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Sugarcoating Lung Injury: A Novel Role for High-Molecular-Weight
Hyaluronan in Pneumonia

Despite many decades of active research and several clinical
treatment trials, acute lung injury (ALI)/acute respiratory distress
syndrome remains a severe complication of pneumonia and severe
sepsis, and pharmacological treatment is still lacking (1). The
traditional treatment of pneumonia (and infections in general) has
been to focus on the microbial component and treat patients with
antibiotics. In recent years, increased attention has been given to
the host response and ways to ameliorate the dysregulated
inflammatory response and tissue injury occurring after infection.

In this issue of the Journal, Liu and colleagues (pp. 1234–1245)
provide an important contribution to the literature (2) by using
translationally relevant human ALI and pneumonia models to
demonstrate the utility of high-molecular-weight hyaluronan
(HMWHA) in ALI in infection. There is increased awareness
that extracellular vesicles (EVs) play an important role in the
initiation and propagation of acute lung injury (3). The authors
demonstrate that EVs are released after the administration of
Escherichia coli in ex vivo perfused human lungs, predominantly
by endothelial cells and circulating platelets. These EVs then
promote an inflammatory response, leading to lung injury.
Addition of HMWHA in the perfusate after EV administration
improved alveolar fluid clearance, which would decrease alveolar
edema, and decreased TNFa (tumor necrosis factor a) and IL-6
levels in the lung lavage fluid. Interestingly, a decrease in
cytokine levels was noted after HMWHA treatment, even though
total white blood cell and neutrophil counts did not significantly
change, suggesting that HMWHA reduced inflammatory cell
activation. Interestingly, in spite of its very large size (molecular
weight. 1,000 kD), HMWHA added in the perfusate was detected
in the alveolar after E. coli instillation. Ex vivo, HMWHA improved
bacterial clearance by phagocytes, and this was mirrored by
decreased colony-forming units in the pneumonia model.
Furthermore, HMWHA decreased EV uptake by monocytes in

a (at least partially) CD44 (cluster of differentiation 44)-dependent
manner and reduced inflammatory cytokine release after EV
exposure. In aggregate, these findings support that HMWHA
may be of therapeutic utility in ALI and pneumonia.

What is the relevance of these exciting findings? Hyaluronic
acid (HA) is a deceptively simple molecule present in all
extracellular matrices, consisting of repeating disaccharides made
of N-acetylglucosamine and glucuronic acid, and does not undergo
further modification after its expression by HA synthases. Reactive
oxygen species (e.g., HOCl) released by activated inflammatory
cells, as well as exposures such as ozone and halogens, degrade
HMWHA to low-molecular-weight fragments (LMWHA) of
0.1–500 kD (4, 5). Although HMWHA and LMWHA bind to the
same receptors, they exert opposite effects (4). LMWHA activates
innate and adaptive immunity and increases permeability and
airway resistance by activating RhoA (ras homolog gene family,
member A) and ROCK2 (rho-associated coiled-coil containing
protein kinase 2), whereas HMWHA has strong antiinflammatory
and prohomeostasis functions (4). The reason for this difference
may be differences in receptor engagement or cell uptake
depending on size, but ultimately remains elusive. Recent work
suggests that HMWHA may create a transmembrane “picket
fence” barrier, tethered on CD44 and the cellular cytoskeleton,
that prevents ligands from reaching and activating their respective
receptors, an effect that as abolished after HA degradation (6).
HMWHA also binds several extracellular proteins with strong
antiinflammatory potential, such as inter-a-inhibitor, which is
associated with decreased endothelial injury (7) and organ
dysfunction (8, 9) in sepsis, and pentraxin-3, which contributes to
host defense, including prevention against aspergillosis in stem
cell transplant recipients (10). Furthermore, HMWHA is a
recently recognized crucial constituent of the endothelial
glycocalyx, and HA homeostasis is central to the maintenance of a
healthy endothelial barrier and the avoidance of tissue injury (11).
Finally, HA has well-described antimicrobial properties, inhibiting
bacterial adhesion and promoting phagocytosis (4). Thus, HMWHA
acts along with its binding partners in the cell, the circulation, and
the interstitium and on pathogens to reduce inflammation and
promote antibacterial properties of the host.

A major theoretical concern, whenever antiinflammatory
applications of HMWHA are being discussed, is its potential
degradation into smaller, proinflammatory fragments. It is
interesting to note, however, that in this study, HMWHA retained
its large molecular weight despite being several hours in a
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presumably prodegradation environment. This agrees with
existing literature on the use of HMWHA in lung inflammation
(12) and suggests that pharmacologically dosed HMWHA either
overwhelms or somehow escapes the degrading activity of the
inflammatory milieu and therefore is safe to use in this setting. It
should be noted that the therapeutic potential of HMWHA in
lung disease is very strong. Inhaled HMWHA is already in clinical
use as an ancillary treatment in cystic fibrosis (12) and sinusitis
(13) with an excellent safety profile and is being evaluated in
chronic obstructive pulmonary disease (14). Experimental
evidence further suggests the utility of HMWHA as a treatment
modality in asthma (15, 16), acid aspiration lung injury (17),
halogen lung injury (5), and chronic lung allograft dysfunction
(18). The common thread here is the antiinflammatory and
cell-protective action of HMWHA, which can be applied to
any disease in which inflammation and tissue injury are
prominent. Thus, there are tangible translational implications to
this paper.

We should note several limitations in this study, which
will need to be taken into consideration when discussing the
implications. The experimental setup was somewhat artificial,
using isolated and perfused lungs as opposed to a living
organism with intact anatomy and immunology. Furthermore,
HMWHA was given in fairly high doses, and when given
intrabronchially, it was apparently instilled and not nebulized
(as would be the likely therapeutic delivery mode). It is therefore
unclear whether HMWHA would be equally effective in
clinically used doses. It is also unclear how a large molecule such
as HMWHA translocates from the vascular space to the airway.
Furthermore, the authors studied very early stages of lung
infection (i.e., within hours of bacterial seeding). Thus, the
conclusions may not be entirely translatable to a pneumonia
setting in which lung consolidation (with associated ventilation
and perfusion defects) is prevalent. In fact (and as a corollary), it
may be prudent to consider HMWHA as ancillary prophylaxis for
reducing the incidence of acute respiratory distress syndrome
in septic shock, where translocation of gut bacteria into the
circulation is a prominent feature. Other suitable applications may
include lung allograft preservation and primary graft dysfunction.
Thus, far from limiting possibilities, this paper supports exciting
new avenues for HMWHA as a treatment modality in lung injury
settings. n
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