were carried out 

while rotating at room temperature for 2 hours. Each bead sample was verified by flow 

cytometry for intended loading and full surface saturation (data not shown). Healthy PBMCs 

were incubated with beads at a ratio of 10:1 beads:cells for 2 hours at 37°C, and fixed using 

PFA at a final concentration of 1.6%, stained for surface proteins CD20 and CD3 as 
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described above, and analyzed using an LSRII cytometer (BD Biosciences). We utilized 

altered light scattering in bead-bound cells (FSC/SSC) to compare cellular fractions in bead-

binding (therefore, Ig-binding) and unbound populations (Figure S4F).

PALM/dSTORM Superresolution Microscopy—Frozen PBMCs were thawed and 

washed in RPMI with 10% FBS and incubated at 37°C for 2 hours. Cells were stained with 

Goat anti-Human anti-IgM F(ab’)2 (Invitrogen), followed by Donkey anti-Goat A647 

(Jackson). Cells were washed in PBS and loaded onto a coverslip coated with Mouse anti-

Human HLA-DP (Abd Serotec). Finally, cells were affixed onto the coverslip with 4% PFA. 

Cells were stained with excess antibody and maintained on ice for the entire staining and 

mounting protocol to minimize antibody-induced BCR crosslinking. This protocol was 

modified for the positive, cross-linked control by staining with anti-IgM at 37°C.

An oxygen-scavenging PBS solution (10mM NaCl, 0.5mg/ml glucose oxidase, 40 g/ml 

catalase, 2% glucose and 10mM MEA) was used for imaging. dSTORM images were 

obtained on a Zeiss ELYRA PS.1 system (Carl Zeiss, USA). Images were acquired with a 

Plan-Apochromat 100x/1.46 oil immersion objective and an Andor iXon 885 EMCCD 

camera. 20,000 images were acquired per sample with an exposure time of 33 ms. We 

acquired data on the surface BCR cluster phenotype from 5 CLL patients (#046: 23 cells, 

#030: 10 cells, #016: 9 cells, #037: 13 cells, #022: 9 cells), 2 healthy donors (#092: 7 cells, 

#093 11 cells), and 1 positive control healthy donor with anti-IgM crosslinking (#092: 12 

cells).

Raw images were reconstructed and analyzed with ZEN software (Carl Zeiss, USA) and R 

package spatstat (Baddeley et al., 2015). Nearest neighbor calculations were applied to 

quantify BCR-BCR interactions, and the fraction of BCR/cell in a cluster was defined as 1 - 

p(monomer), where a monomer was defined as any BCR with no other BCRs identified 

within a 15 nm radius.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical details can be found in the figure legends, including statistical tests, p values 

(if reported), and exact values of n. p values less than 0.05 were considered significant. 

Comparison of EC50
up and % pSYKℎysteresis

+  values between disease groups was calculated by 

two-tailed Student’s t test or one-way ANOVA using Prism software (noted in figure 

legends). EC50
up calculations were completed using Prism by fitting a Hill equation to the 

dose response curve enabling a variable hill coefficient. Ordinary differential equation 

modeling was completed using the ode45 solver in MATLAB (Mathworks). Code available 

upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Bistability and hysteresis are dynamically controlled by BCR clustering

• Mathematical modeling predicts enhanced BCR clustering in CLL

• Super-resolution microscopy confirms CLL BCRs auto-aggregate at steady 

state

• CLL B cell signaling varies between patients and predicts disease severity
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Figure 1. Phospho-Flow Cytometry to Characterize the Proximal Defects in BCR Signaling in 
CLL
(A) Schematic of main components of the BCR signaling pathway under investigation.

(B) Phospho-flow cytometry of B cells and T cells for pLYN and pLCK (respectively, using 

a pleiotropic antibody) after a 4-min exposure to H2O2. Representative plot from one healthy 

donor (red, top row) and one CLL donor (blue, bottom row). Lymphocytes were gated on B 

cells (CD3−CD20+, left) or T cells (CD3+CD20−, right). Individual cells are plotted for each 

[H2O2]. a.u., amplitude units.

(C) %pSYK+ B cells from CLL patients (n = 4, blue) and healthy donors (n = 2, red) 

following exposure to increasing (“stimulation,” left) or decreasing (“relaxation,” right) 

concentrations of H2O2. See STAR Methods for protocol details. Open icons denote 

relaxation following stimulation; filled icons denote stimulation from rest.

(D) Histograms of pPLCγ2 in B cells following stimulation with H2O2 and return to 

stimulation-free media (starting at 0+ curve, black line). Gray histogram, unstimulated cells. 

Left, representative healthy donor; right, representative CLL donor.

(E) The half-maximal H2O2 concentration (EC50
up) for SYK phosphorylation from rest among 

B cells from CLL patients (n = 10) and healthy donors (n = 4). **p < 0.01 by Student’s t 

test.

(F) %pSYK+ B cells following H2O2 activation and return to stimulation-free media 

( % pSYKℎysteresis
+ ) from CLL (blue, n = 10) and healthy (red, n = 4) donors. Steady state is 

achieved after 30 min of incubation in stimulation-free media. **p < 0.01 by Student’s t test.

The data are represented as means ± SEMs. See also Figure S1.
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Figure 2. Small-Molecule Inhibitors of SYK and LYN Uncover Positive Feedback in the BCR-
Proximal Signaling Pathway
(A and B) Histograms of pLYN (left two columns) and pSYK (right two columns) following 

H2O2 stimulation under increasing doses of the SYK inhibitor R406 (A) and the LYN 

inhibitor PP2 (B). “Inhibit-Stimulate” columns indicate that cells were pre-treated with 

inhibitor for 10 min, followed by stimulation with 30 mM H2O2 for 4 min. “Stimulate-

Inhibit” columns indicate that cells were first stimulated with 30 mM H2O2 for 4 min, 

followed by treatment with inhibitor for 10 min before fixation. Range of R406 

concentrations, 10 nM–100 μM; range of PP2 concentrations, 100 nM–100 μM. The data are 

representative of four experiments. The blue dashed lines indicate the mode of the digitally 

positive pLYN or pSYK peak within the DMSO-only condition (top plot of each column). 

a.u., amplitude units.

(C) %pLYN+, %pSYK+, and %pPLCγ2+ B cells after H2O2 stimulation for 4 min, followed 

by incubation in stimulation-free media. N = 2 CLL donors. Blue circles, DMSO (vehicle 
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control). White triangles, PP2 (LYN inhibitor) at 10 μM. Black squares, R406 (SYK 

inhibitor) at 10 μM.

The data are represented as means ± SEMs. See also Figure S2.
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Figure 3. Computational Modeling of B Cell Signaling Uncovers Constitutive BCR Activation as 
a Dominant Regulator of Hypersensitivity and Hysteresis
(A) Left, schematic of activation of BCR-proximal kinases upon the inhibition of 

phosphatases by H2O2. Right, a set of model equations.

(B) Phase space of LYN and SYK phosphorylation illustrates how bistability (two stable 

fixed points separated by one unstable fixed point) emerges at intermediate levels of 

constitutive BCR signaling. The red line represents pLYN nullcline; the blue line represents 

pSYK nullcline. Filled circles, stable fixed points; open circles, unstable fixed points; 

arrows, time derivatives for the vector (pLYN, pSYK). Low BCR* signaling, 10 amplitude 

units (a.u.); medium BCR* signaling, 33 a.u.; high BCR* signaling, 100 a.u. Modeled 

[H2O2] = 10−3 M.

(C) Model simulations of experimental data presented in Figure 1C. Left, EC50
up; right, 

steady-state relaxation following stimulation, yielding % pSYKℎysteresis
+ . Blue lines, weaker 

BCR* signaling; red lines, stronger BCR* signaling.

(D and E) Simulated dependency of EC50
up (D) and % pSYKℎysteresis

+  (E) for varied levels of 

constitutive BCR signaling.
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(F) Modeled correlation between EC50
up and % pSYKℎysteresis

+  over variable BCR signaling.

See also Figure S3 and Table 1.
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Figure 4. Constitutive BCR Auto-aggregation Explains Altered Signaling in CLL
(A) Schematic of BCR clustering.

(B) %pSYK+ B cells by flow cytometry following H2O2 stimulation. Filled circles, 

stimulation from rest; open circles, relaxation following stimulation. The data represent B 

cells from n = 3 CLL patients (left, blue), n = 2 healthy donors (center, red), and n = 2 

healthy donors concurrently stimulated with 5 μg/mL polyclonal anti-IgM antibody to 

induce BCR crosslinking (right, black).
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(C) EC50
up for SYK phosphorylation (left y axis, open squares) and % pSYKℎysteresis

+

following H2O2 stimulation and return to stimulation-free media until steady state (30 min, 

right y axis, filled squares) over a range of anti-IgM (aIgM) doses to induce BCR 

crosslinking. Red, healthy B cells without aIgM crosslinking; black, healthy B cells exposed 

to varied doses of aIgM during initial 4-min H2O2 stimulation.

(D) Anti-correlation between EC50
up and % pSYKℎysteresis

+  within B cells from CLL patients 

(blue circles), healthy donors (red square), and healthy donor B cells after varied aIgM 

cross-linking (black squares, range: 0.625–5 μg/mL aIgM). See the model predictions in 

Figure 3F.

(E) d-STORM for surface IgM demonstrates varied degrees of BCR clustering on B cells 

from CLL patients (top row), healthy donors (center row), and healthy donors following 

aIgM-induced crosslinking (bottom row). Three representative cells following preprocessing 

and point pattern reconstruction in R (see STAR Methods and Figures S4A and S4B). Scale 

bars: 1 μm.

(F) %BCR per cell in a cluster or complex with another BCR, as imaged by d-STORM. 

BCR clusters are defined by the presence of at least 1 BCR within a 15-nm radius of a given 

BCR. The data were collected from 5 CLL donors(blue circles), 2 healthy donors(red 

squares), and 1 healthy donor pre-treated with 5 μg/mL anti-IgM at 37°C to induce surface 

clustering (black squares). **p < 0.01 and ***p < 0.001 by one-way ANOVA and post hoc 

pairwise comparisons. All of the other pairwise comparisons are non-significant by p < 0.05.

(G and H) Correlation between experimentally determined percentage of clustered BCR per 

cell from d-STORM (y axis) and EC50
up (x axis, p < 0.01, G) and % pSYKℎysteresis

+  (x axis, p < 

0.01, H). Blue circles, B cells from CLL donors; red square, healthy donor; black square, 

healthy donor with BCR clustering induced by 5 μg/mL aIgM at 37°C to induce surface 

clustering.

(I) Correlation between experimentally determined percentage of clustered BCR and model 

parameter of constitutive BCR signaling.

The data are represented as means ± SEMs. See also Figure S4.
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Figure 5. Intra-Donor Variability in B Cell Stimulation Is Explained by Variable SHP-1 
Abundances
(A) Schematic for the role of phosphatases in BCR signaling.

(B) Representative histogram of SHP-1 abundance among B cells and definition of three 

subpopulations based on the differential abundances of SHP-1 protein per cell. SHP-1high, 

red; SHP-1int, orange; SHP-1low, yellow. a.u., amplitude units.

(C) Representative histograms of pPLCγ2 abundance in B cells from one CLL patient (top) 

and one healthy donor (bottom) following stimulation with 10 mM H2O2. Overlaid traces of 

red, orange, and yellow histograms reflect subpopulations of B cells gated on SHP-1 

abundance (high, intermediate, and low, respectively).

(D) Cell-cell variability analysis by binning on SHP-1 abundance within B cells from four 

CLL patients and two healthy donors. Cells were exposed for 4 min to a range of H2O2 

concentrations and analyzed for %pPLCγ2+ B cells for each dose, binned by SHP-1 

abundance (x axis). Darker colors indicate higher concentrations of H2O2.
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(E) Hill equations were fit for each SHP-1 bin in each donor B cell population. Points 

represent the fit of EC50
up to H2O2 stimulation by SHP-1 bin, separated by donor.

(F) Variability in phosphatase abundance (x axis) and BCR signaling (points and lines, blue 

indicates stronger BCR clustering, red indicates weaker BCR clustering) affect BCR-

proximal signaling dynamics, simulated as EC50
up to H2O2 stimulation (y axis).

See also Figure S5.
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Figure 6. pSYK Hysteresis Correlates with CLL Clinical Status

(A) % pSYKℎysteresis
+  within B cells from healthy donors (red, n = 5), from healthy donor B 

cells treated with aIgM to induce BCR clustering (black filled, n = 5), B cells from patients 

with CLL (blue, n = 57), mantle cell lymphoma (MCL, n = 5), follicular lymphoma (FL, n = 

2), and marginal zone lymphoma (MZL, n = 4). *p < 0.05, **p < 0.01, and ***p < 0.001 by 

one-way ANOVA and post hoc pairwise comparisons.

(B) % pSYKℎysteresis
+  within B cells from CLL patients with stable disease (open circles) and 

patients requiring immediate treatment (black circles), as indicated in the records of patient 

encounters on the day of the blood draw. **p < 0.01 by Student’s t test.

(C) Kaplan-Meier survival curve of progression-free survival among CLL patients from 

diagnosis to status at blood draw, partitioned by % pSYKℎysteresis
+ . “Low Hysteresis”: 

% pSYKℎysteresis
+  < 40%, “High Hysteresis” > 40%. **p < 0.01 by Mantel-Cox test.

(D) Longitudinal analysis of % pSYKℎysteresis
+ , assessed at multiple donation time points. 

Top, untreated CLL patients exhibiting progression-free disease (“Non Progressor”). 

Bottom, actively treated CLL patients exhibiting progressive disease (“Progressor”). **p < 

0.01 by Student’s t test.

(E) Model schematic for the variability of constitutive BCR signaling and the 

pathophysiology of CLL B cells.
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See also Figure S6 and Table S1.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

polyclonal Goat anti-Human anti-IgM F(ab’)2 Invitrogen 16-5099-85; RRID:AB_2573090

pLck/Lyn (Alexa Fluor 647, pY505) [Clone 4/LCK-Y505 ] BD Biosciences 558577; RRID:AB_647134

pSyk (PE, pY348) [Clone I120-722] BD Biosciences 558529; RRID:AB_647247

pPlcγ2 (Alexa Fluor 488, pY759)[ Clone K86-689.37] BD Biosciences 558507; RRID:AB_647094

Pacific Blue-conjugated anti-CD3 (clone UCHT1) BD Biosciences 558117; RRID:AB_397038

PerCPCy5.5 conjugated anti-CD20 (clone H1) BD Biosciences 558021; RRID:AB_396990

PE-Cy7-conjugated anti-CD5 (clone L17F12) BD Biosciences 348790; RRID:AB_400380

Donkey anti-Goat IgG A647 Jackson Immunochemicals 705-605-147; RRID:AB_2340437

SH-PTP1 Antibody (clone C-19) Santa Cruz Biotechnology sc-287; RRID:AB_2173829

Mouse anti-Human HLA-DP (Clone WR18) Abd Serotec MCA477; RRID:AB_322101

Biological Samples

Peripheral Blood Mononuclear Cells (PBMC) from Blood 
biopsies of: 57 CLL patients, 14 healthy donors, 28 Mantle Cell 
Lymphoma (MCL) patients, 2 Follicular Lymphoma (FL) 
patients, and 4 Marginal Zone Lymphoma (MZL) patients.

Memorial Sloan Kettering 
Lymphoma Service

N/A

Chemicals, Peptides, and Recombinant Proteins

Ficoll-Paque Plus GE Healthcare 17-1440-02

Sodium Orthovanadate Sigma S6508

Hydrogen Peroxide (H2O2) Sigma H1009

Paraformaldehyde BD Biosciences 554655

PP2 Src Inhibitor Sigma CAS 172889-27-9 ∣ 529573

R406 Syk inhibitor Sigma CAS 841290-80-0 ∣ 5058190001

Mouse gamma globulin Jackson Immunochemicals 015000002

Recombinant human IgM Sigma I8260

Fetal Bovine Serum Thermo Fisher Scientific 26140087

RPMI 1640 Thermo Fisher Scientific 11875093

NaCl Sigma S3014

Glucose oxidase Sigma G7141

Catalase Sigma C40

Glucose Sigma G8270

MEA (β-mercaptoethylamine) Sigma 30070

Critical Commercial Assays

2′,7’-dichlorofluorescin diacetate (DCFDA) Abcam ab113851

Magnetic Protein A coated beads (Dynabeads) Life Technologies 10001D

Software and Algorithms

ZEN (black edition + PALM module) for ELYRA PS.1 system Carl Zeiss GmBH https://www.zeiss.com/microscopy/us/
products/microscope-software/
zen.html

R Project for Statistical Computing The R Project https://www.r-project.org/

MATLAB MathWorks https://www.mathworks.com/
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REAGENT or RESOURCE SOURCE IDENTIFIER

FlowJo TreeStar https://www.flowjo.com/

Prism GraphPad https://www.graphpad.com/scientific-
software/prism/
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