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Abstract: Major depressive disorder (MDD) is a life-impairing disorder, and early successful treatment
is important for a favorable prognosis. However, early response to antidepressants differs widely
among individuals, and is difficult to predict pre-treatment. As miRNAs have been reported to play
important roles in depression, identification of miRNAs associated with antidepressant treatment
responses and their interacting genes and pathways will be beneficial in understanding the predictors
and molecular mechanisms of depression treatment. This randomized control trial examined miRNAs
correlated with the early therapeutic effect of selective serotonin reuptake inhibitors (SSRIs; paroxetine
or sertraline) and mirtazapine monotherapy. Before medication, we comprehensively analyzed the
miRNA expression of 92 depressed participants and identified genes and pathways interacting
with miRNAs. A total of 228 miRNAs were significantly correlated with depressive symptoms
improvements after 2 weeks of SSRIs treatment, with miR-483.5p showing the most robust correlation.
These miRNAs are involved in 21 pathways, including TGF-β, glutamatergic synapse, long-term
depression, and the mitogen-activated protein kinase (MAPK) signaling pathways. Using these
miRNAs enabled us to predict SSRI response at week 2 with a 57% difference. This study shows
that pre-treatment levels of miRNAs could be used to predict early responses to antidepressant
administration, a knowledge of genes, and an identification of genes and pathways associated with
the antidepressant response.

Keywords: miRNA; miR-483-5p; miR-1202; major depressive disorder; predictor; randomized
controlled trial; mirtazapine; selective serotonin reuptake inhibitor; TGF-β; glutamatergic synapse

1. Introduction

Approximately 5% of the world’s population will experience a depressive episode
during a 12-month period [1]. The lifetime prevalence of major depressive disorder
(MDD) in adults has been reported by retrospective studies to be 10.6% on average.
A much higher prevalence (30–40%) has been indicated by prospective studies [2–4].
The prevalence of MDD is more than twice as high in chronic physical illnesses than
that in the general population [5–7]. According to the World Health Organization,
MDD is among the most important causes of disability, accounting for approximately
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one-fifth of the years lived with disability among adults aged 15 years and over. More-
over, it is a source of increased mortality [8]. Although it is possible to prescribe
antidepressants, which have been shown to be more useful for depressed patients
than placebos, the rate of remission in response to the initially prescribed antidepres-
sants is still not high [9,10]. In psychiatric practice, it is common to prescribe medi-
cations empirically and subjectively. However, there is some trial and error involved
in identifying the most effective medication. MDD is a chronic, often relapsing dis-
ease [11,12]. This prolonged illness increases the risk of a variety of chronic physical
disorders [5,13–15]. Therefore, successful treatment leading to early response is im-
portant for a favorable prognosis [16–19]. Mirtazapine and SSRIs are both first-line
medications for major depressive disorder and their combination is also suggested for
patients who are resistant to the first antidepressant medication used [10,20,21]. In
this regard, we have confirmed that mirtazapine (MIR) is superior to selective sero-
tonin reuptake inhibitors (SSRIs) in treatment response as early as 2 weeks after the
initiation of treatment. There was no significant difference between the two types of
medication after one month of treatment [10], which is consistent with the findings of a
previous meta-analysis [22]. The pharmacological profile of mirtazapine, an antagonist
of histamine H1, serotonin 2A/2C, alpha 2 adrenergic receptors, and SSRIs that bind
to the serotonin transporter, may explain these clinical differences [23,24]. However,
monoamine neurotransmission is complex and involves several neurotransmitters, in-
cluding pre- and post-synaptic receptors, transporters, and enzymes that determine
the availability and effects of specific monoamine neurotransmitters [25–28]. In addi-
tion, downstream changes in signaling pathways, such as changes in gene expression,
neuroplasticity, immune, and inflammation-related pathways, may play an essential
role [29–31]. The mechanisms by which antidepressants exert their effects are still not
completely understood, and various hypotheses are being investigated to elucidate
it [25,32–36].

MicroRNAs (miRNAs) are a class of small non-coding endogenous RNAs of between
18 and 25 nucleotides in length. They play roles in the regulation of gene expression
at the post-translational level [37] and are involved in a range of biological processes
associated with the central nervous system, including neural plasticity, neurogenesis, and
stress-related responses [38,39]. Accumulating evidence indicates that the dysregulation of
miRNAs in peripheral blood and brain tissue may be associated with depression [40–44]
and suicide [41,45]; however, only a few studies have investigated the role miRNAs as
biomarkers involved in responses to antidepressants [40–50]. Among these, only two
studies have evaluated the potential utility of pre-treatment miRNA levels in predicting
treatment responses to antidepressants, even using a candidate approach [46,50]; none
have used a high-throughput approach.

An early response and remission are desirable treatment goals for depressed patients.
However, there are individual differences in the responses to both SSRIs and mirtazapine;
some individuals show an early favorable response, while others do not. It is difficult
to predict such individual differences in early improvement with each of these classes
of drugs; thus, the identification of objective predictors is desirable. As the findings
of the aforementioned studies have indicated, the expression levels of miRNAs associ-
ated with depression pathology and treatment response differ among individuals, and
thus predicting the effects of antidepressants based on miRNA expression patterns may
be clinically useful. In this study, we analyzed the correlation between pre-treatment
plasma miRNA levels and the therapeutic effects of antidepressants in untreated MDD
patients and sought to identify specific miRNAs that contribute to the early therapeutic
response to MIR or SSRIs, as well as genes and biological pathways in which these miRNAs
are involved.
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2. Results
2.1. Baseline Analysis

Among the MDD outpatients randomized to receive MIR or SSRIs in Step I of the
GUNDAM study [10], data on plasma miRNA levels were obtained from 92 participants
at the study baseline prior to the administration of medication. After undertaking quality
control, 78 (MIR 40/SSRI 38; paroxetine (PAX) 21 or sertraline (SER) 17) participants were
included in the subsequent analysis. Table 1 presents the descriptive characteristics of the
78 study subjects. With the exception of the duration of the current depressive episode, there
were no significant differences among the patients assigned to the different therapeutic
agent groups. The average doses of PAX, SER, and MIR administered during weeks 2 and 4
were 23.7 and 35.5 mg/day, 75.0 and 86.8 mg/day, and 26.8 and 32.8 mg/day, respectively,
and the changes in HAM-D score from the study baseline for MIR and SSRIs were −6.8
and −5.3 at week 2, and −9.8 and −9.6 at week 4, respectively. Among the participants,
19.2% (n = 15; MIR 7/SSRI 8) showed responses 2 weeks after the initiation of treatment,
whereas after 4 weeks of treatment, 50.0% (n = 39; MIR 17/SSRI 22) of the subjects showed
responses. None of the assessed miRNAs showed an association with baseline severity, as
assessed by the HAM-D score, whereas the baseline HAM-D score was correlated with the
HAM-D score change at weeks 2 and 4.

Table 1. Baseline clinical characteristics of depressed patients participating in this study.

Total (n = 78) Mirtazapine
(n = 40) SSRIs (n = 38)

p

% % %

Sex (female) 48.7% 50.0% 47.3% n.s.
First episode 68.4% 71.1% 65.8% n.s.

Family psychiatric history 29.2% 25.7% 32.4% n.s.
Physical comorbidity 38.7% 35.1% 42.1% n.s.

Smoking 2.7% 5.4% 0.0% n.s.
Drinking 22.7% 23.7% 21.6% n.s.

Occupational status:
Employed 79.5% 80.0% 78.9% n.s.

Mean SD Mean SD Mean SD

Age 47.7 16.8 48.4 16.4 47 17.4 n.s.
Duration of current MDD

episode (months) 8.6 18.1 6 10 11.4 23.7 0.015

HAM-D 17 items total score 21 4.7 21.5 5.1 20.5 4.4 n.s.
SSRIs: selective serotonin reuptake inhibitors, MDD: major depressive disorder, HAM-D: Hamilton depression
rating scale.

2.2. Associations between miRNA and Treatment Response
2.2.1. SSRIs

In patients administered SSRIs, the plasma levels of 228 miRNAs were observed to
be significantly correlated with changes in HAM-D score at week 2, after FDR correction
for multiple statistical tests (Supplementary Table S1), all of which were inversely cor-
related with an improvement in HAM-D score. The coefficient of normalized miRNAs
for the change in HAM-D score over 2 weeks was 4.27 (maximum) and 1.34 (minimum).
Among these miRNAs, miR-483.5p (coefficient = 2.50, P = 7.90 × 10−5, F = 8.26, R2 = 0.59;
Figure 1) and miR-3151.5p (coefficient = 3.51, P = 0.0001, F = 8.95, R2 = 0.61) showed the
highest and second-highest correlations, respectively, and were also significantly associ-
ated with HAM-D score changes at week 4. In addition, a further 23 miRNAs showed a
significant association with responses at week 2. However, apart from the HAM-D score
change at week 2, the significance of the association with outcomes disappeared following
FDR correction.
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Figure 1. Correlations and regression curves between the miR-483-5p and Hamilton Rating Scale for
Depression score changes at week 2.

2.2.2. Mirtazapine

Among patients receiving MIR, the plasma levels of nine miRNAs were found to be
significantly correlated with the change in HAM-D score at week 2, of which, two were
inversely correlated with an improvement in HAM-D score, whereas the remaining seven
were positively correlated. The miR-483-3p showed the most robust positive correlation
(p = 0.031). The miR-451a was also significantly associated with the response at week 2,
whereas miR-483-3p, miR-6893-3p, and miR-4740-3p were significantly associated with the
HAM-D score change at week 4. In each case, however, the significance of the association
disappeared following FDR correction.

2.3. miRNA Target Prediction and Pathway Analysis

The top 10 miRNAs (miR-483-5p, miR-3151-5p, miR-7109-5p, miR-6807-5p, miR-30c-1-
3p, miR-6769a-3p, miR-7111-3p, miR-6796-3p, miR-1249-5p, and miR-4534), which were
positively intercorrelated (Figure 2A) and strongly associated with a HAM-D score reduc-
tion after 2 weeks of SSRI treatment, even after FDR correction, were used to identify target
genes and associated biological pathways based on in silico analyses of three databases
(micro-T-CDS, Tarbase, and TagetScan) using DIANA: miRPath v.3 software (University of
Thessaly and Information Management Systems Institute(IMSI), Greece). After conserva-
tive analysis based on the probability of a jackknifing test and FDR correction, we identified
21 pathways (Table 2; micro-T-CDS, 20; Tarbase, 1; TagetScan, 1) that were significantly asso-
ciated with these 10 miRNAs (Figure 2B). The pathways that interacted robustly (adjusted
p < 0.01) with these 10 miRNAs were as follows: TGF-β signaling pathway, Proteoglycans
in cancer, Long-term depression, Glutamatergic synapse, and Thyroid hormone signaling
pathway (Table 2). Among these, the TGF-β signaling pathway was identified from two
or more databases. A network of these five pathways and 95 genes that showed a strong
interaction with these 10 miRNAs is presented in Figure 2B. Figure 2C,D shows the genes
interacting with these miRNAs in the TGF-β signaling pathway and long-term depressive
pathway, respectively, which are strongly associated with these miRNAs and are also
involved in depression.
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Table 2. Twenty-one pathways showed an interaction with the top 10 miRNAs associated with a
Hamilton Rating Scale for Depression score reduction after 2 weeks of SSRI treatment. Caption:
The 21 pathways that were significantly associated with 10 miRNAs (miR-483-5p, miR-3151-5p,
miR-7109-5p, miR-6807-5p, miR-30c-1-3p, miR-6769a-3p, miR-7111-3p, miR-6796-3p, miR-1249-5p,
miR-4534). p-values were obtained following conservative stats analysis based on the probability of a
jackknifing test and FDR correction.

Pathway Database p-Value #Genes #miRNAs

TGF-beta signaling pathway microT-CDS/Tarbase 0.006/0.036 21/6 8/1
Proteoglycans in cancer microT-CDS <0.001 41 9
Long-term depression TargetScan 0.002 13 5
Glutamatergic synapse microT-CDS 0.006 26 8
Thyroid hormone signaling pathway microT-CDS 0.006 26 9
Amphetamine addiction microT-CDS 0.024 16 7
Morphine addiction microT-CDS 0.025 22 8
Endocrine and other factor-regulated calcium reabsorption microT-CDS 0.027 13 6
Calcium signaling pathway microT-CDS 0.027 36 8
Hippo signaling pathway microT-CDS 0.027 28 8
Signaling pathways regulating pluripotency of stem cells microT-CDS 0.027 27 9
Dilated cardiomyopathy microT-CDS 0.027 22 9
MAPK signaling pathway microT-CDS 0.028 49 9
Circadian entrainment microT-CDS 0.028 24 9
Colorectal cancer microT-CDS 0.038 13 5
ErbB signaling pathway microT-CDS 0.038 17 7
ECM-receptor interaction microT-CDS 0.038 16 7
Axon guidance microT-CDS 0.038 25 8
Cytokine-cytokine receptor interaction microT-CDS 0.038 37 9
Endocytosis microT-CDS 0.038 37 10
Focal adhesion microT-CDS 0.049 40 10
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Figure 2. (A) A correlation matrix between pre-treatment miRNAs in major depressive disorder
patients that were strongly associated with Hamilton Rating Scale for Depression (HAM-D) score
reductions after 2 weeks of selective serotonin reuptake inhibitor (SSRI) treatment. Caption: The
numbers indicate the correlation coefficients. (B) Circos plot of the top 10 miRNAs associated with
HAM-D score reduction after 2 weeks of SSRI treatment and the interacting genes and pathways.
Caption: After conservative stats based on the probability of jackknifing tests and FDR correction,
of 21 pathways that were significantly associated with these 10 miRNAs(miR-483-5p, miR-3151-
5p, miR-7109-5p, miR-6807-5p, miR-30c-1-3p, miR-6769a-3p, miR-7111-3p, miR-6796-3p, miR-1249-
5p, miR-4534), the five pathways (TGF-β signaling pathway, Proteoglycans in cancer, Long-term
depression, Glutamatergic synapse, and Thyroid hormone signaling pathway) and 95 genes that
showed the strongest association (adjusted p < 0.01) are shown. Each ribbon connects an miRNA with
predicted target genes and pathways. The width of the ribbon is proportional to the number of results
indicating the interaction. (C) Modified “TGF-beta signaling pathway” from KEGG. Caption: The
genes in the yellow squares are statistically robust interactions with the top 10 miRNAs associated
with HAM-D score reduction after 2 weeks of SSRI treatment. (D) Modified “Long-term depression”
from KEGG. Caption: The genes in the yellow squares are statistically robust interactions with the
top 10 miRNAs associated with HAM-D score reduction after 2 weeks of SSRI treatment.

2.4. Heatmap Analysis

As an exploratory approach for clinical use, we performed heat map analysis using
17 miRNAs that showed a statistically significant association with HAM-D score change
at week 2 (adjusted p < 0.05) and were also correlated with the week 2 response with
an unadjusted p-value < 0.01 (Figure 3A). To extract meaningful clusters, we performed
graphical exploration and principal component analysis (PCA), which revealed that subjects
could be classified into four clusters (Figure 3B). The percentages of week 2 responses in
cluster 1, cluster 2 and cluster 3, and cluster 4 were 57.1%, 0.0%, and 22.2%, respectively.
These were higher in cluster 1 and lower in clusters 2 and 3 compared with the average
percentage of 21.1%. The results indicate that these miRNAs can be used to predict the
group with the highest and lowest likelihood of response at 2 weeks with a significant
difference of 57%.
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was generated using 17 miRNAs that were significantly associated with a Hamilton Rating Scale for Depression score change at week 2 (adjusted p < 0.05) and also
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3. Discussion

In our randomized control trial, we identified 228 miRNAs that were strongly
correlated with an early response to SSRIs, among which, miR-483.5p was characterized
by the most robust correlation. Prior to treatment, the levels of these miRNAs were
inversely correlated with an improvement in depressive symptoms. We established that
these miRNAs are involved in 21 pathways, including TGF-β, glutamatergic synapse
and long-term depression, which are known to be associated with MDD. On the basis
of an exploratory hierarchical cluster analysis using a selection of these miRNAs, we
were able to predict the response at week 2 with a 57% difference. Notably, in the case
of patients receiving MIR, having performed correction for multiple testing, we were
unable to identify any miRNAs correlated with an early response. Among the top hit
miRNAs that showed significant pre-correction associations, miRNA levels were not
only inversely correlated with the improvement in depressive symptoms but also were
more often positively correlated.

In terms of pathways that were found to interact with the top 10 most significantly
associated miRNAs in terms of an early response to SSRIs, the TGF-β signaling pathway
was the only one that was identified in more than one database. Of these top 10 miRNAs,
eight (miR-3151-5p, miR-6807-5p, miR-30c-1-3p, miR-6769a-3p, miR-7111-3p, miR-6796-
3p, miR-1249-5p, and miR-4534) were shown to be associated with this pathway. The
genes established to interact with these miRNAs are as follows: transforming growth
factor beta receptor 2 gene (TGFBR2); tumor necrosis factor gene (TNF); activin a receptor
type 1C (ACVR1C), and 2B genes (ACVR2B); bone morphogenetic protein (BMP)-related
genes such as BMP5, BMP7, and BMP receptor type 1B BMPR1B and 2 BMPR2; MAPK1
and MAPK3; SMAD family-related genes such as SMAD family member 2 (SMAD2),
5 (SMAD5) and 6 (SMAD6), SMAD-specific E3 ubiquitin protein ligase 1 (SMURF1), and
2 genes (SMURF2); latent transforming growth factor beta binding protein 1 gene (LTBP1);
left-right determination factor 2 gene (LEFTY2), protein phosphatase 2 scaffold subunit
alpha gene (PPP2R1A), and beta gene (PPP2R1B); Inhibin subunit beta C (INHBC); chordin
(CHRD); Sp1 transcription factor (SP1); growth differentiation factor 7 (GDF7); follistatin
(FST); Ras homolog family member A (RHOA); and Transcription factor Dp-1 gene (TFDP1).

Previous studies that focused on predicting the treatment responses to antidepres-
sants using pre-treatment miRNAs have only reported using a candidate factor approach
rather than a genome-wide approach. They have indicated that blood miR1202 in pre-
treatment depressed patients was inversely correlated with the treatment response to
antidepressants [46,50]. This is consistent with our findings in the present study, in which
we established that miR1202 was inversely correlated with 2-week HAM-D score improve-
ment and response at week 2 in patients administered SSRIs (Supplementary Table S1).
These previous studies have also shown that miR-1202 is correlated with the expression
of the gene encoding metabotropic glutamate receptor-4 (GRM4). Although miR-1202
was not included in the interacting gene–pathway analysis in the present study, we did,
nevertheless, detect significant associations among the top10 miRNAs and other glutamate-
related genes, such as GRM5, 7, GIN2B, GRIA3, GNAO1, HOMER1, and the Glutamatergic
synapse pathway. Although the aforementioned two studies assessed the correlation with
8-week remission, whereas we focused on early responses, the partial responses at 2 weeks
have, nonetheless, been shown to be strongly correlated with subsequent remission [19,51].
Thus, it would be reasonable to assume that there is a common pathway associated with
the treatment response at 2 and 8 weeks. Further interesting studies on miR-1202, including
molecular imaging studies, have shown that changes in miR-1202 levels during antidepres-
sant treatment are correlated with changes in brain activity [52], and that genetic variants of
the GRM4 gene at the binding site of miR-1202 are potentially associated with a heightened
risk of developing depression. Accordingly, these observations would tend to indicate
that miR-1202 and constituents of the interacting pathways are among the key molecules
involved in the pathogenesis and treatment of depression [53].
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In contrast to SSRIs, although we found that no miRNAs associated with the early
response to MIR remained significant following FDR correction, the top hit miRNA,
namely, miR483-3p, derived from the same dsRNA as the SSRI top hit miRNA, miR483-
5p. Of the two strands of RNA duplexes, one miRNA strand is incorporated into the
argonaut (Ago) protein as the guide strand during the formation of RNA-induced
silencing complexes (RISCs) to become the mature miRNA, whereas the other strand is
discarded. Although numerous miRNA precursors have been established to produce
a single dominant mature miRNA species, in some cases, both strands function as
mature miRNAs [54]. It has been speculated that the mechanisms determining which
of the two strands functions mature miRNAs, or whether both strands contribute to
this regard, involve control by nucleotide bases on the 5′ side and thermodynamic
stability [55]. We found that the plasma levels of miR483-5p were inversely correlated
with early improvements in patients receiving SSRIs, whereas the levels of miR483-
3p were positively correlated with early improvement in those administered MIR.
These findings may thus indicate that the factors determining whether miR483-3p
or 5p functions on the maturation of double-stranded miRNAs may influence the
early response to SSRI and MIR treatment. In a previous study conducted by Yoshino
et al. using the postmortem brains of depressed patients to examine the associations
of 333 miRNAs, the authors found miR-483-5p found to be significantly more down-
regulated in a synaptic fraction from the dorsolateral prefrontal cortex (dlPFC) of MDD
subjects compared with healthy controls [43]. It is thus interesting to note that in
the present study, we demonstrated that miR-483-5p, which is dysregulated in the
postmortem brains and reduced in synapses of depressed patients, is associated with a
long-term depression pathway (Figure 1), along with miR-3151-5p, miR-7109-5p, miR-
7111-3p, and miR-1249-5p. This pathway comprises glutaminergic synapse-related
genes, and we established that MAPK3, IGF1, GRIA3, CACNA1, GNA11, GNAO1,
PLA2G4E, and PRKCA interact with SSRI early response-related miRNAs. Among the
333 miRNAs examined by Yoshino et al., there were seven associated with synapses
in the postmortem brains of depressed patients that were not included among the
684 miRNAs that met the analysis criteria specified in the present study. In addition,
there are reports on miR-483-5p indicating associations with 483-3p, the IGF2 gene,
cancer, and adipogenesis in physical diseases [56–58]. miR-3151-5p, which we identi-
fied as showing the second-most robust correlation with an early response to SSRIs,
has been reported to be associated with certain cancers and leukemia, although to
date has not been shown to be associated with psychiatric disorders. In a study by
Lopez et al. [59], two of the miRNAs that showed significant changes in response to
duloxetine treatment were included in the analyses performed in the present study,
of which, miR-6511a-3p did not appear to be associated with a treatment response,
whereas the second, miR-2110, was observed to be highly correlated with an early
response with a statistically significant adjusted p-value. Lopez et al. concluded that
the pathway associated with an antidepressant response in depressed patients is the
MAPK signaling pathway, which we also identified in the present study. On the basis
of the foregoing findings, it appears that the types of miRNAs available for analysis
differ depending on race and analytical method. However, given that miRNAs are
associated with genes and molecular pathways, not only in isolation but also in correla-
tion with multiple other miRNAs, it is important to both reconfirm the associations of
single miRNAs reported in previous studies. An attempt to elucidate common molec-
ular mechanisms underlying the associations of the genes and pathways identified
to date.
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However, despite the interesting findings of the present study, we must acknowledge
that there were several general limitations with respect to the study design. Firstly, although
the results obtained in this study were based on rigorous statistical analyses, including
FDR correction, our findings are to a certain extent limited by the small cohort size, and
accordingly would require validation using larger cohort of MDD patients to enable a
better evaluation of the involvement and specificity of the putative miRNAs and pathways.
Secondly, we did not include placebo and/or non-treatment groups in the analysis. Al-
though the study was conducted based on a randomized controlled trial design, which can
reduce unknown and known biases, the use of placebo and non-treatment groups serve
as an effective strategy for distinguishing among responses to antidepressants, placebos,
and a spontaneous improvement in symptoms. Thirdly, given that we focused on an
early response to antidepressants, we assessed the treatment response after 2 weeks based
on pre-treatment miRNA levels as the main outcome, and after 4 weeks as a secondary
outcome. In this regard, although a treatment response at 2 weeks is known to contribute
significantly to the subsequent course of treatment [19,51], our findings cannot be used to
predict the long-term course of treatment, which is important in MDD.

Nevertheless, one of the strengths of this study is that we used a randomized controlled
trial design, and consequently there was no drug selection bias. We are thus confident
that the influence of known patient characteristics and unknown events was minimized.
In addition, the study design enabled us to follow patients who are drug-free and have
no history of treatment-resistant depression with a controlled intervention. Furthermore,
the use of a comprehensive genome-wide approach and conservative statistical methods,
rather than a hypothesis-based candidate approach for the targeted miRNAs, enabled us to
analyze not only known but also unknown miRNAs.

4. Methods
4.1. Study Design and Participants

This study is part of the Step I portion of the Genotype Utility Needed for Depression
Antidepressant Medication (GUNDAM) study, which is a project focused on personalized
first-line treatment and subsequent combination treatment based on a series of biological
and clinical factors. The methods and designs of the GUNDAM study have previously
been described elsewhere [10]. Briefly, GUNDAM is a two-step, open-label, randomized,
flexible-dose, 8-week study, in Step I (4 weeks) of which, the responses of drug-free MDD
patients to treatment with MIR and SSRIs were evaluated. The study was registered in the
UMIN (University Hospital Medical Information; No. 000006417). The subjects included
were 20- to 75-year-old outpatients, who met the criteria of diagnosis of MDD according to
the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition Axis I Disorders [60], Japanese, scoring at least 14 in the 17-item Hamilton
Rating Scale for Depression (HAM-D 17) [61]. They had been free of psychotropic drugs for
at least 14 days prior to entering into the study. Subjects with clinically significant unstable
medical illness, pregnancy, a principal psychiatric diagnosis other than MDD, a history
of substance abuse or dependence active within the previous 6 months, or a history of
treatment-resistant depression, defined as non-response to two or more antidepressants
and electroconvulsive therapy within the previous 6 months, were excluded. The diagnoses
were performed by two independent senior psychiatrists and confirmed by a third.

Participants were randomly assigned to an MIR or SSRI (PAX or SER) group. The
initial doses for MIR, PAX, and SER were 15, 10, and 25 mg/day, respectively. If there were
no problems regarding tolerability, these doses were increased to 30, 20, and 50 mg/day
within 2 weeks, and up to 45, 40, and 100 mg/day within 4 weeks, respectively. All patients
were evaluated at baseline and bi-weekly thereafter until the end of the study using the
HAM-D 17 scale. The rate of response was defined as at least a 50% reduction from the
baseline score.
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4.2. Microarray Analysis of miRNA Expression

Human plasma samples were obtained from pre-treatment patients with MDD. Total
RNA was extracted from 300 µL serum samples using a 3D-Gene RNA extraction reagent
provided with a liquid sample kit (Toray Industries, Inc., Kanagawa, Japan). Compre-
hensive miRNA expression analysis was performed using a 3D-Gene miRNA Labeling
kit and a 3D-Gene Human miRNA Oligo Chip (Toray Industries, Inc., Kanagawa, Japan),
which was designed to detect 2555 miRNA sequences registered in the miRBase release
20 database (http://www.mirbase.org/) (accessed on 2 March 2022). When an miRNA
was detected in only a proportion of the subjects (less than 80%), the assay of the miRNA
was regarded as unreliable. Of the 2555 miRNAs assessed, data obtained for 684 were
considered sufficiently reliable and used for subsequent statistical analysis, having initially
undergone quantile normalization. Signals that were less than the average background
signal value ±2 SD or considered abnormal in the scanned images and thus unsuitable as
data were removed as missing areas.

4.3. Statistical Analyses

The change in HAM-D score at week 2 was used as the primary outcome, and that
at week 4 and the response rates at weeks 2 and 4 were used as secondary outcomes.
Multiple regression models for continuous variables and logistic regression models
for binary outcomes were fitted to estimate the effects of treatment on the outcomes.
Results with an alpha level lower than 0.05 were considered significant. The models were
controlled for age, sex, duration of current depressive episode, and pre-treatment HAN-D
score. The Benjamini–Hochberg false discovery rate (FDR) correction was used to correct
for the proportion of miRNAs likely to be identified as significant by chance by multiple
tests (adjusted p-value of 0.05). All analyses were performed using the R Statistics
Package v. 3.51 (R Foundation for Statistical Computing, http://www.R-project.org)
(accessed on 2 March 2022). To validate our miRNA target prediction and pathway
analyses, we performed in silico analysis using DIANA: miRPath v.3, which facilitates
identification of common miRNA targets using DAVID ease scores with Conservative
Stats based on jackknifing test probability and the Benjamini–Hochberg FDR correction
derived from DIANA microT-CDS (v5.0), TarBase v7.0 (University of Thessaly and
Information Management Systems Institute (IMSI), Greece), and the Target scan database.
For pathway analysis, we used the top 10 miRNAs, even if more than 10 were significant,
based on previous experience indicating that the use of an excessive number of miRNAs
can lead to difficulties in interpreting the results [62]. To generate heat maps, we
performed hierarchical cluster analysis with complete linkage to identify patient clusters
based on baseline plasma miRNA levels. The Euclidean distance was used to measure
the dissimilarity between each pair of observations, under a hierarchical clustering
approach for identifying clusters of patients.

5. Conclusions

We found that the pre-treatment levels of 228 miRNAs were associated with an
early response to selective serotonin reuptake inhibitors. The most strongly correlated
of these, miR483-5p, has previously been reported to be dysregulated in the postmortem
brains of depressed patients and reduced at the synapses therein [43]. In addition,
we found that miR-1202, which has consistently been reported to be associated with
treatment response to antidepressants using the candidate approach [46,50], was also
correlated with treatment response based on our genome-wide approach. In silico
pathway analysis enabled us to identify 21 pathways associated with the 228 miRNAs
and their interacting genes such as TGFBR2, TNF, MAPK, SMAD, including the TGF-β,
glutamatergic synapse, and long-term depression pathways, associated with major
depressive disorder, as well as the MAPK signaling pathway reported in previous
studies [30,59,63–68]. Although preliminary, the findings of this study indicate that
these miRNAs could be used to predict groups with the highest and least likelihood

http://www.mirbase.org/
http://www.R-project.org


Int. J. Mol. Sci. 2022, 23, 3873 14 of 17

of antidepressant response at 2 weeks. That is, the response rate after 2 weeks of SSRI
treatment is 21% in the usual treatment, but by evaluating pre-treatment miRNAs, it is
possible to divide the group into two groups: one that can expect a 57% response and
the other that can expect almost no response (0%). In contrast to SSRIs, we detected no
miRNAs significantly correlated with a mirtazapine treatment response after statistical
correction. This may suggest using mirtazapine as a monotherapy or in combination
early in treatment for patients who are predicted by miRNAs not to respond early to
SSRIs. Alternatively, non-pharmacologic or non-invasive neuromodulation therapies
might be considered for such patients [69–71]. We believe that the findings of this
study could contribute to predicting early responses to antidepressant therapy by using
miRNAs from untreated patients, as well as enhance our understanding of the genes
and pathways associated with antidepressant response. In future studies, we hope to
validate our findings using a larger sample size.
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