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Abstract

HIV-infected patients show a markedly increased risk of delayed hypersensitiv-

ity (HS) reactions to potentiated sulfonamide antibiotics (trimethoprim/

sulfamethoxazole or TMP/SMX). Some studies have suggested altered SMX bio-

transformation in HIV infection, but hepatic biotransformation pathways have

not been evaluated directly. Systemic lupus erythematosus (SLE) is another

chronic inflammatory disease with a higher incidence of sulfonamide HS, but it

is unclear whether retroviral infection and SLE share risk factors for drug HS.

We hypothesized that retroviral infection would lead to dysregulation of hepatic

pathways of SMX biotransformation, as well as pathway alterations in common

with SLE that could contribute to drug HS risk. We characterized hepatic

expression profiles and enzymatic activities in an SIV-infected macaque model

of retroviral infection, and found no evidence for dysregulation of sulfonamide

drug biotransformation pathways. Specifically, NAT1, NAT2, CYP2C8, CYP2C9,

CYB5R3, MARC1/2, and glutathione-related genes (GCLC, GCLM, GSS,

GSTM1, and GSTP1) were not differentially expressed in drug na€ıve SIV-

mac239-infected male macaques compared to age-matched controls, and activi-

ties for SMX N-acetylation and SMX hydroxylamine reduction were not

different. However, multiple genes that are reportedly over-expressed in SLE

patients were also up-regulated in retroviral infection, to include enhanced

immunoproteasomal processing and presentation of antigens as well as up-reg-

ulation of gene clusters that may be permissive to autoimmunity. These find-

ings support the hypothesis that pathways downstream from drug

biotransformation may be primarily important in drug HS risk in HIV infec-

tion.

Abbreviations

COX, cyclooxygenase; FMO, flavin monooxygenase; HS, hypersensitivity; IFN,

interferon; MPO, myeloperoxidase; SLE, systemic lupus erythematosus; SMX-HA,

sulfamethoxazole-hydroxylamine; SMX-NO, sulfamethoxazole nitroso; TMP/SMX,

trimethoprim/sulfamethoxazole.

Introduction

Potentiated sulfonamide antibiotics such as trimethoprim/

sulfamethoxazole (cotrimoxazole or TMP/SMX) remain

the drugs of choice for treatment and prevention of Pneu-

mocystis jirovecii pneumonia, toxoplasma encephalitis, and

Isospora infections in HIV infection (aidsinfo.nih.gov).

However, HIV-infected patients show a markedly

increased risk of delayed hypersensitivity (HS) reactions

to TMP/SMX when compared to the general population

(20–65% vs. 3% incidence). (Gordin et al. 1984; Kovacs

et al. 1984; Medina et al. 1990; Hennessy et al. 1995;
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Walmsley et al. 1998; Hughes et al. 2005; Chantachaeng

et al. 2011) The typical manifestation of sulfonamide HS

is maculopapular rash with or without fever, (Alfirevic

et al. 2003; Yunihastuti et al. 2014) but can also include

hepatotoxicity or other organ involvement. (Yang et al.

2014; Chang et al. 2016; Hernandez et al. 2016) The risk

of sulfonamide HS increases with HIV disease progres-

sion, with higher risk seen at lower CD4 + counts. (Carr

et al. 1993; Kennedy et al. 1993; Hennessy et al. 1995;

Ryan et al. 1998; Rabaud et al. 2001; Eliaszewicz et al.

2002) This risk has been attributed, at least in part, to

acquired alterations in SMX biotransformation in HIV

infection. (Lee et al. 1993; Carr et al. 1994; Delomenie

et al. 1994; Smith et al. 1997; Walmsley et al. 1998; Nais-

bitt et al. 2000; Wolkenstein et al. 2000)

The pathogenesis of sulfonamide HS involves bioactiva-

tion of SMX to a reactive metabolite, followed by an

immune response to drug-adducted proteins in the skin,

liver, or other tissues. (Cribb et al. 1996) SMX is bioacti-

vated in the liver to an SMX-hydroxylamine (SMX-HA)

metabolite by CYP2C8/9 or flavin monooxygenases

(FMOs), or by myeloperoxidase (MPO) or cyclooxyge-

nases (COX1, COX2) in other tissues (Fig. 1). (Cribb

et al. 1990, 1995; Vyas et al. 2006) SMX-HA oxidizes

spontaneously to SMX-nitroso (SMX-NO), which forms

immunogenic adducts with endogenous proteins. (Nais-

bitt et al. 2001; Manchanda et al. 2002) These adducts

can be processed and presented in association with

MHC-I or MHC-II molecules; (Naisbitt et al. 2002; Roy-

Chowdhury et al. 2007; Sanderson et al. 2007) this stimu-

lates the development of cytotoxic T cells and antibodies

that target altered self-antigens expressed on ker-

atinocytes, platelets and other cells. (Curtis et al. 1994;

Nassif et al. 2004) Thus, SMX HS can be considered an

acquired autoimmune disorder.

The formation of immunogenic SMX-NO metabolites

can be prevented by three recognized detoxification path-

ways: N-acetylation of SMX by N-acetyltransferases

(NAT1 and NAT2), (Nakamura et al. 1995) reduction of

SMX-HA by cytochrome b5 and NADH cytochrome b5
reductase, (Kurian et al. 2004) with a contribution from

the mitochondrial enzymes mARC1 and mARC2, (Ott

et al. 2014) and reduction of SMX-NO by antioxidants

such as ascorbate and glutathione. (Cribb et al. 1991; Tre-

panier et al. 2004) It has been hypothesized that SMX

detoxification pathways are impaired in HIV infection,

and that this contributes to the increased risk of sulfon-

amide HS. (Delomenie et al. 1994; Lehmann et al. 1996;

Smith et al. 1997) For example, impaired N-acetylation

activity has been documented in vivo in some studies of

HIV-infected patients, (Lee et al. 1993; Carr et al. 1994;

Kaufmann et al. 1996) despite normal NAT2 genotypes.

(Quirino et al. 1999; Wolkenstein et al. 2000; O’Neil

et al. 2002) However, the mechanisms for this impaired

detoxification are not understood. Hepatic pathways of

SMX biotransformation have not been directly evaluated

in retroviral infection, and tissue expression profiling in

SIV or HIV infection has been limited to blood cells, lym-

phoid organs, the brain, and the gut. (Bosinger et al.

2004; Roberts et al. 2004; George et al. 2006; Mehla and

Ayyavoo 2012) We hypothesized that hepatic pathways of

SMX biotransformation would be dysregulated in retrovi-

ral infection.

Sulfonamide HS risk in humans is also increased in

another chronic inflammatory disease, systemic lupus ery-

thematosus (SLE). (Petri and Allbritton 1992; Cooper

et al. 2002; Pope et al. 2003; Aceves-Avila and Benites-

Godinez 2008; Jeffries et al. 2008) SLE is a systemic

autoimmune disorder that affects the skin, joints, kidneys,

blood cells and other organs. (Yu et al. 2014) SLE

patients have an 18–52% incidence of sulfonamide HS

reactions, which is significantly higher than the general

population or in patients with other systemic inflamma-

tory diseases. (Petri and Allbritton 1992; Pope et al. 2003;

Aceves-Avila and Benites-Godinez 2008; Jeffries et al.

2008) The mechanisms for this increased risk are not

understood, although multiple genes have been shown to

be dysregulated in SLE. (Feng et al. 2006, 2015; Ober-

moser and Pascual 2010; Kennedy et al. 2015) Therefore,

we also hypothesized that SLE and retroviral infection

share similar pathway alterations that may contribute to

drug HS risk.

The aim of this study was to characterize hepatic

expression profiles in retroviral infection, and determine

whether retroviral infection leads to dysregulation of sul-

fonamide drug biotransformation pathways or of genes

involved in autoimmunity, as manifested in SLE. We

addressed this objective using liver tissues from drug

na€ıve SIV-infected macaques, the principal model of HIV

infection and pathogenesis, (Ambrose et al. 2007; Lackner

and Veazey 2007; Valentine and Watkins 2008) compared

to drug na€ıve sex- and age-matched uninfected controls.

Materials and Methods

Chemicals

All chemicals were obtained from Sigma-Aldrich (St.

Louis, MO), except SMX-HA that was purchased from

Dalton Chemicals (Toronto, CA), and N-acetyl SMX that

was obtained from Frinton Laboratories (Hainesport, NJ).

Animals

Male rhesus macaques (Macaca mulatta) chronically

infected with the pathogenic molecular clone virus
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SIVmac239, along with age and sex-matched uninfected

controls, were obtained through the Wisconsin National

Primate Research Center. Animals were studied during

chronic infection, at least 10 weeks after inoculation. All

macaques were screened prior to inclusion in the study

with a physical exam, CBC, and serum biochemical panel.

Infected animals also had a CD4 + count and viral load

performed prior to sampling. All animals were fed a fixed

formula global primate diet (Teklad, Harlan Laboratories,

Madison WI), and no animals had a history of prior

TMP/SMX exposure.

Liver sample collection and RNA isolation

Macaques were anesthetized with ketamine and

dexmedetomidine, and 2–3 needle biopsies were obtained

percutaneously from the liver under ultrasound guidance.

Liver samples were placed in RNAlater (Ambion�) for

24 h at 4°C. Excess RNAlater was then removed, and sam-

ples were stored at �80°C. Total RNA was extracted by

homogenizing liver samples in TRIzol (Ambion�) accord-

ing to the manufacturer’s protocol. RNA pellets were

resuspended in RNase free water and were treated with 2U

DNase I (Ambion�) at 37°C for 30 min, followed by

inactivation with EDTA (5 mmol/L) and heating at 75°C
for 10 min. RNase inhibitor (Applied Biosystems, Foster

City, CA) was added to a final concentration of 1U/lL.
RNA integrity (Schroeder et al. 2006) was assessed by Agi-

lent 2100 BioAnalyzer, and RNA was quantified by Nano-

Drop ND-1000 (ThermoFisher, Madison, WI). RNA was

stored at �80°C until preparation for arrays.

Microarray processing

For hepatic expression arrays, total RNA (100 ng) was

used to generate sense-strand cDNA with the Ambion

Figure 1. Biotransformation of sulfamethoxazole (SMX) with generation of the reactive metabolite SMX-NO (sulfamethoxazole-nitroso), which

leads to drug-protein adducts that act as haptens. These adducted peptides are processed and presented in association with MHC-I or MHC-II

molecules to generate drug specific T cells and autoantibodies that target the skin and other tissues and lead to clinical signs of delayed

sulfonamide hypersensitivity. Pathways that promote generation of SMX-NO include cytochrome P450s 2C8 and 2C9, myeloperoxidase (MPO),

flavin monooxygenases (not depicted) and cyclooxygenases (not depicted), all of which can oxidize SMX. Pathways that counteract generation of

SMX-NO include N-acetyltransferases (NAT2 in liver and gut, and NAT1 in most tissues), cytochrome b5 and its reductase, and the antioxidants

glutathione, ascorbate, and cysteine.
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WT Expression kit, and cDNA was fragmented and

labeled with biotin by the GeneChip WT Terminal Label-

ing kit (Affymetrix, Santa Clara, CA). The fragmented

and labeled cDNA was hybridized with the GeneChip

Rhesus Gene 1.0 ST Array (Affymetrix). Microarrays were

processed with the Affymetrix automated GeneChip Flu-

idics Station 450 and scanned with the GeneChip Scanner

3000 7G (Affymetrix), both controlled by the Affymetrix

GeneChip Command Console Software v4.0.0.1567G.

Microarray data analyses

Raw data for hepatic transcript expression were exported

from the Affymetrix platform and analyzed by Gene-

Spring GX (Agilent, Santa Clara, CA). Data were normal-

ized by the Robust Multi-chip Average (RMA) method

(molmine.com). (Irizarry et al. 2003) For liver tissue,

gene expression was compared between SIV-infected and

non-infected macaques using a moderated t-statistic

(Smyth 2004) with ≥2-fold difference in expression and

P ≤ 0.005 as thresholds for significance. Microarray probe

sets that had signal intensities lower than 100 in both SIV

and control groups were excluded. Genes with significant

differences in expression between groups at P ≤ 0.005

(without a requirement for fold-change) were exported to

DAVID Bioinformatics Resources 6.7 (david.ncifcrf.gov)

for pathway analyses using the KEGG PATHWAY

Database (http://www.genome.jp/kegg/pathway.html).

Interferon (IFN)-inducible genes were identified using

INTERFEROME v2.01 (www.interferome.org), as anno-

tated for humans (Rusinova et al. 2013).

Quantitative real-time PCR (qPCR)
confirmation of transcript expression

Macaque hepatic RNA was used to confirm altered

expression of selected transcripts by qPCR. cDNA was

generated from 2.5 lg RNA using the SuperScript VILO

cDNA Synthesis Kit (Invitrogen, Carlsbad, CA). Primers

and probes for recognizing sequence-specific DNA were

designed using the Universal ProbeLibrary (Roche,

Branchburg, NJ). cDNA was diluted 1:100 for qPCR, and

incubated with gene-specific probes (0.125 lmol/L), and

forward and reverse primers (670 lmol/L), using the

FastStart Essential DNA Probes Master kit (Roche) and

the LightCycler 96 Instrument (Roche). b-actin (ACTB),

glyceraldehyde 3-phosphate dehydrogenase (GAPDH),

and hypoxanthine phosphoribosyltransferase 1 (HPRT1)

was used as reference genes. (Hashemi et al. 2012) qPCR

cycles were as follows: 95°C for 10 min pre-incubation,

then 95°C for 10 sec, 60°C for 20 sec, for 55 amplifica-

tion cycles. Primer efficiency was determined by perform-

ing qPCR for each gene with 1:10, 1:100, 1:1,000 and

1:10,000 dilutions of cDNA (Table S1). Statistical analyses

for relative mRNA expression between groups were per-

formed using relative expression software tool (REST)

2009 version1, which uses the methods described by Pfaffl

and Vandesompele. (Pfaffl 2001; Pfaffl et al. 2002; Van-

desompele et al. 2002; Pabinger et al. 2014).

Hepatic activity assays

To further evaluate phenotypic expression of key SMX

detoxification pathways, additional banked liver samples

(non-RNA quality) were obtained from SIVmac239-

infected and control macaques from the Wisconsin

National Primate Research Center. Liver cytosol and

microsomes were prepared by standard ultracentrifuga-

tion, (Sacco and Trepanier 2010) and protein

concentrations were determined by the Bradford assay

(Bio-Rad). SMX-HA reduction to SMX was assayed in

macaque hepatic microsomes. (Trepanier and Miller

2000) Briefly, 125 lg of macaque liver microsomal pro-

tein was incubated with 1 mmol/L SMX-HA in PBS with

1 mmol/L NADH, for 30 min at 37°C. Both ascorbic acid

and reduced glutathione were added to final concentra-

tions of 1 mmol/L to prevent SMX-HA oxidation. Con-

trol and SMX standards were incubated with human

serum albumin instead of microsomal protein. Reactions

were terminated by adding 50% volume ice-cold metha-

nol. The reaction mix was centrifuged at 16,000g for

10 min at 4°C, and the supernatant was filtered and sub-

ject to high performance liquid chromatography (HPLC)

analysis as previously described (Trepanier and Miller

2000), with a retention time for SMX of 8.3 min. N-acet-

ylation of SMX was determined in macaque hepatic cyto-

sols. SMX (300 lmol/L) was incubated with 250 lg
cytosolic protein and 3 mmol/L acetyl CoA for 20 min at

37°C. Both control and N-acetyl SMX standards were

incubated with human serum albumin instead of cytosolic

protein. Reactions were terminated by adding 10% vol-

ume of ice-cold 15% perchloric acid. The reaction mix

was centrifuged and filtered as for the SMX-HA reduction

assay, prior to HPLC analysis as previously described,

(Trepanier et al. 1998), with a retention time of 10.4 min

for N-acetyl SMX. Activities were compared between

groups using Mann–Whitney tests, and are reported as

medians with observed ranges.

Results

Hepatic expression: SMX biotransformation
pathways

High-quality RNA samples, based on an RNA integrity

number of 7.0 or higher, (Schroeder et al. 2006) were
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selected for array analyses from SIV-infected male maca-

ques (7.2–18.3 years old, viral loads 453,000–10,868,000
vRNA copies/ml plasma; CD4 + counts 49–355 cells/lL,
n = 3) and age-matched male controls (7.3–20.5 years

old, n = 3). Genes encoding SMX biotransformation

pathways, including SMX oxidation (CYP2C8, 2C9, MPO,

FMO3, PTGS1 (COX1) and PTGS2 (COX2)), SMX N-

acetylation (NAT1/NAT2), or SMX-HA reduction

(CYB5R3, MARC1/2) were not differentially expressed

(Table 1). Genes involved in glutathione synthesis or con-

jugation pathways, including GCLC, GCLM, GSS, GSTM1

and GSTP1, were also not differentially expressed

(Table 1).

In order to further explore the effect of retroviral infec-

tion on SMX biotransformation pathways, enzymatic

detoxification of SMX and SMX-HA was evaluated in

banked livers from five SIV-infected male macaques (ages

7.2–17.3 years, viral loads 443,000–792,000 copies/ml;

CD4 + counts 175–1149 cells/lL; n = 5) and five non-

infected male macaques (ages 3.4–19.3 years, n = 5). N-

acetylation of SMX did not differ significantly between

groups (median activity 0.11 nmol/mg/min in SIV group

versus 0.09 nmol/mg per min in controls, P = 0.30;

Fig. 2A), and the infected macaques with the lowest

CD4 + counts did not have the lowest N-acetylation

activities. Further, hepatic reduction of SMX-HA was not

impaired in SIV infection (median 0.54 nmol/mg per min

in the SIV group versus 0.43 nmol/mg/min in controls,

P = 0.55; Fig. 2B).

Hepatic expression: SLE-associated genes
and other pathways

Although the expression of key SMX biotransformation

genes was not detectably altered by SIV infection, 154

transcripts were differentially expressed in the livers of

SIV-infected and control macaques at the P ≤ 0.005

threshold. Of these, 138 probe sets were associated with

Table 1. Differential expression of genes involved in SMX biotransfor-

mation in livers from SIVmac239-infected male macaques (n = 3)

compared to livers from age-matched uninfected males (n = 3).

Pathway Gene

Fold

change

Uncorrected

P value

SMX bioactivation CYP2C8 �1.01 0.939

CYP2C9 �1.11 0.319

MPO �1.27 0.026

PTGS1 1.25 0.043

PTGS2 �1.14 0.169

FMO3 �1.02 0.894

SMX and SMX-HA

detoxification

NAT1 1.10 0.291

NAT2 1.23 0.052

CYB5R3 �1.32 0.187

MARC1/2 1.04 0.615

Glutathione synthesis

and recycling

GCLC 1.04 0.882

GCLM 1.06 0.739

GSS 1.01 0.951

GSTM1 �1.09 0.745

GSTP1 1.40 0.276

PTGS1 and PTGS2 encode COX1 and COX2, respectively. CYB5A,

encoding cytochrome b5, was not annotated in the array.

(A)

(B)

Figure 2. (A) N-acetylation of SMX in liver cytosols from SIV-infected

and non-infected control macaques (P = 0.30 between groups).

B) Hepatic reduction of SMX-HA in liver microsomes from the same

macaques (P = 0.55 between groups).
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an identified gene, 59 genes showed a twofold or greater

difference in expression, and 30 genes showed a threefold

or greater difference in expression (Table 2). These data

have been deposited in NCBI’s Gene Expression Omni-

bus, (Edgar et al., 2002) and are accessible through GEO

Series accession number GSE87185 (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE87158).

Multiple genes that were significantly up-regulated in

livers of SIV infected macaques (3.5–14.2–fold), are also

up-regulated in tissues of patients with SLE, including

MX1, (Feng et al. 2006; Aranow et al. 2015) IFI6, (Higgs

et al. 2011) OAS2, (Bing et al. 2016) IFI44 and IFI44L,

(Higgs et al. 2011) HERC5, (Kennedy et al. 2015) STAT1,

(Bing et al. 2016) IFIT1, (Aranow et al. 2015) EPSTI1,

(Ishii et al. 2005; Kennedy et al. 2015) CMPK2, (Kennedy

et al. 2015) IFIH1, (Robinson et al. 2011) ISG15, (Feng

et al. 2006; Care et al. 2016) and USP18 (Coit et al.

2013) (Tables 2, 3). A DAVID pathway analysis for the

138 differentially expressed genes in liver tissue revealed

five pathways that were altered by SIV infection: genes

dysregulated in SLE, as well as immunoproteasomal

degradation, antigen presentation, RIG-I-like receptor sig-

naling, and ISGylation (Table 3).

Validation by qPCR was performed for selected path-

way genes, to include key genes overexpressed in patients

with SLE (HERC5 and ISG15), (Feng et al. 2006, 2015;

Care et al. 2016) those involved immunoproteasomal

degradation (PSME1, PSME2, PSMB10), or those not pre-

viously reported in retroviral infection (HERC6 and

PSMB10). Expression of all transcripts was confirmed to

be up-regulated by qPCR in the livers from SIV-infected

animals compared to controls (3.2–91.9 fold), with

P ≤ 0.001 (Table S2).

Discussion

An increased risk of sulfonamide hypersensitivity is

observed in HIV-infected patients, (Gordin et al. 1984;

Medina et al. 1990; Hennessy et al. 1995; Walmsley et al.

1998; Chantachaeng et al. 2011) and although acquired dif-

ferences in SMX biotransformation have been proposed,

(Lee et al. 1993; Carr et al. 1994; Delomenie et al. 1994;

Smith et al. 1997; Walmsley et al. 1998; Naisbitt et al. 2000;

Wolkenstein et al. 2000; Trepanier et al. 2004) the mecha-

nisms for this higher risk are not fully understood. The

autoimmune disease SLE is another chronic inflammatory

disease with a higher risk of HS reactions to sulfonamide

antibiotics. We wanted to determine, therefore, whether

retroviral infection led to alterations in hepatic SMX bio-

transformation pathways or to changes in gene expression

that parallel those reported in human patients with SLE.

Because of the ethical and practical constraints to

obtaining liver tissue from drug-na€ıve HIV-infected

human patients, we addressed this question using an SIV-

mac239-infection model. SIVmac239, which is pathogenic

in rhesus macaques, and HIV-1 are closely related retro-

viruses that share key similarities in gene organization,

receptor recognition, cell tropism, and CD4 + deple-

tion.(Cullen and Garrett 1992; Ambrose et al. 2007; Lack-

ner and Veazey 2007; Valentine and Watkins 2008)

SIVmac239 infection leads to immunosuppression in rhe-

sus macaques, with progression to diarrhea, wasting, and

opportunistic infections that models the clinical progres-

sion to AIDS in humans. (Lackner and Veazey 2007;

Valentine and Watkins 2008).

Using this model, we found no effect of retroviral

infection on hepatic expression of any genes known to be

involved in SMX biotransformation, including those in

the major enzymatic detoxification pathway, N-acetyl-

transferase. We expanded on the relatively small group of

animals available for hepatic expression arrays with activ-

ity assays in additional liver samples, and also found no

difference in N-acetylation of SMX. Further, in a recent

TMP/SMX dosing study in the same population of

macaques, (Wong et al. 2016) we found no differences in

24-hour urinary concentrations of N-acetylated SMX in

SIV-infected versus control animals (54.4% of total uri-

nary metabolites versus 55.1%, respectively, n = 7 in each

group, P = 0.45). In HIV-infected patients, some studies

have found impaired N-acetylation, using caffeine or dap-

sone as in vivo probe drugs, in individuals with normal

NAT2 genotypes. (Carr et al. 1994; Wolkenstein et al.

2000; O’Neil et al. 2002) This acquired metabolic defect

has not been found in all studies, however (van der Ven

et al. 1995; Kaufmann et al. 1996), and may be more pro-

nounced in patients with CD4 + counts <200 cells/lL.
(Quirino et al. 1999) SIV-infected macaques in our liver

activity studies had CD4 + counts ranging from 175 to

1149 cells/lL (median 462 cells/lL), so we may have

missed an effect of advancing disease on NAT expression

and activity because some macaques were too early in

their disease progression. A longitudinal study in SIV-

infected macaques with progressive depletion in CD4 + T

cells would help to determine whether impaired in vivo

N-acetylation of SMX is truly observed with advancing

disease.

Hepatic reduction of SMX-HA by cytochrome b5
reductase is another enzymatic pathway for SMX detoxifi-

cation, and we found no detectable differences in hepatic

expression of CYB5R3 or in vitro hepatic SMX-HA reduc-

tion in SIV infection. While this pathway has not been

directly assessed in HIV infection, two studies found de-

creased concentrations of urinary SMX-HA metabolites in

HIV-infected patients compared to healthy controls after

dosing with TMP/SMX. (Lee et al. 1994; van der Ven

et al. 1995) We found similar results in our recent
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in vivo TMP/SMX dosing study in the same macaque

population. (Wong et al. 2016) Based on normal hepatic

SMX-HA reduction activities found in the present study,

decreased urinary SMX-HA in retroviral infection may

reflect further oxidation of SMX-HA to SMX-NO (which

is not detected in urine due to instability) rather than

altered SMX-HA reduction by cytochrome b5 reductase.

Glutathione-related genes, including GCLM, GCLC,

GSS, and GSTs, were also not differentially expressed in

the livers of SIV-infected macaques. A small study in

HIV-infected patients found down-regulation of GCLC

and GSS protein expression in erythrocytes, but transcript

levels were not evaluated. (Morris et al. 2014) Further-

more, the retroviral protein Tat (found in both HIV and

SIV viruses) led to down-regulation of GCLM (gluta-

mate-cysteine ligase regulatory subunit) and decreased

hepatic glutathione concentrations when over-expressed

in transgenic mice. (Choi et al. 2000) However, only one

of two murine GCLM transcripts was down-regulated by

Tat, and our macaque array may have been insensitive to

this differential finding. Hepatic glutathione concentra-

tions were not measured in our study because of insuffi-

cient tissue available from in vivo needle biopsies, but

these data would have been helpful. A recent study found

that a low functioning genetic polymorphism in GCLC

(the catalytic subunit of glutamate-cysteine ligase) was a

risk factor for sulfonamide HS in HIV-infected patients;

(Wang et al. 2012) this individual risk factor could be

compounded by acquired deficiencies in glutathione

homeostasis in HIV. Further work is needed to

understand changes in hepatic glutathione synthesis in

retroviral infection, which may influence that amount of

SMX-NO or other reactive drug metabolites that can

form drug-protein adducts.

We next looked for similarities in tissue expression

between retroviral infection and SLE, the other major

chronic inflammatory disease that leads to a higher risk

of sulfonamide drug HS reactions. (Petri and Allbritton

1992; Cooper et al. 2002; Pope et al. 2003; Aceves-Avila

and Benites-Godinez 2008; Jeffries et al. 2008) In support

of our hypothesis, we found up-regulation of an SLE gene

cluster in an unbiased pathway analysis, as well as

increased expression of other individual genes that are

reportedly up-regulated in patients with SLE. This SLE

expression pattern, characterized to date in blood cells

and synovium of SLE patients, comprises genes involved

in innate immunity, RNA and protein catabolism, and

apoptosis, many of which are inducible by Type I IFNs

(Tables 2, 3). (Han et al. 2003; Li et al. 2010; Coit et al.

2013; Bing et al. 2016; Zhu et al. 2016).

It is well established that retroviral infection is associ-

ated with up-regulation of Type I IFN-associated genes,

(Utay and Douek 2016) and many genes that are up-

regulated in SLE are also inducible by Type 1 IFN. (Feng

et al. 2006, 2015; Obermoser and Pascual 2010; Kennedy

et al. 2015) The presence of a Type I IFN gene signature

in both retroviral infection and SLE may be just an

epiphenomenon of two unrelated chronic inflammatory

diseases. However, this gene signature appears to be

related to the pathogenesis of autoimmunity in SLE, and

therefore may be relevant to drug HS reactions that target

self-antigens. (Cribb et al. 1996). For example, chronic

activation of IFN-induced genes is thought to contribute

to autoimmunity by maintaining mature dendritic cells

that activate autoreactive T and B cells, breaking self-tol-

erance. (Obermoser and Pascual 2010; Podolska et al.

2015; Ronnblom 2016).

Type I IFN-associated gene expression has been corre-

lated with overall disease activity and advancing disease

severity in SLE. (Feng et al. 2006) (Hoffman et al. 2016)

Furthermore, treatments with monoclonal antibodies

Table 3. Results of pathway analyses for genes that are differentially

expressed in the livers of SIV-infected macaques compared to non-

infected controls.

Pathway Gene Fold change P value

RIG-I-like receptor

signaling

RIG-I (DDX58)3 5.0 <0.001

IFIH13 3.6 <0.001

DHX583 3.1 <0.001

ISGylation HERC63 10.0 <0.001

HERC53,1 5.8 <0.001

UBQLNL 3.8 0.002

ISG153,1 3.6 <0.001

USP183,1 3.5 <0.001

Systemic lupus

erythematosus1
MAMU-DQA13,2 2.8 0.001

HIST1H2AC3 2.0 0.002

FCGR3 (CD16)3 1.9 0.001

HIST1H3D 1.9 <0.001

C1QC3 1.8 <0.001

C1QA3 1.7 0.002

Immunoproteasomal

degradation

PSME2 (PA28b)3 1.5 0.003

PSME1(PA28a)3 1.5 0.001

PSMB10 (MECL1)3 1.3 0.002

Antigen presentation B2M3 3.1 0.002

MAMU-E 2.3 0.002

TAP13,1 2.0 <0.001

MAMU-A 2.0 <0.001

MAMU-F 1.7 0.003

Genes in pathways were identified through DAVID analysis; additional

genes up-regulated in SLE from the literature are listed in Table 2 and

are summarized below.
1Additional genes up-regulated in SLE, from the primary literature:

ISG15, USP18, IFI6, OAS2, HERC5, CMPK2, EPSTI1 and STAT1 (fold-

increases in our study and references listed in Table 2); and IFI27 (Bing

et al. 2016) (increased by 2.3-fold in our study, P = 0.003).
2SLE pathway analysis refers to human ortholog (HLA-DQA1).
3Indicates interferon-inducible gene (from Interferome v2.01). Genes

not previously associated with SIV or HIV infection are in bold.
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targeting IFN-a or the type I IFN receptor have been

effective in reducing clinical signs in human patients with

SLE. (Kalunian 2016; Oon et al. 2016; Greth et al. 2017).

Although up-regulation of IFN-inducible genes appears

to be related to the pathogenesis of SLE, a causal link

between up-regulation of IFN-inducible genes and drug

HS has not been evaluated. However, the incidence of

sulfonamide HS is also increased in another autoimmune

disease with a Type I IFN signature, Sj€ogren’s syndrome.

(Antonen et al. 1999; Bave et al. 2005) Interestingly, sul-

fonamide HS risk is not higher in patients with rheuma-

toid arthritis, (Aceves-Avila and Benites-Godinez 2008)

an autoimmune disease that lacks an IFN expression sig-

nature in most individuals. (Bave et al. 2005; Feng et al.

2006; Kunz and Ibrahim 2009; Higgs et al. 2011) Further-

more, a single case report described sulfonamide HS (as a

cutaneous drug eruption) in a patient undergoing bone

marrow transplantation, but only after IFN-a treatment

was initiated. (Mehta et al. 1993) These findings together

raise the possibility that up-regulation of IFN-inducible

pathways contributes mechanistically to drug HS risk in

both SLE and retroviral infection.

Additional pathways that were up-regulated in livers

from SIV-infected animals were, not surprisingly, those

with direct antiviral effects, including RIG-I, which senses

intracellular double-stranded (viral) RNA, and ISGylation,

which is mediated by a group of IFN-inducible genes that

interact with the antiviral protein ISG15. (Zhang and

Zhang 2011)). Genes involved in antigen presentation also

were up-regulated, including TAP1, which transports anti-

genic peptides for presentation in association with MHC-

I molecules, and B2M (b2 microglobulin), a component

of the MHC-I receptor complex. Notably, TAP1 and B2M

are each required for the development of clinical manifes-

tations of SLE in murine models. (Singer et al. 1999) In

addition, IFN-induced immunoproteasomal degradation

pathways were up-regulated in SIV infection. While array

data suggested very modest up-regulation (1.3–1.5-fold),
confirmation by qPCR showed up-regulation by 3.2–4.6-
fold. Immunoproteasome complexes generate sets of

antigenic peptides for presentation in association with

MHC-I molecules, leading to activation of CD8 + T cells.

(Kimura et al. 2015) Immunoproteasomal components

are also up-regulated in human patients with SLE and

Sj€ogren’s syndrome. (Krause et al. 2006) Further, selective

inhibitors of immunoproteasomal proteins lead to resolu-

tion of clinical signs in animal models of SLE and other

autoimmune diseases, (Ichikawa et al. 2012; Basler et al.

2015) which suggests that immunoproteasome up-regula-

tion contributes directly to autoimmunity.

One drawback of these studies was the limited number

and volume of liver samples available for analyses, such

that a more global assessment of additional pathways of

hepatic biotransformation could not be performed. In

addition, our study design in drug na€ıve animals did not

allow for assessment of possible effects of TMP/SMX itself

or other co-medications on SMX biotransformation. A

second set of expression arrays obtained after a course of

TMP/SMX, or in combination with other drugs com-

monly use in HIV infection, would have been interesting.

However, this study was designed to address the effect

of retroviral infection itself on hepatic biotransformation

pathways, without noise from concurrent drug

administration.

Our findings together raise the question of whether up-

regulation of Type 1-IFN induced genes, including

immunoproteasomal and antigen presentation pathways

and gene clusters that may be permissive to autoimmu-

nity, increases the likelihood that drug-protein adducts

will be processed and presented as antigenic peptides in

retroviral infection. Such mechanisms could be indepen-

dent of altered sulfonamide biotransformation, for which

we found no evidence in this primate model. Generalized

up-regulation of antigen processing and presentation

could also lead to a higher risk of HS reactions to drugs

that are structurally unrelated but have a similar

immunopathogenesis, and indeed, compared to the gen-

eral population, HIV-infected patients appear to have a

higher incidence of HS reactions to anti-tuberculosis

drugs and possibly to penicillins. (Nunn et al. 1991;

Chintu et al. 1993; Fiszenson-Albala et al. 2003; Yee et al.

2003; Yunihastuti et al. 2014) These studies need to be

followed up with targeted experiments on the effect of

retroviral infection on drug antigen presentation at the

functional level.

Overall, our results support the hypothesis that path-

ways downstream from drug biotransformation may be

primarily important in sulfonamide HS risk in HIV infec-

tion. These pathways include enhanced immunoproteaso-

mal processing and presentation of antigens as well as

up-regulation of gene clusters that may be permissive to

autoimmunity. Additional work is needed to understand

the effects of retroviral infection, and more specifically

Type 1 IFNs, on processing and presentation of drug-

protein adducts for sulfamethoxazole and other drugs

associated with HS reactions in HIV-infected patients.
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