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Parkinson’s disease (PD) is a severely debilitating neurodegenerative disease, affecting
the motor system, leading to resting tremor, cogwheel rigidity, bradykinesia, walking and
gait difficulties, and postural instability. The severe loss of dopaminergic neurons in the
substantia nigra pars compacta causes striatal dopamine deficiency and the presence
of Lewy bodies indicates a pathological hallmark of PD. Although the current treatment
of PD aims to preserve dopaminergic neurons or to replace dopamine depletion in
the brain, it is notable that complete recovery from the disease is yet to be achieved.
Given the complexity and multisystem effects of PD, the underlying mechanisms of PD
pathogenesis are yet to be elucidated. The advancement of medical technologies has
given some insights in understanding the mechanism and potential treatment of PD with
a special interest in the role of microRNAs (miRNAs) to unravel the pathophysiology of
PD. In PD patients, it was found that striatal brain tissue and dopaminergic neurons
from the substantia nigra demonstrated dysregulated miRNAs expression profiles.
Hence, dysregulation of miRNAs may contribute to the pathogenesis of PD through
modulation of PD-associated gene and protein expression. This review will discuss
recent findings on PD-associated miRNAs dysregulation, from the regulation of PD-
associated genes, dopaminergic neuron survival, α-synuclein-induced inflammation and
circulating miRNAs. The next section of this review also provides an update on the
potential uses of miRNAs as diagnostic biomarkers and therapeutic tools for PD.
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PARKINSON’S DISEASE

Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s
disease. The clinical signs of PD involved dopamine (DA)-related motor symptoms such as
bradykinesia, postural instability, resting tremor, walking and gait difficulties (Jellinger, 2015).
Compelling evidences relating to the multisystem effects of PD reported that the primary feature
defects in movement control are caused by the death of DA neurons within the substantia
nigra pars compacta (SNpc) (Chen et al., 2019). In addition to the motor symptoms, PD
patients also presented with other non-motor symptoms which may precede the development
of motor symptoms such as olfactory dysfunction, autonomic dysfunction (respiratory, cardia,
gastrointestinal, urogenital), sensory symptoms, sleep disorder, neuropsychiatric symptoms
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(cognitive, mood, dementia, hallucinations) and others (Azmin
et al., 2014; Jellinger, 2015). Most PD patients exhibit impaired
cognitive function, particularly the ability to concentrate,
executive functioning, and experiencing varying degrees of
dementia (Goedert et al., 2013; Irwin et al., 2013).

The incidence of PD is between 10 and 50/100,000
person/year, and the prevalence in the population is between
100 and 300/100,000 (Pringsheim et al., 2014). The prevalence
and incidence rates of PD among the Eastern population are
slightly lower compared to the Western population with a 51.3 –
176.9/100,000 prevalence rate. Genetic and environmental factors
could be the reasons to explain a lower PD prevalence rate
observed in Asia countries (Abbas et al., 2018). The number of
individuals with PD continues to grow from 4.6 million in the
year 2005 to an estimate of 9.3 million in 2030 in Western Europe
(Dorsey et al., 2007). From the 6.1 million individuals worldwide
diagnosed with PD in 2016, 2.9 million (47.5%) were women
and 3.2 million (52.5%) were men with a ratio of 1: 1.5 (GBD
2016 Parkinson’s Disease Collaborators, 2018). The differences
could be due to the neuroprotective role of estrogens in women,
frequent occupational exposures in men and X-linked genetics
factors. Aging is one of the known risk factors of PD. This is
supported by a study in Olmsted County, Minnesota whereby an
increased incidence rate of parkinsonism and PD was reported
from 1976 to 2005, particularly in men of age 70 and above
(Savica et al., 2016).

Pathogenesis of Parkinson’s Disease
The major pathological features of PD are widespread
α-synuclein aggregation and progressive degeneration of
the nigrostriatal system, leading to the death of DA neurons in
the SNpc. This eventually leads to the presentation of both motor
and non-motor symptoms of PD (Fujita et al., 2014; Pang et al.,
2019; Peball et al., 2020). Additionally, the non-motor symptoms
of PD are also mediated by non-dopaminergic systems, and other
structures outside the nigrostriatal system (Jellinger, 2017b). PD
should be viewed in various aspects in terms of its etiological,
molecular biological, anatomical, physiological and pathological
aspects of neuropathogenesis. Although the exact etiology of
PD is not well understood, different possible causes have been
identified. Most PD cases are likely to involve an interplay of
aging, genetic susceptibility and exposure to environmental
factors (Figure 1; Pang et al., 2019).

Aging is a natural process that involves deregulation of
numerous cellular functions and signaling pathways, such as
arrested cell cycle, oxidative stress, mitochondrial dysfunction,
autophagy and neuro-inflammation that are also implicated
in the pathogenesis of neurodegenerative diseases (Dexter and
Jenner, 2013; Jellinger, 2017a). Although age is linked to PD,
aging itself is insufficient to cause PD. Therefore, it is likely that
the association of both genetic and environmental factors are
crucial to amplify the SNpc neuronal decline in normal aging to
accelerate DA neuronal degeneration as observed in PD patients
(Pang et al., 2019). Several PD-causing genes such as α-synuclein
(SNCA), parkin (PARK2), Leucine-rich repeat kinase 2 (LRRK2),
DJ-1 (PARK7) and PTEN-induced kinase 1 (PINK1) have been
implicated in the pathogenesis of PD and have contributed to

the creation of various genetic animal models (Lesage et al.,
2020; Tolosa et al., 2020). Additionally, exposure to numerous
environmental toxins such as pesticides and heavy metals has
been known to increase the risk of PD. Neurotoxins such
as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), paraquat and rotenone have been
widely used to create PD animal models by selectively destroying
DA neurons (Najib et al., 2020).

Although the exact mechanism underlying the death of
DA neurons in the SNpc and the presence of Lewy bodies
and Lewy neurites remains unclear, mechanisms such as
α-synuclein misfolding and their aggregation, mitochondrial
dysfunction, oxidative stress, excitotoxicity, impairment of
protein clearance pathways and “prion-like protein infection”
have been suggested (Golpich et al., 2017; Maiti et al., 2017).
The aggregation of α-synuclein has been commonly suggested as
the neurodegenerative cause of Parkinsonism (Dickson, 2018).
Although most of the α-synuclein immune-reactive pathology
in PD is within SNpc and ventral tegmental area, both Lewy
bodies and Lewy neurites are also found to be present in nearly
all brainstem nuclei and fiber tracts (Seidel et al., 2015). The
biological basis for selective vulnerability of DA neurons may
be due to the pacemaker-like properties of these neurons that
lead to frequent intracellular calcium transients (Guo et al.,
2018). Calcium buffering may be relatively deficient in neurons
involved in the nigrostriatal pathway compared to neurons in
the mesolimbic pathway, which may cause dysregulated cellular
homeostasis. DA neuronal death is associated with the loss
of functional nuclear envelope integrity and release of pro-
aggregant nuclear factors that may then initiate the aggregation
of α-synuclein (Jiang et al., 2016). The initiation of aggregation
may subsequently lead to spreading to other cells (Braak et al.,
2004; Danzer et al., 2012; Dickson, 2018). Degeneration of DA
neurons in the SNpc and diminished DA levels in PD patients
resulted in less inhibition of striatal neuronal activity and the
derangement of striatal neuronal firing. This then led to the loss
of inhibitory effects on the globus pallidus and thalamus, which
will then cause the excessive activation of the motor cortex. This
led to the impairment of motor coordination and patients will
exhibit PD-associated motor symptoms (Magrinelli et al., 2016).

MICRORNAS

MicroRNAs (miRNAs) are a family of small single-stranded non-
coding RNA molecules (20 – 25 nucleotides in length) that bind
to the 3′ untranslated regions (UTR) of the target mRNAs. The
binding induces mRNA degradation and translational repression
hence contribute to the post-transcriptional regulation of gene
expression. MiRNAs also interact with 5′ UTR, coding sequence,
gene promoters and transcription factors (Khee et al., 2014;
O’Brien et al., 2018).

The first miRNA, lin-4 was discovered in 1993 as a
developmental gene regulator of Caenorhabditis elegans. The lin-
4 contained complementary sequences which enable its binding
to the 3′ UTR sequence of lin-14 (Lee et al., 1993; Wightman et al.,
1993). The binding of lin-4 to the lin-14 forms multiple RNA
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FIGURE 1 | Pathogenesis of PD. PD pathogenesis involves an interplay among aging, genetic susceptibility and environmental factors, leading to loss of DA neurons
which eventually lead to cardinal motor symptoms of PD.
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duplexes that lead to the down-regulation of lin-14 translation
(Wightman et al., 1993). To date, around 48,860 mature miRNAs
have been identified from 271 different species, including over
2,600 miRNAs from humans, and these data are registered in
miRBase (the miRNA database1) (Kozomara et al., 2019).

The identification of target genes is important to understand
the function of miRNAs. Currently, numerous bioinformatics
and biological tools are used to identify miRNA target
genes, which may then be validated with further experiments
(Wang et al., 2017).

MICRORNA DYSREGULATION IN
PARKINSON’S DISEASE

Dysregulation of miRNAs will result in development and
progression of numerous disease, such as in cancers (Ibrahim
et al., 2015). Studies have identified dysregulation of miRNAs
expression in neurodegenerative diseases such as Alzheimer’s
disease, amyotrophic lateral sclerosis and Huntington’s disease
(Lee et al., 2011; Figueroa-Romero et al., 2016; Putteeraj et al.,
2017). Similarly, in PD patients, the striatal brain tissue and
DA neurons from the SNpc demonstrated dysregulated miRNAs
expression profiles (Briggs et al., 2015; Nair and Ge, 2016).
A total of 125 miRNAs was significantly altered in the post-
mortem analysis of the prefrontal cortex from PD patients
compared to the neuropathologically normal controls (Hoss
et al., 2016). Therefore, it is believed that miRNA dysregulation
may contribute to the pathogenesis of PD by regulating various
genes and proteins related to PD. This review will discuss the
recent findings of miRNAs dysregulation related to PD.

MiRNAs Related to the Regulation of
PD-Associated Genes (Table 1)
SNCA: miR-7, miR-153 and miR-203a-3p
MiR-7, miR-153 and miR-203a-3p possess binding sites to
the 3′ UTR of the SNCA gene. The expression of miR-7 is
significantly reduced in the SNpc of PD patients (McMillan
et al., 2017). It has been shown that over-expression of both
miR-7 and miR-153 in the human embryonic kidney cell line,
HEK293 cells and cortical neurons lead to significant reduction
of SNCA mRNA and protein expression levels meanwhile miR-
7 knockdown induces over-expression of α-synuclein protein
level (Doxakis, 2010; McMillan et al., 2017). Both miRNAs
regulate SNCA protein levels via a different pathway in
which miR-7 inhibits its translation while mir-153 degrades
the mRNA (Doxakis, 2010). Je and Kim (2017) demonstrated
that exposure of 1-methyl-4-phenylpyridinium (MPP+, the
active metabolite of MPTP) to the HEK293 cells relieved
the miRNA-mediated translational suppression of SNCA, via
MPP+-mediated mitochondrial reactive oxygen species (ROS)
production. Interestingly, the over-expression of miR-7 and miR-
153 in cortical neurons reduced MPP+-induced neurotoxicity
by increasing neuronal viability, up-regulation of pro-survival

1http://www.mirbase.org/

TABLE 1 | Expression of miRNAs targeting PD-related genes.

Target miRNA Expression compared to control

SNCA miR-7 –

miR-153 ↑

PRKN miR-181a ↓

LRRK2 miR-205 ↑

DJ-1 miR-494 –

BCL-2 protein and in-activation of pro-apoptotic caspase-3
(Fragkouli and Doxakis, 2014).

Another miRNA targeting SNCA, miR-203a-3p expression
was down-regulated in MMP+-treated human dopaminergic
neuroblastoma, SH-SY5Y cells (Jiang et al., 2020). MMP+
treatment led to reduce cell proliferation and induced apoptosis
in the SH-SY5Y cells that then led to enhance expression of
SNCA, p53 and cleaved Caspase-3 proteins of which were
inhibited by the up-regulation of miR-203a-3p (Jiang et al.,
2020). Other miRNAs that were identified as regulators of SNCA
expression include the miR-30b, miR-34b/c, miR-214, and miR-
433 (Wang et al., 2015; Consales et al., 2018; Tarale et al., 2018;
Shen et al., 2020).

PRKN: miR-103a-3p, miR-146a, miR-181a and
miR-218
Mutations in the PRKN, encoding Parkin (an important
E3 ubiquitin-protein ligase that mediates the elimination of
damaged mitochondria via mitophagy), cause an autosomal
recessive form of early onset PD (Kim et al., 2012; Zanellati et al.,
2015). Mitochondrial dysfunction and the down-regulation of
Parkin in the MPTP-treated mice and MPP+-treated SH-SY5Y
cells (Zhou et al., 2020). Furthermore, Parkin protein expression
was significantly down-regulated following miR-103a-3p over-
expression while Parkin protein expression was up-regulated
following miR-103a-3p knockout. This suggest that miR-103a-3p
able to regulate Parkin expression, by binding to the 3′-UTR of
Parkin mRNA (Zhou et al., 2020).

In a rotenone-induced PD rat model, miR-146a, a known
inflammation regulatory miRNAs was identified as the most
up-regulated miRNAs (Jauhari et al., 2020). The exposure of
rotenone led to the activation of NF-κβ and induces the
transcription of miR-146a that is responsible for the down-
regulation of Parkin protein level (Jauhari et al., 2020). In
contrast, down-regulation of miR-146a expression led to the
inhibition of NF-κβ phosphorylation and increased Parkin level
in the rotenone-treated SH-SY5Y cells (Jauhari et al., 2020).

PRKN was also identified as a target of other miRNAs
such as miR-181a and miR-218. Over-expression of miR-181a
significantly reduced Parkin mRNA and protein level, while
inhibition of miR-181a increased Parkin expression (Cheng et al.,
2016). In addition to PRKN, miR-181a also targets genes that
control neurite growth namely SMAD1 and SMAD5 transcription
factors (Hegarty et al., 2018). Inhibition of miR-181a expression
in SH-SY5Y cells led to elevation of Smad1/5 proteins, as
well as the neurite length and neurite branching (Hegarty
et al., 2018). Similarly, down-regulation of miR-181a-5p confers
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neuroprotection to MPP+-treated cells by enhancing cell viability
and suppression of cell apoptosis, LDH activity and inflammation
(Guo and Hua, 2020). The data on miR-181a dysregulation
reported in PD patients and axonal degeneration of DA neurons
in early stages of PD suggest that inhibition of miR-181a may
be a promising therapeutic approach for PD. MiR-218 also
targets PRKN and negatively regulates PINK1/PRKN-mediated
mitophagy. Over-expression of miR-218 down-regulated PRKN
expression, leading to dysregulated mitophagy (Di Rita et al.,
2020). However, miR-218 expression was found to be reduced in
the patients and animal models (Xing et al., 2020; Ma et al., 2021).

PINK1: miR-27a/b
Homozygous and compound heterozygous mutations in the
PINK1 gene are associated with the early onset of PD (Krohn
et al., 2020). The PINK1 gene encodes a PTEN-induced serine-
threonine kinase 1 located in the mitochondria in which
the mutations can lead to respiratory chain dysfunction and
impairment in ATP production (Rango et al., 2020). MiR-27a
and miR-27b suppressed the expression of PINK1 by direct
binding to the 3′UTR of its mRNA (Kim J. et al., 2016).
Thus, miR-27a/b inhibited accumulation of PINK1, which in
turn prevented the translocation of Parkin to the mitochondria
following mitochondrial damage hence leads to the inhibition of
lysosomal degradation of damaged mitochondria (Kim J. et al.,
2016). In addition to miR-27a/b, miR-140 has also been reported
to target PINK1. Amyloid β-derived diffusible ligands-induced
neurons transfected with miR-140 mimic exhibited up-regulated
miR-140 and down-regulated PINK1 expressions. Reciprocal
effects were seen following miR-140 inhibitor transfection
(Liang et al., 2021).

LRRK2: miR-205 and miR-599
The LRRK2 gene mutations are associated with familial and
sporadic forms of PD (Gopalai et al., 2014). The LRRK2 protein
level increased with no significant changes in its mRNA levels
in the frontal cortex of sporadic PD patients hence suggesting
the involvement of miRNAs in suppressing post-transcriptional
regulation of LRRK2 (Cho et al., 2013). There were reduced miR-
205 expression in PD patients, and the reduction showed inverse
correlation between the expression of LRRK2 protein and miR-
205 (Cho et al., 2013). Similarly, over-expression of miR-205 in
HEK293T cells suppressed LRRK2 protein expression in vitro,
while inhibition of miR-205 enhanced LRRK2 protein expression
(Cho et al., 2013).

MiR-599 expression was down-regulated both in vivo
[lipopolysaccharide (LPS) administered mice] and in vitro
(MPP+-treated SH-SY5Y cells) PD models, which was associated
with increased LRRK2 expression (Wu et al., 2019). Over-
expression of miR-599 was shown to down-regulate LRRK2
expression while knockdown of miR-599 up-regulated LRRK2
expression in the MPP+-treated SH-SY5Y cells (Wu et al., 2019).

PARK7: miR-494 and miR-4639
DJ-1 (PARK7) is identified as a recessive familial PD gene
in which loss of this gene resulted in the increased the
susceptibility of cells to the damaging effect of oxidative

stress, leading to the early onset of PD (Irrcher et al., 2010).
MiR-494 binds to the 3′ UTR of DJ-1 and leads to the
inhibition of DJ-1 transcription (Xiong et al., 2014). Over-
expression of miR-494 in 3T3 cells resulted in decreased DJ-1
protein level and increased ROS production without changing
the mRNA expression (Xiong et al., 2014). Similarly, over-
expression of miR-494 in mice leads to a decrease in DJ-
1 expression in the SNpc following MPTP administration,
alongside the exacerbated degeneration of DA neurons in the
SNpc and significant motor impairment (Xiong et al., 2014;
Geng et al., 2018).

The miR-4639-5p level was up-regulated in the plasma of PD
patients whereby miR-4639-5p negatively regulates DJ-1 in the
post-transcriptional level (Chen et al., 2017). The up-regulation
of miR-4639-5p led to the down-regulation of DJ-1 protein
level hence resulted in severe oxidative stress and neuronal
death in MPP+- and rotenone-treated SH-SY5Y cells (Chen
et al., 2017). MiR-145-3p and miR-874 are among other miRNAs
that were predicted to regulate DJ-1 expression, and both were
shown to be highly expressed in the saliva of PD patients
(Chen et al., 2020).

MiRNAs Related to Dopaminergic
Neurons Survival
MiR-34b/c
The expression of both miR-34b and miR-34c were shown to be
down-regulated in various brain region of PD patients including
the putamen, amygdala, substantia nigra, frontal cortex, and
cerebellum (Minones-Moyano et al., 2011; Villar-Menendez et al.,
2014). Inhibition of miR-34b/c expression in SH-SY5Y cells
lead to reduced cell viability, mitochondrial dysfunction and
increased ROS generation in the cells (Minones-Moyano et al.,
2011). In addition, miR-34b/c inhibition could also lead to
a significant reduction in DJ-1 and Parkin protein levels in
which these proteins are associated with familial forms of PD
(Minones-Moyano et al., 2011). In another study, miR-34b/c
inhibition increased the α-synuclein levels and stimulate the
aggregate formation, possibly contributing to PD pathogenesis
(Kabaria et al., 2015).

MiR-126
MiR-126 was up-regulated in the SNpc DA neurons from
PD patients (Kim W. et al., 2014). Over-expression of miR-
126 compromised the survival of primary DA neurons and
SH-SY5Y cells hence increasing their vulnerability to 6-
OHDA toxicity (Kim W. et al., 2014). In addition to DA
neurotoxins, miR-126 over-expression also increases neuronal
vulnerability to staurosporine (a non-selective protein kinase
inhibitor) and Alzheimer’s disease-associated amyloid β 1-42
peptides (Kim W. et al., 2016). The miR-126 over-expressing
cells showed reduced expression of p85β, IRS-1 and SPRED1,
reduced phosphorylated AKT and extracellular signal-regulated
kinase (ERK) protein levels. These results suggest that miR-
126 down-regulates insulin/IGF-1/phosphatidylinositol-3-kinase
(PI3K)/AKT and ERK signaling cascades in promoting neuronal
death in PD (Kim W. et al., 2014).
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MiR-128
The expression of miR-128 decreased in the MPTP-induced
PD mice (Zhou et al., 2018; Zhang G. et al., 2020). MiR-
128 protects DA neurons from apoptosis and up-regulates the
expression of Excitatory Amino Acid Transporter 4 (EAAT4) by
binding to the axis inhibition protein 1 (AXIN1) (Zhou et al.,
2018). Further study reported that the increased HIF-1α/miR-
128-3p inhibited apoptosis of hippocampal neurons through
Wnt/β-catenin signaling pathway activation via the suppression
of AXIN1 (Zhang G. et al., 2020).

MiR-200a
The expression of miR-200a was significantly up-regulated in
the pheochromocytoma cell line PC12 cells and SH-SY5Y cells
following exposure to MPP+ that leads to the induction of
oxidative stress and cell apoptosis (Salimian et al., 2018; Talepoor
Ardakani et al., 2019). Additionally, the transcript level of
SIRT1 (a miR-200a target) showed significant down-regulation
in the MPP+-treated cells, confirming that SIRT1 may induce
DA neuronal apoptosis via P53 and FOXO signaling pathways
(Salimian et al., 2018). In contrast, inhibition of miR-200a
reduced the apoptosis and increased DA neuronal population
in 6-OHDA-treated PD rats, via inhibition of the cAMP/PKA
signaling pathway (Wu et al., 2018).

MiR-216a
MiR-216a over-expression has shown to provide protection
against MPP+-induced neurotoxicity in SH-SY5Y cells by
significantly increase neuronal viability following MPP+
treatment (Yang et al., 2020). This was also associated with
reduced neuronal apoptosis, ROS level and lipid peroxidation
(Yang et al., 2020). MiR-216a promotes neuronal survival by
down-regulating Bax that is involved as apoptotic regulators
(Yang et al., 2020). The up-regulation of miR-216a also exerts its
neuroprotective effects against ischemic brain injury by targeting
JAK2/STAT3 pathways (Tian et al., 2018).

MiR-221
MiR-221 expression was significantly down-regulated in 6-
OHDA-treated PC12 cells (Li et al., 2018). Over-expression of
miR-221 cells treated with 6-OHDA and MPP+ significantly
promotes cell viability and proliferation while inhibited cell
apoptosis (Li et al., 2018; Oh et al., 2018). The brains of DJ-1−/−

mouse and DJ-1 knock down SH-SY5Y cells demonstrated down-
regulation of miR-221 (Oh et al., 2018). Additionally, miR-221
down-regulated the expression of pro-apoptotic proteins (bcl-
2-like protein 11, bcl2 modifying factor, and bcl2 interacting
protein 3-like) at basal conditions thus prevented the oxidative
stress-induced increase of bcl-2-like protein 11 (Oh et al., 2018).
Based on these findings, the modulation of miR-221 by DJ-
1 could contribute to the pathogenesis of autosomal recessive
inherited PD or sporadic PD, resulted from the loss-of-function
mutations in DJ-1.

MiR-326
The expression of miR-326 was shown to be down-regulated
in MPTP-induced PD mice (Zhao et al., 2019). MiR-326

over-expression ameliorates the motor dysfunction and the
structural abnormality of the SNpc (increase content of DA,
SOD, GSH-Px, and TH positive expression) in PD mice (Zhang
et al., 2019). In addition, miR-326 overexpression also inhibits
numerous immunomodulatory factors such as TNF-α, IL-1,
IL-6, and INF-γ. Mice treated with miR-326 mimic inhibits
expression of iNOS and neuronal apoptosis and promotes
autophagy of DA neurons (Zhang et al., 2019; Zhao et al.,
2019). Recent evidence also showed that miR-326 may play
an important role as the key suppressor in the development
of PD due to the suppression of pyroptotic cell death with
the activation of NLRP3 inflammasome. It was shown that
silencing the lncRNA homeobox transcript antisense RNA
resulted in significant inhibition of neuronal damage through the
suppression of NLRP3-mediated pyroptosis via the regulation of
miR-326/ELAVL1 axis in PD model (Zhang Q. et al., 2020).

MiRNAs Related to Neuroinflammation
MiR-29c
The serum miR-29 level was significantly down-regulated in PD
patients, and were correlated with the disease severity (Bai et al.,
2017). Over-expression of miR-29c attenuated DA neuronal
death and α-synuclein aggregation in the SNpc of MPTP-treated
mice. Furthermore, miR-29c exhibited anti-inflammatory
properties by ameliorated the elevated pro-inflammatory
cytokines (TNF-α, IL-1β, and IL-6) and apoptosis in the MPTP-
treated mice (Wang et al., 2020b). Additionally, over-expression
of miR-29c suppressed the LPS-induced microglial activation,
via modulation of NOD-like receptor protein 3 (NLRP3)
inflammasome by targeting nuclear factor of activated T-cells
(NFAT) 5 (Wang et al., 2020a).

MiR-124
The expression of miR-124 decreased in the midbrain of the
MPTP-induced PD mouse model (associated with reduced
DA neurons, and decreased tyrosine hydroxylase and DA
transporter expressions), MPP+-treated SH-SY5Y and MN9D
cells (Kanagaraj et al., 2014; Liu et al., 2017). The reduced miR-
124 expression increased the expression of calpain 1, leading
to the activation of the p25/cdk5 pathway, which is known
to be involved in the DA neuronal loss in PD (Kanagaraj
et al., 2014). Additionally, miR-124 suppression increased cell
autophagy-related protein expression (LC3 II and Beclin 1),
increased phosphorylated-AMPK level while decreased p-mTOR
expression suggest that miR-124 regulates DA neuronal apoptosis
and autophagy by regulating the AMPK/mTOR pathway (Gong
et al., 2016). In contrast, up-regulation of miR-124 through
administration of miR-124 in the MPTP-treated mice attenuated
the loss of DA neurons and striatal DA level caused by MPTP
toxicity (Wang H. et al., 2016). Additionally, over-expression
of miR-124 protects SH-SY5Y cells from cell death caused by
microglial activation following LPS exposure suggesting the miR-
124 role in the inhibition of neuroinflammation (Yao et al., 2018).
In addition, over-expression of miR-124 effectively attenuated the
expression of pro-inflammatory cytokines (iNOS, IL-6, and TNF-
α) and promote the secretion of neuroprotective factors (TGF-β1
and IL-10) in LPS-induced immortalized murine microglial cell
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line BV2 cells (Yao et al., 2018). Further study suggested that
miR-124 inhibits neuroinflammation by targeting sequestosome
1 (p62), phospho-p38 mitogen-activated protein kinases and
autophagy (Yao et al., 2019).

MiR-135b
Exposure of MPP+ to SH-SY5Y cells leads to a significant
down-regulation of miR-135b (Zhang et al., 2017). Over-
expression of miR-135b was able to attenuate neurotoxicity
effects of MPP+: increased in cell viability, suppressed apoptosis,
reduced level of cleaved caspase 3 (an apoptotic marker), and
inhibited MPP+-induced TNF-α and IL-1β secretion (Zhang
et al., 2017). Over-expression of miR-135b suppressed MPP+-
induced increased quantity of pyroptotic cells and protein levels
of various pyroptotic related genes (TXNIP, NLRP3, Caspase-1,
ASC, GSDMDNterm and IL-1β) in the SH-SY5Y and PC-12 cells
(Zeng et al., 2019).

MiR-155
MiR-155 demonstrated enhanced expression in the SNpc
of PD mice model produced by adeno-associated-virus-
mediated expression of α-synuclein (Thome et al., 2016). The
deletion of miR-155 in mice prevents α-synuclein-associated
neurodegeneration of DA neurons, which corresponds to
the reduced microgliosis (Thome et al., 2016). Prolong
exposure of TNF-α (PD patients demonstrated increased
TNF-α level in the serum and CSF) to SH-SY5Y cells induced
apoptosis, dysregulation of complex I and mitochondrial
oxidative stress (Prajapati et al., 2015). TNF-α exposure also
resulted in the up-regulation of numerous miRNAs, including
miR-155, which may target nuclear encoded subunits of
mitochondrial complex-I (NADH:Ubiquinone Oxidoreductase
Core Subunit V1) (Prajapati et al., 2015). In addition, DJ-1
deficiency increased the expression of miR-155 in microglia
and astrocytes, which down-regulates the expression of
suppressor of cytokine signaling 1 (SOCS1) (Kim J. H. et al.,
2014). Taken together, miR-155 modulates microglia-mediated
inflammation by down-regulating SOCS1 expression and
increasing the production of cytokine and nitric oxide. This
leads to inefficient termination of STAT1-induced inflammatory
response, which may cause neuronal death (Cardoso et al., 2012;
Kim J. H. et al., 2014).

MIRNAS DYSREGULATION IN INDUCED
PLURIPOTENT STEM CELL-BASED PD
MODELING

Disease modeling using induced pluripotent stem cell (iPSC) has
shown to be useful by providing cellular insight into disease
pathology in various neurodegenerative diseases, including PD
(Doss and Sachinidis, 2019). For example, iPSC-derived DA
neurons from sporadic PD and monogenic LRRK2-associated
PD patients exhibited global DNA hyper-methylation changes
(Fernandez-Santiago et al., 2019). An explorative genome-wide
study of miRNAs expression levels in iPSC-derived DA neurons
from PD patients identified an up-regulation of 5 miRNAs

(miR-9-5p, miR-135a-5p, miR-135b-5p, miR-449a, and miR-
449b-5p) and down-regulation of 5 miRNAs (miR-141-3p, miR-
199a-5p, miR-299-5p, miR-518e-3p, and miR-519a-3p) (Tolosa
et al., 2018). The genes targeted by the identified miRNAs
were involved in regulating cytoskeleton, axonal transport, cell
adhesion and cell survival in PD.

CIRCULATING MIRNAS AS DIAGNOSTIC
BIOMARKERS FOR PD

Circulating miRNAs are secreted from cells and have been
found in various biological fluids, such as plasma, serum, saliva,
milk, urine, seminal plasma, amniotic fluid, cerebrospinal
fluid (CSF), peritoneal fluid, and pleural fluid (Turchinovich
et al., 2012; Faruq and Vecchione, 2015). Extracellular miRNAs
can either be contained within membranous vesicles, or
are associated with Argonaute proteins (Turchinovich
et al., 2012). The circulating miRNAs are stable in different
conditions as they are resistant to RNases activity, high or
low pH, multiple freeze-thaw cycles and long-term storage
at room temperature thus making them suitable to be used
as disease biomarkers (Turchinovich et al., 2012; Makarova
et al., 2015). Various studies have described the use of
circulating miRNAs as non-invasive biomarkers for the
diagnosis of different diseases, including cancers, liver diseases,
respiratory diseases, kidney diseases, and myocardial infarction
(Arrese et al., 2015; Tiberio et al., 2015; Coskunpinar et al.,
2016; Huttenhofer and Mayer, 2017; Teoh and Das, 2017;
Pattarayan et al., 2018).

Circulating miRNAs profile has been analyzed from CSF,
serum, plasma, peripheral blood mononuclear cells (PBMCs),
and saliva collected from PD patients (summarized in Table 2;
Gui et al., 2015; Ding et al., 2016; Ma et al., 2016; Cao et al., 2017;
Li et al., 2017; Marques et al., 2017; Schwienbacher et al., 2017;
Caggiu et al., 2018; Chen et al., 2018; Yang et al., 2019b; Cressatti
et al., 2020; Ozdilek and Demircan, 2020; Xie et al., 2020).
These studies have identified numerous miRNAs as potential
PD biomarkers. In an example, the expression of miR-144-
5p, miR-200a-3p, and miR-542-3p that were dysregulated in
A53T mutant α-synuclein transgenic mice, were also shown to
be up-regulated in the CSF of PD patients (Mo et al., 2017).
Additionally, the reduced CSF miR-626 and elevated plasma
miR-105-5p levels may be able to be used as a biomarker
to differentiate PD from other neurodegenerative diseases, for
example, Alzheimer’s disease (Yang et al., 2019a; Qin et al.,
2021). Furthermore, apart from identifying PD, circulating
miRNAs such as miR-29a, miR-29c, miR-30c-5p, miR-132-
3p, miR-146a-5p, and miR-373 were found to be correlated
with the severity of PD (Bai et al., 2017; Shu et al., 2020;
Zhang L. et al., 2020).

The accurate diagnosis of PD is difficult, especially in its
early stages. PD is normally diagnosed with the presence of
motor symptoms in which loss of more than 50% DA neurons
were reported in PD patients (Kordower et al., 2013). Early
detection and monitoring of PD would ensure that the available
treatment could potentially slow down the progression of the
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TABLE 2 | Circulating miRNA profile from PD patients.

Samples Analysis method miRNA expression in PD References

Up-regulation Down-regulation

CSF qRT-PCR – miR-626 Qin et al. (2021)

NGS Let-7f-5p miR-27a-3p, miR-423-5p Dos Santos et al. (2018)

qRT-PCR miR-205 miR-24 Marques et al. (2017)

qRT-PCR miR-144-5p, miR-200a-3p
and miR-542-3p

– Mo et al. (2017)

TaqMan low-density
array human miRNA
panels

let-7c-3p, let-7g-3p,
miR-10a-5p, miR-16-2,
miR-26a, miR-30b,
miR-103a, miR-127-3p,
miR-132a-5p, miR-136-3p,
miR-153, miR-370,
miR-409-3p, miR-433,
miR-485-5p, miR-873-3p

miR-1, miR-19b-3p,
miR-22, miR-28, miR-29,
miR-29c, miR-119a,
miR-126, miR-151,
miR-301a, miR-374

Gui et al. (2015)

Serum qRT-PCR miR-29c – Ozdilek and Demircan (2020)

qRT-PCR – miR-132-3p, miR-146-5p Shu et al. (2020)

qRT-PCR miR-30c-5p, miR-373 – Zhang L. et al. (2020)

qRT-PCR – miR-29 Bai et al. (2017)

qRT-PCR miR-24, miR-195 miR-19b Cao et al. (2017)

qRT-PCR – miR-29c, miR-146a,
miR-214, miR-221

Ding et al. (2016)

Solexa sequencing
followed by qRT-PCR

miR-195 miR-15b, miR-181a,
miR-185, miR-221

Ma et al. (2016)

Solexa sequencing
followed by qRT-PCR

- miR-141, miR-146b-5p,
miR-193a-3p, miR-214

Dong et al. (2016)

Plasma qRT-PCR miR-105-5p – Yang et al. (2019a)

qRT-PCR miR-132 – Yang et al. (2019b)

qRT-PCR miR-27a Let-7a, let-7f, miR-142-3p,
miR-222

Chen et al. (2018)

qRT-PCR miR-137 miR-124 Li et al. (2017)

Plasma and WBC qRT-PCR miR-30a-5p – Schwienbacher et al. (2017)

Plasma extracellular vesicles qRT-PCR miR-30c-2-3p miR-15b-5p, miR-106b-3p,
miR-138-5p, miR-338-3p,
miR-431-5p

Xie et al. (2020)

PBMC qRT-PCR miR-155-5p miR-146a-5p Caggiu et al. (2018)

Saliva qRT-PCR – miR-153, miR-223 Cressatti et al. (2020)

qRT-PCR miR-145-3p, miR-874 – Chen et al. (2020)

disease. Dos Santos et al. (2018) demonstrated that CSF obtained
from patients in the early stage of PD express increased Let-
7f-5p level and reduced miR-27a-3p and miR-423-5p levels.
The healthy controls, on the other hand, express high levels
of miR-125a-5p and low levels of miR-151a-3p in the CSF.
Alternatively, serum expression of miR-141, miR-214, miR-
146b-5p, and miR-193a-3p should be reduced in the early
stage of PD patients compared to the controls (Dong et al.,
2016). Another recent study showed that a compound down-
regulation of SRRM2 and miR-27a-3p with an up-regulation
of miR-27b-3p in PBMCs of PD patients is associated with
the early stage onset of the disease (Fazeli et al., 2020).
Additionally, circulating miRNAs also differ between early-onset
and late-onset PDs. Sulaiman et al. (2020) reported a total of
5 miRNAs were found in early-onset PD patients in which 1
miRNA was up-regulated (miR-29b-3p) and 4 miRNAs were
down-regulated (miR-297, 4462, 1909-5p, and 346) and the

predicted targets of these miRNAs are involved in DA synapse
regulation.

Despite the promising results from previous studies showing
the potential of miRNAs as PD biomarkers, there are limited
overlapping miRNAs identified across different studies, even
from the same biological fluid. This was observed in 7 studies
analyzing serum obtained from PD patients as shown in
Table 1, miR-195 was found to be up-regulated in only 2
studies, while miR-146-5p, miR-214, and miR-221 were down-
regulated as demonstrated in another 2 studies, suggesting the
low reproducibility of these miRNAs as a disease biomarker.
To increase the specificity and reproducibility of miRNAs as
potential PD biomarkers, methods of miRNAs detection in
samples and adequately quality-controlled data processing need
to be standardized in future studies (Wang J. et al., 2016).
Additionally, to increase the accuracy of miRNAs as a biomarker,
Patil et al. (2019) demonstrated the use of a combination
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of serum miRNAs such as miR-335-5p/miR-3613-3p, miR-
335-5p/miR-6865-3p, and miR-335-5p/miR-3613-3p/miR-6865-
3p that showed a high degree of discriminatory accuracy
in a large cohort.

MIRNAS AS NOVEL THERAPEUTIC
TOOLS FOR PD

Since miRNAs can regulate multiple genes, they may serve as
potential therapeutic tools for PD. MiRNAs can be used to silence
up-regulated genes in PD, while anti-miRNAs can be used to
restore a down-regulated target gene. To overcome the issue of
instability due to enzyme degradation, consideration of miRNA-
based therapeutics would require a safe and stable delivery system
to protect the miRNAs from degradation and facilitate their
ability to cross the blood-brain-barrier (Wen, 2016).

Previous studies have demonstrated decreased miR-124
expression in various in vivo and in vitro PD models, whereas
administration of miR-124 was able to reverse the loss of
DA neurons and inhibit neuroinflammation in the MPP+-
treated SH-SY5Y cells, MPP+-treated MN9D cells and MPTP-
treated mice (Wang H. et al., 2016; Yao et al., 2018, 2019).
Polymeric nanoparticles which are stable in systemic circulation
can be used to deliver miR-124 to a specific region of the
brain. Rabies virus glycoprotein (RVG29)-linked miR-124-loaded
polymeric nanoparticles were able to cross through the in vitro
blood-brain-barrier model (Gan et al., 2019). Similarly to the
in vitro study, administration of the miR-124-loaded polymeric
nanoparticles into the lateral ventricle of the MPTP-administered
mice was able to inhibit Mitogen activated protein kinase kinase
kinase-3 (MEKK3 which plays a critical role in mediating
NF-κB activation) signaling and the activation of microglia
(Gan et al., 2019).

As PD is also characterized by loss of DA neurons in the SNpc,
enhancing adult neuroregeneration (generation of functional
neurons from adult neural precursors) could be one therapeutic
approach to treat PD. In mammals, adult neurogenesis occurs
throughout life in restricted brain regions, which include the
dentate gyrus of the hippocampus and from the subventricular
zone of the lateral ventricle (Ming and Song, 2011). miR-124

loaded nanoparticles administered to the subventricular zone
cells primary culture did not affect overall cell proliferation.
However, this treatment increased neuroblast proliferation while
decreasing the proliferation of astrocytic-like cells, by repressing
the expression of non-neuronal genes (Sox9 and Jagged1) (Saraiva
et al., 2016). Intraventricular administration of miR-124 loaded
nanoparticles in vivo increased the number of subventricular
zone-derived neuroblasts in the striatum of 6-OHDA-treated
mice. This data support the potential of miRNAs as therapeutic
strategies to induce neuroregeneration and to promote brain
repair (Saraiva et al., 2016).

CONCLUSION

This review reported that the dysregulation of several miRNAs
has a significant role in the pathogenesis of PD. These miRNAs
can be classified into those which are involved in the regulation
of PD-associated genes, DA neuronal health and α-synuclein-
induced neurodegeneration. Understanding the roles of these
miRNAs not only shed some light on the pathogenesis of PD, but
could also serve as potential therapeutic targets since regulating
specific microRNAs was found to have beneficial effects in the
in vitro and in vivo models of PD. Further studies are therefore
essential to explore further functions of these miRNAs as well
as others that are yet to be discovered in the pathogenesis and
therapeutic options of PD.
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