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Spatial working memory (SWM) requires the encoding, maintenance, and retrieval of
spatially relevant information to guide decision-making. The medial prefrontal cortex
(mPFC) has long been implicated in the ability of rodents to perform SWM tasks.
While past studies have demonstrated that mPFC ensembles reflect past and future
experiences, most findings are derived from tasks that have an experimental overlap
between the encoding and retrieval of trajectory specific information. In this study, we
recorded single units from the mPFC of rats as they performed a T-maze delayed
non-match to position (DNMP) task. This task consists of an encoding dominant sample
phase, a memory maintenance delay period, and retrieval dominant choice phase.
Using a linear classifier, we investigated whether distinct ensembles collectively reflect
various trajectory-dependent experiences. We find that a population of high-firing rate
mPFC neurons both predict a future choice and reflect changes in trajectory-dependent
behaviors. We then developed a modeling procedure that estimated the number of high
and low-firing rate units required to dissociate between various experiences. We find
that low firing rate ensembles weakly reflect the direction that rats were forced to turn
on the sample phase. This was in contrast to the highly active population that could
effectively predict both future decision-making on early stem traversals and trajectory-
divergences at T-junction. Finally, we compared the ensemble size necessary to code
a forced trajectory to the size required to predict a decision. We provide evidence to
suggest that a larger number of highly active neurons are employed during decision-
making processes when compared to rewarded forced behaviors. Together, our study
provides important insight into how specific ensembles of mPFC units support upcoming
choices and ongoing behavior during SWM.

Keywords: spatial working memory, medial prefrontal cortex, linear classifier, task coding, delayed-nonmatch-
to-position
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INTRODUCTION

The prefrontal cortex (PFC) is generally defined by anatomical
features that include dense mediothalamic afferents and
dopaminergic projections from the ventral midbrain
(Heidbreder and Groenewegen, 2003). In humans, dorsal-lateral
PFC (dlPFC) functionality is abnormal in many neuropsychiatric
conditions such as schizophrenia, with corresponding deficits
in working memory (Weinberger et al., 1986; Callicott et al.,
2000; Manoach et al., 2000; Perlstein et al., 2001; see Manoach,
2003 for a review), the ability to hold information ‘‘on-line’’
(Baddeley, 1992). Like the dlPFC in primates, the rodent medial
PFC (mPFC) is important for spatial working memory (SWM;
Eichenbaum et al., 1983; Granon et al., 1994; Lee and Kesner,
2003; see Kesner and Churchwell, 2011 for a review; Sapiurka
et al., 2016) For over two decades, studies have used in vivo
recording procedures to better understand the function of
the mPFC during memory-guided behaviors (Poucet, 1997;
Jung et al., 1998; Baeg et al., 2003; Euston and McNaughton,
2006; Hyman et al., 2012; Yang et al., 2014; Ito et al., 2015;
Hallock et al., 2016). However, because few studies have
experimentally separated encoding and retrieval processes
during SWM in conjunction with mPFC recordings, we lack a
complete understanding of prefrontal representations during
these distinct SWM components.

Unlike recordings from the dorsal CA1 region of the
hippocampus (HPC), where single-units can be modulated by
space (i.e., place cells—O’Keefe and Dostrovsky, 1971) or other
event-sequences (Pastalkova et al., 2008; MacDonald et al., 2011;
Aronov et al., 2017), the mPFC has diverse behavioral-correlates
(Jung et al., 1998). Likewise, similar to hippocampal place cells,
mPFC neurons exhibit rate modulations that are dependent on
the direction by which rats turn at the T-junction (Frank et al.,
2000; Wood et al., 2000; Ferbinteanu and Shapiro, 2003; Ito
et al., 2015, 2018). Using population decoding techniques, it
has been demonstrated that mPFC firing rates can collectively
reflect future (prospective) choices as rats approach a decision
point on spatial-alternation tasks (Ito et al., 2015; Guise and
Shapiro, 2017). However, while post hoc analyses can estimate
future coding, each traversal of an alternation task contains
components of memory encoding and retrieval. Therefore, it is
difficult to determine whether firing rate differences truly reflect
future trajectories. A task that experimentally separates encoding
dominant and retrieval dominant processes could confirm that
mPFC ensembles reflect prospective experiences. One such task
is the delayed non-match to position (DNMP) task, in which
encoding dominant processes occur during the sample phase,
and retrieval dominant processes occur during the choice phase.

Another feature of mPFC ensembles that may allow themPFC
to track various features of memory processes during DNMP
performance is the diversity of firing rate dynamics within
the population. A recent study identified subsets of slow-firing
and fast-firing hippocampal units that differed in plasticity and
coding properties (Grosmark and Buzsáki, 2016). Additionally,
two recent studies focused on sub-populations of rate-modulated
mPFC neurons (Spellman et al., 2015; Bolkan et al., 2017), finding
evidence that distinct anatomical projections support specific

mPFC neuronal activity. Furthermore, Spellman et al. (2015)
revealed that the mPFC population could predict whether mice
were on the sample or choice phase of a DNMP task, similar to
dCA1 neurons in rats (Griffin et al., 2007). Thus, we hypothesized
that separate mPFC populations, split according to firing-rate
profiles, would differentially represent task features.

To address this hypothesis, we used supervised machine
learning trained and tested to predict various classes of
interest, specifically task phase (sample or choice), trajectory
(left or right), or various combinations of task-phase and
trajectory. Given that at least three separate paradigms have
been used to demonstrate that single-unit activity in the
mPFC is modulated by trajectory-dependent behaviors (Euston
and McNaughton, 2006; Ito et al., 2015), we analyzed lateral
position changes (detected using an LED on the rats head)
in conjunction with neuronal decoding on the stem portion
of the DNMP task. Here, we show that a sub-population
of fast-firing neurons strongly reflects trajectory-dependent
behaviors (whether rats running direction diverges towards
the left or right reward-well, at the T-junction) and future
decisions. We also characterize the low-firing rate populations
by developing a simple modeling procedure. This approach
revealed that low-firing neurons weakly represent a forced
trajectory-dependent behavior (whether rats turned left or right
at T-junction during sample traversals), but not future decisions,
suggesting a conserved role for representing actions across
mPFC populations. Finally, in the development of the modeling
procedure, we discovered that larger ensembles are required to
predict a future decision when compared to a forced trajectory
that always results in a reward. Together, this study provides
important extensions to our understanding of how the mPFC
contributes to SWM.

MATERIALS AND METHODS

Subjects
Subjects were five adults (>90 days), male, Long-Evans
hooded rats purchased from Harlan, Laboratories. During the
experiment, rats were put on mild food restriction to maintain
them at∼90% of their ad libitum body weight. The colony room
was humidity and temperature-controlled with a 12-h light/dark
cycle. All experiments were performed during the light cycle.

Behavioral Apparatus
The behavioral apparatus was an elevated, wooden T-maze,
painted black with a stem (127 × 9 cm), two goal-arms
(50 × 9 cm), two goal-zones (37 × 9 cm), two return-arms
(130 × 9 cm), and 5.6-cm high wooden walls. The start box,
where rats were confined during the delay and inter-trial interval
(ITI) periods, was a plastic bowl attached to a bar stool that was
located at the base of the T-maze stem (see Figure 1A). The right
and left goal zones were located at the end of each goal arm and
contained a small plastic dish in which the chocolate sprinkle
reward was placed. The maze was surrounded by black-curtains
with large visual cues (made using colored tape). The testing
room was dimly illuminated with one compact fluorescent bulb.
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FIGURE 1 | Histological confirmations and recording stability. (A) Schematic of the delayed non-match to position (DNMP) task. Each trial of this task includes two
traversals that are separated by a 20 s delay: a sample traversal in which one of the goal arms is blocked, forcing the rat to choose to enter the opposite goal arm
and a choice traversal in which the rat is free to choose a goal arm but only rewarded for choosing the goal arm opposite to the arm visited on the sample traversal.
Trials are separated by a 40 s inter-trial interval (ITI). For a more detailed description of the DNMP task, see “Materials and Methods” section. (B) Histological
confirmations of final tetrode locations in the medial prefrontal cortex (mPFC). Note that in some cases, the final locations of tetrodes exceeded the window of
inclusion (prelimbic and anterior cingulate cortex). Tetrode locations on specific recording days were estimated from the turn-count and final location of the tetrode
(see “Materials and Methods” section). Red boxes are magnified images of the tetrode lesion (halo-marking) and/or the tetrode track (space). (C) Spike-widths were
plotted against the session averaged firing rates for all included pyramidal neurons. Notice the Gaussian-like distribution for spike-widths in comparison to the
session-averaged firing rates. (D) Only stable clusters were included for analysis. The average peak waveform height during the first 10 min of recording was strongly
correlated to that of the last 10 min (r = 0.93, ****p = 1.6e-81). The inset shows the average waveform of a representative neuron during the first (red) and last (blue)
10 min of the recording session.

Handling and Pre-training
Handling and pretraining methods were similar to those used
previously in our laboratory (Hallock et al., 2013a; Hallock and
Griffin, 2013b). Briefly, rats were handled for 10–15min a day for
5 days before the experiment began. After each handling session,
chocolate sprinkles to be used for a food reward in the task were
placed in a small dish in the home cage. Pre-training consisted
of ‘‘reward-zone’’ habituation sessions, followed by ‘‘forced run’’
behavioral shaping sessions. During each reward zone training
trial, rats were confined to one of the two-goal zones and
given 3 min to eat the chocolate sprinkle reward; animals only
progressed to the next pre-training procedure if they consumed
the reward within 90 s on all trials. Each reward zone training
session consisted of six-goal zone visits, alternating between the
right and left goal zone. Once rats consumed the reward on every

trial for two consecutive goal zone training sessions in under 90 s,
they were advanced to forced run training, which consisted of
12 trials per session. During each forced run training trial, one of
the goal arms was pseudo-randomly selected (Fellows, 1967) to
be blocked off with a tall wooden barrier. Rats were placed in the
start box and allowed to run up the maze stem and into the open
goal arm, where they received a reward. They then returned to the
start box via the return arm. Once rats ran on the maze without
turning around and consumed the food reward on all forced-run
trials for at least one session, they proceeded to DNMP training.
A schematic of the DNMP task can be found in Figure 1A. Each
trial consisted of a sample traversal, a delay period, and a choice
traversal. Before each trial, while rats were confined to the start
box by a barrier, the experimenter baited both reward zones
with chocolate sprinkles and placed the goal arm barrier at the
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entrance of either the right or left goal arm. To initiate a trial, the
experimenter lifted the start box barrier, allowing the rat to run
up the stem and turn into the open goal arm. After consuming
the reward, the rats returned to the start box via the return arm
and were held in the start box for a 20 s delay period. After the
delay period, the experimenter removed the start box barrier to
allow free access to the stem. The rats again traversed the stem
but this time were free to turn into the left or right goal arm.
Only the reward zone opposite to the reward zone visited on the
sample traversal was now baited (green color in depiction) so that
rats were rewarded for implementing an alternation rule. Trials
were separated by a 40 s inter-trial interval (ITI). Left and right
sample traversals were given in a pseudo-randomized sequence,
with no more than three turn directions given consecutively
and equal numbers of left and right trials given within
a session.

Surgery Protocol
Once the DNMP criterion was met, rats were implanted with
a micro-drive consisting of 8 or 14 independently moveable
tetrodes, made from four 13.5 µM nichrome wires, twisted
together (Kanthal Palm Coast) targeted at the mPFC (N = 5 rats).
Some rats were implanted with electrodes in the dorsal
hippocampus and/or ventral midline thalamus along with virus
injection for optogenetic manipulations. These data were used
for a separate experiment.

Before incision, the surgeon ensured that the rat was fully
anesthetized by checking for a leg reflex following a foot
pinch. Before the incision was made, lidocaine was injected
subcutaneously at the incision site. A craniotomy was made at
4.2 mm posterior and 2.4 mm lateral to bregma for hippocampal
LFP wires, and 2.3 mm posterior and 2 mm lateral at a
15◦ angle to bregma for nucleus reuniens LFP wires. For
the mPFC micro-drive, a craniotomy was made at 3.25 mm
anterior and 1.15 mm lateral to bregma and implanted on
a 7◦ angle (all recordings were done on the left hemisphere
mPFC). The implant was anchored to the skull in order from
caudal-to-rostral implants to a total of seven bone screws
(six small bone-screws and a larger bone-screw for grounding;
Fine Science Tools) via acrylic (Lang Dental). Toward the
last 20 min of surgery, rats were injected with Banamine and
given Children’s Ibuprofen in their water for ∼5 days post-
surgery. Rats were administered prophylactic antibiotics for
1-week post-surgery and no recordings were included from this
period. All performed procedures are recognized and approved
by the University of Delaware Institutional Animal Care and Use
Committee (IACUC).

Single-Unit Recordings
Rats were allowed to recover for 5 days in their home cages. They
were then re-handled and habituated to the recording room by
sitting in a large plastic enclosure while receiving Kellogg’s Froot
Loops. Before each recording session, tetrodes were advanced
into the brain and allowed to settle for 30–60 min. Digital
Lynx (Neuralynx) 64-channel recording system was utilized for
data acquisition. For video-tracking, a camera was mounted
on the ceiling, and rat position was acquired via LED’s that

were attached to the rat’s micro-drive for recording. Position
and time-stamps were acquired at a 30 Hz sampling rate.
Single-cell spiking was sampled at 32 kHz and band-pass filtered
between 0.6–6 kHz, with thresholds being set between 50 and
75 µV. References for tetrode recordings varied depending
on the session. Rats ran at least 18 trials each day. If a
session exceeded 18 trials, only the first 18 were included in
the analysis.

Perfusion and Histology
After the final recording session, electrolytic lesions were created
by passing∼11.9µA of current through each wire for all tetrodes
including the reference tetrodes, using the Neuralynx nanoZ
kit. Lesions were allowed to develop between 1 and 3 days
before rats were anesthetized, and a lethal injection of sodium
pentobarbital was given. Following the perfusion, the head was
soaked in 4% PFA or formalin for 1–3 days. Once the tetrodes
were removed from the brain, the brain was extracted and
placed into a 30% sucrose solution. After sinking, brains were
frozen and sectioned in the coronal plane using a cryostat and
mounted on slides. To identify tetrode lesions and tracks, a
Cresyl Violet stain was used for imaging with the Northern Lights
Imaging Illuminator.

Estimation of Electrode Depth
To estimate the tetrode location, we utilized a known conversion
between turn-count and millimeters. We localized tetrodes
based on a variety of factors including a mapped bundle of
all tetrodes, the bundle width, bundle length, tetrode depth,
and surrounding tetrode tracks/lesions. If tetrode tracks were
not immediately apparent, we utilized the center point of
the lesion based on dual identification of lesions and tetrode
tracks (Figure 1B) to estimate the tetrode’s final location. If
we noticed a rat with a lesion and tetrode end-mark that was
slightly lower or higher than the center-point of the lesion,
we used that point as the final tetrode location for the rest
of the tetrodes for that rat. Nonetheless, all tetrode final
locations were very close to the center-point of the lesion.
Once tetrodes were localized, we estimated previous session
tetrode depths,

Depth = [Final turncount (in mm)− Sessioni turncount (in mm)]

+ Final DV coordinate (in mm) of the tetrode in the brain

where i corresponds to a previous session of interest. This
allowed us to use the difference between turn-counts (in mm),
add them to the final localized tetrode DV coordinate to gain an
estimate of the previous location of the tetrode using the Paxinos
and Watson brain map atlas (Paxinos and Watson, 2006).

Cell Isolation and Stability Evaluation
Procedures
Clusters of spikes were identified visually using SpikeSort 3D
(Neuralynx), cut automatically using Klustakwik, and manually
sorted/combined based on less than 25% visually identified
overlap with noise, spike waveform height, and peak-amplitude.
L-ratios were calculated for each cluster using David A. Redish’s
MClust MATLAB package and only included if the value was less
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than 0.1 (Schmitzer-Torbert et al., 2005). Putative pyramidal cells
were identified based on interspike-intervals and spike waveform
shape (Ranck, 1973; Figure 1C). Only clusters that were stable
across the recording session were included for further analysis
(Figure 1D). To assess cluster stability, for each cluster, we
first used SpikeSort3D to visualize changes in waveform peaks
across the recording session and excluded any clusters that
showed a marked change in waveform peak across the session.
To demonstrate the validity of this approach, for each of the
remaining clusters, we selected the channel with the highest
session-averaged peak amplitude and compared the mean peak
amplitude (‘‘waveform height’’) for spikes recorded during the
first 10 min to the mean peak amplitude for spikes recorded
during the last 10 min using the Pearson correlation coefficient.

Linear Classification
To assess the degree by which the population of mPFC neurons
collectively represented different behavioral classes, we used a
binary support vector machine (SVM) linear classifier from
the LIBSVM toolbox (Chang and Lin, 2011). During the
training phase, an SVM linear classifier generates a linear line
(hyperplane) in a mapped high-dimensional space of firing
rate vectors that separate user-defined class. The hyperplane
is selected based on the margin that maximally separates the
nearest mapped firing rate vectors (support vectors) in the high
dimensional space (Müller and Guido, 2016). During the testing
phase, the classifier assigns the firing rate vector as belonging
to one of two classes, defined by an integer [i.e., sample (1) vs.
choice (−1)]. These integers are further referred to as ‘‘labels’’. If
the classifier is correct, the output variable is a 1, if incorrect, the
output variable is a 0. The regularization parameter C was set to
1, similar to a past study from our lab (Hallock et al., 2016). Our
classification procedures utilized a leave-1-out approach, where
one population vector was removed from the training dataset to
act as the testing vector. The classifier was trained/tested on every
trial, one time, using this method. More specific mathematical
descriptions of how the classifier accomplishes the training and
testing of vector-formatted data can be found elsewhere (Chang
and Lin, 2011; Hallock et al., 2016).

This study utilized a pseudo-simultaneous approach
(Spellman et al., 2015) whereby a single population vector
contained firing-rates from all recorded neurons across sessions
and rats. In other words, per the training and testing dataset,
there was an N (trials) × M (neurons) matrix of firing rates.
The pseudo-simultaneous method was chosen since preliminary
analyses revealed a significant positive relationship between the
number of added neurons per session and classifier performance
(R = 0.6744, p = 3.78e-07), making it difficult to interpret
session-averaged accuracies using data collected from this study.

To control for any effects of matrix organization on
classification accuracy, we iteratively selected N-number of
random trials per neuron within a given class, 1,000 times.
In other words, per iteration (1,000 per stem bin), there was
a different training/testing dataset that retained class while
controlling for matrix organization (i.e., row 1 is not always trial
1 for every neuron). We refer to this method as a ‘‘permutation-
style’’ classification approach. To train/test the classifier on

correct trials, we found the session that had the least number
of correct trials (15 trials for task phase, six trials for any other
class), then iteratively selected N-number of random trials for
each neuron, 1,000 times. This created 1,000 iterations of random
combinations of trials for each neuron, thereby allowing us to
use only correct trials while also controlling for any chance that
our classification results were obtained by an ordering effect of
trials. Therefore, for any analyses where we used this method
(all except Figures 4A through 4E), the data are displayed as
the average of 1,000 different classification accuracies that retain
class while controlling for matrix organization (see Figure 2C for
an example distribution). Code is available and can be found on
the lab’s GitHub1 webpage.

Modeling Classification Accuracies
Linear classifier accuracies and their corresponding sample
sizes (number of added neurons) were log-transformed and
multiplied by 10. Linear regression was performed on the
two log-corrected vectors using MATLAB’s fit and fitlm
functions. After obtaining the model formula, and calculating
the log-transformed prediction accuracies, we re-converted the
data to classification accuracies using the anti-log. Significance
was estimated by comparing the predicted accuracy estimates to
a shuffled distribution using a Z-test (see ‘‘Statistical Procedures’’
section). The code can be found in the same location as
mentioned above.

Statistical Procedures
To determine if classification accuracies were at a level above
chance, labels (1’s or −1’s—see ‘‘Materials and Methods’’
section on linear classifier) were shuffled and the classifier
was trained/tested 1,000 separate times using data derived
from the final iteration (out of 1,000) of the true labeled
data. This approach created a normal distribution to estimate
chance level performance. The mean and standard deviation
of a shuffled distribution (1,000 shuffles) was obtained and
compared against the mean from the 1,000 iterations of the true
labeled data using a z-test (see Sangiamo et al., 2020). Corrected
alphas were not utilized on permutation-style classifications
for two reasons: (1) these analyses were planned comparisons,
whereby we only compared iterative classification averages to
a shuffled average; and (2) we utilize an iterative approach
(1,000–5,000 independent random trial shuffles per neuron while
retaining class, depending on the analysis) which controls for any
spurious effects driven by trial order.

To assess behavioral trajectory changes between task phases
or trajectories, and to assess whether firing rates were
dependent on turn direction, two-way ANOVAs were used
with one factor being a stem bin and the other being class
(task phase—sample/choice or turn direction—left/right). When
follow-up paired t-tests were performed (only between classes
at each stem bin), a Bonferroni corrected alpha was used to
assess significance. Cohen’s d was used to quantify the effect
size in certain analyses. Pearson’s correlation was used to assess
relationships between two variables when appropriate.

1http://www.github.com/GriffinLabCode/GriffinCode
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FIGURE 2 | Apparent encoding of task phase is supported by representations of trajectory-dependent behaviors. (A) Depiction of stem bins superimposed on
position data from an example session (space between orange dashes) used in the following analyses. Orange lines highlight the start/endpoints for spatial bins on
the maze used in panel (B). The 7th bin from the start of the stem was defined as a T-junction (see “Results” section). (B) A linear classifier was trained to predict the
task phase (sample vs. choice) across all stem bins (N = 187 neurons per bin). Notice that task phase is accurately predicted at T-junction (7th bin/T-junction:
Z = 3.1, p = 0.002 z-test against shuffled distribution). Data are represented as mean ± standard deviation of 1,000 classifications. Magenta dashes indicate a
p-value <0.05. (C) A demonstration from the T-junction of how our classification averages were obtained (see “Materials and Methods” section). A z-test was then
performed using the mean classification accuracy on true labels, against a shuffled distribution. Dashed lines indicate the average classification accuracy across
iterations. **Indicates p < 0.01. Statistics are identical to that in panel (B). (D) Left panel: the mPFC was trained to predict whether rats were on a sample or choice
phase during left trajectory runs. The classifier could accurately predict task phase at T-junction (Z = 2.9, p = 0.004). Right panel: session averaged lateral position
(“Lat. pos”) data revealed that rats lateral position at early stem and T-junction varied with task phase (main effect of task phase F (1,6) = 4.75, p = 0.03; bin 3:
t(43) = −3.5, p = 0.001; bin 7: t(43) = −5.1, p = 7.8e-06). (E) The mPFC was trained to predict task phase from right trajectory runs. Notice that at T-junction, the
classifier did not significantly predict task phase (Z = 0.57, p = 0.572). Right panel: there was no main effect of task phase (F (1,6) = 0.08, p = 0.7), or task phase × bin
interaction (F (1,6) = 0.31, p = 0.9). (F) A right turn on choice phase always followed a left turn on the sample phase in the included data (only correct trials were
included). The mPFC only predicts left samples/right choices at T-junction (Z = 3.0, p = 0.002), the location where lateral position (right panel) differs. There was an
interaction between task phase and bin (F (1,6) = 41.98, p = 5.7e-43). Paired t-tests revealed significant difference in lateral position based on task phase—trajectory
combination (bin 5: t(44) = −3.1, p = 0.003, bin 6: t(44) = −4.2, p = 0.0001, bin 7: t(44) = −36.9, p = 9.3e-35). (G) Choice lefts always followed sample rights in the
included data (correct trials). We found that sample right and choice left neuronal activity was functionally distinct at T-junction (Z = 2.5, p = 0.014). This effect
coincided with changes in the rat’s lateral position (F (6) = 26.1, p = 1.22e-27 interaction between the task phase and bin). Classification data are represented as
mean ± standard deviation with magenta lines indicating p < 0.05 from a z-test. Behavioral data are represented as mean ± SEM with magenta lines indicating
p < 0.007 from a t-test with a Bonferroni corrected alpha of 0.007.

RESULTS

Apparent Task Phase Decoding Is Better
Explained by Representations of
Trajectory-Dependent Behaviors
To assess if task coding (i.e., the ability to distinguish between
encoding dominant sample phases and retrieval dominant
choice phases) was present among the collective population
of mPFC units, we first determined that seven spatial bins

isolated the T-junction from the rest of the stem (Figure 2A).
We operationally defined the T-junction as the physical space
where the rat initially encountered the sample phase barrier
and includes a decision (a turn onto the goal-arms). Given that
the final bin was similar in area to our operational definition
of T-junction, we used this number of bins for the remainder
of our analyses. Other studies have used similar binning of
the T-junction (Wood et al., 2000; Yamamoto et al., 2014;
Hallock et al., 2016).
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FIGURE 3 | mPFC population activity predicts a future decision. (A) During sample traversals, the mPFC population predicted trajectory (left vs. right turns) as rats
approached and occupied T-junction (bin 6: Z = 2.0, p = 0.049; bin 7: Z = 2.9, p = 0.004). N = 187 neurons, six random trials were selected per class and neuron
(see “Materials and Methods” section), 1,000 times. (B) Rats altered their lateral positions in a manner consistent with classification in panel (A). There was a
significant interaction between task phase and bin (F (1,6) = 39.63, p = 1.3e-40). Bins 6 and 7 survived Bonferroni correction (t(43) = 3.4, p = 0.001; t(43) = 31.3,
p = 3.3e-31; Bonferroni corrected alpha = 0.007). N = 44 sessions. (C) Differences in time-spent at the T-junction and velocity do not account for the mPFC
predicting the future trajectory. There was no main effect of trajectory (F (1,6) = 0.08, p = 0.77) or interaction between sample left/right velocity and bin-location
(F (1,6) = 0.05, p = 0.99). N.S. indicates no significance. (D) During choice phase, the mPFC predicted the future (Stem bin 2: Z = 2.28, p = 0.023) and current
(T-junction: Z = 2.2, p = 0.028) trajectory. For classification procedures: N = 187 neurons, six random trials were selected per class and neuron, 1,000 times.
Magenta lines indicate p < 0.05 using a z-test against a shuffled distribution. Gray box highlights the second bin where the mPFC could predict the future left or
right, and is used in the following panels. Data are represented as the mean ± standard deviation. (E) Lateral positions do not change in the stem location where the
population predicts a future decision in panel (D). There was a significant interaction between choice trajectory and stem bin (F (1,6) = 27.6, p = 3.8e-29). Stem bins
3 and 4, and T-junction, survived Bonferroni correction (t(43) = −4.3, p = 0.0001, t(43) = −3.5, p = 0.001, t(43) = 24.1, p = 1.2e-26; Bonferroni corrected
alpha = 0.007). (F) There was no main effect of task phase nor interaction for choice left vs. choice right for velocity (top panel F (1,6) = 1.25, p = 0.26; F (1,6) = 0.97,
p = 0.45) or time spent (bottom panel F (1,6) = 0.45, p = 0.5; F (1,6) = 1.86, p = 0.085. Gray box highlights the bin where classification accuracy was above chance. For
behavioral analyses, data are represented as the mean ± SEM. Paired t-tests were performed, but only those that survived Bonferroni correction were plotted with
magenta lines. N.S., not significant.

First, we examined if the mPFC could predict the task phase,
similar to what has been observed previously in mice (Spellman
et al., 2015). In contrast to that study, where the mPFC predicts
task phase upon stem entry, we found that mPFC ensembles
maximally reflect the task phase at T-junction (Figures 2B,C).
We then examined whether the ability to predict the task phase
was trajectory-dependent. To do so, we trained the classifier
to predict sample and choice phases on the left and right
trials, separately. Surprisingly, task phase coding was robust on
left, but not right traversals (Figures 2D,E left panels). This
effect mirrored changes in lateral positions, such that lateral
position only significantly differed on left, but not right traversals
(Figures 2D,E right panels). We then examined individual rat
behavior and observed that two rats showed no significant
change in a lateral position on left trials. Nonetheless, their
exclusion did not alter classification accuracy (data not shown).
In contrast to left runs, no rats exhibited a significant change in
lateral position between task phases on the right trajectories (data
not shown). Therefore, the lateral position, not the context of the
task phase, seems to drive mPFC predictions.

Next, we compared task-phase trajectories that were
always paired during correct decision-making (i.e., a left
choice always followed the right sample). If the mPFC
represented information linked to tracking the rule associated
with the task phase and trajectory, then we would observe
high classification accuracy in the absence of behavioral
differences. On the contrary, if we only observe the
population to predict the task-phase trajectory combination
at T-junction (where lateral position divergences maximally),
then it would support the notion that the mPFC primarily
tracks trajectory-dependent behaviors. Consistent with
Figure 2D, we only found the classifier to perform above
the chance level when lateral positions differed at T-junction
(Figures 2F,G). Together, these findings reveal that changes
in lateral positions are the most parsimonious explanation for
apparent task phase coding among the population of mPFC
neurons. These results are also in-line with past reports that
revealed strong mPFC representations linked to trajectory-
dependent head-movements (Euston and McNaughton, 2006;
Ito et al., 2015).
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FIGURE 4 | Consistency in future action prediction of mPFC ensembles across rats. (A–C) Notice the peak in classification accuracy in the second stem bin.
Additionally, note that in rats (A–D), there are peaks in classification accuracy that are well above chance threshold, before T-junction entry. Data are displayed as the
mean ± standard deviation of classification accuracies for all trials. The dashed red line indicates a chance level distribution generated using 1,000 shuffled labels.
Dashed magenta lines indicate a significant effect that does not survive a corrected alpha. (D–E) Rats with lower sample sizes of recorded neurons did not exhibit
the effect at the second stem bin.

The mPFC Reflects Overt Action and
Planned Behavior
Given that our findings shown in Figure 2 points towards
the mPFC playing a dominant role in tracking trajectory-
dependent behaviors, we wondered if the mPFC represented
distinct trajectories within the sample and choice phases. Because
the sample phase trajectory is pseudo-randomized, rats should
not be able to predict whether their future direction is left
or right until they approach the T-junction. However, if the
mPFC were to reflect planned action, then we should find the
population to reflect a future decision with minimal changes
in lateral position. To address these ideas, we trained the
classifier to predict left vs. right turns on the sample and
choice phases separately (Figures 3A,D). During the sample
phase, the mPFC population predicted the current trajectory
as rats approached and occupied the T-junction (Figure 3A).
This finding mirrored reliable changes in lateral positions
across sessions (Figure 3B) but did not reflect changes in
speed nor time-spent at the T junction (Figure 3C). However,
consistent with the idea that the mPFC reflects planning of future
trajectories during stem running (i.e., prospective coding—Ito
et al., 2015), we found that the mPFC population predicted
the future decision during early stem traversal (Figure 3D,
the second stem bin is the first location where the rat’s body
is completely enclosed by maze walls—see Figure 1A). This
effect occurred in the absence of differences between lateral
position, running speed, and time spent in the second stem bin
(Figures 3E,F).

Next, we wondered if our effects were present when using
a simpler classification method whereby each row is always the
same trial per neuron (the temporal organization of the data
is not being controlled). This approach is commonly used (Ito
et al., 2015; Hallock et al., 2016). Therefore, we trained/tested
the classifier to predict left and right turns on the choice
phase using the first six left trials and first six right trials
(note that the shape of the training/testing matrix has to be
symmetrical, and six trials were the smallest number of left and
right traversals across sessions). To account for any effects of
multiple comparisons, we used a Bonferroni corrected alpha
level of 0.0071. Pre-alpha correction, we found the classifier
to perform at 100% in the second stem bin, and 83% in the
fourth– T-junction bins. After alpha correction, the effect at
the second stem bin survived (Z = 2.95, p = 0.0032; data not
shown). Thus, our permutation-style classification methodology
was more conservative than the classical approach and accounted
for potential model overfitting (classifier accuracy performing
at 100%) by breaking the temporal organization of the data
(Figure 3D).

To then determine whether the ability to predict a future
trajectory during the choice phase was consistent across rats, we
pooled neuronal data across sessions, but within rats (within-rat
pseudo-simultaneous approach). Given the comparably smaller
sample sizes of neurons per rat when compared to the total
population (Figures 4A through 4E), we again used a less
conservative classification approach in which we trained/tested
the classifier on the first six left choice trials and the first six right
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choice trials, one time per rat. We found that three out of five rats
(those with >40 units) exhibited peaks in classification accuracy
of the future trajectory during the choice phase, in the second
stem bin (Figures 4A through 4E). The exact location along the
end of the choice traversal where mPFC ensembles predicted
the upcoming choice was variable across rats. In two out of
five rats, there were peaks in classification accuracy in the fifth
stem bin (Figures 4C,D), whereas, in one rat, mPFC ensembles
predicted the upcoming choice at the T-junction (Figure 4B). It
should be noted that in four of five rats, the classifier performed
well above the chance threshold before T-junction occupancy
(Figures 4A–E). We suspect that the variability in the location
of ensemble trajectory coding could be due to variability in
what point along the trajectory the rats make their decision.
Alternatively, this variability may be due to poor sampling of the
T-junction by the recorded neurons in some rats. Nonetheless,
the mPFC unit population is consistently able to predict a
future decision.

Finally, we wondered if there were a large proportion of
instances whereby the classifier performed above chance level in
Figure 3D. Therefore, per classification iteration (1,000 in total),
we used a z-test to determine if themodel performance was above
the mean and standard deviation of the shuffled distribution.
First, we performed the z-testing procedure on all instances of
classification outcomes from stem bin 1 (‘‘Stem Entry’’), as this
stem bin performed near chance level. We predicted that about
5% of instances would be significant by chance alone; however,
we found that 2% of classifier outcomes performed above chance
level, highlighting the conservative nature of our method (data
not shown). Then, we examined the proportion of classification
accuracies at stem bin 2. As opposed to the 2% of classifier
outcomes in a chance level performing classifier, we found that
64% of classifications (where we break the temporal organization
of the data while retaining class) were significantly (p < 0.05)
above chance level (data not shown). Thus, this effect is largely
independent of the temporal ordering of trials.

Taken together, we took multiple approaches to demonstrate
that the mPFC population robustly predicts a future decision
on a DNMP task. These findings suggest that mPFC prospective
trajectory coding on the choice phase, occurs before T-junction
occupancy, enabling the rat to plan a future decision. Our results
also support the mPFC tracking trajectory-dependent behaviors
at the T-junction (Figures 2, 3).

High-Rate Neurons Reflect Current
Trajectory Behavior and Predict a Future
Decision
As rats explore a novel environment, hippocampal neurons
initially classified as having a low firing rate (a firing rate less than
the 50th percentile of all neuronal activity during sleep) acquire
stronger spatial modulation and exhibit evidence of plasticity
during sharp-wave ripple events; this is unlike neurons initially
classified with a high-rate profile (Grosmark and Buzsáki, 2016).
These findings may be in-line with some place-cells acquiring
rate-dependent plasticity, increasing their firing for a specific
trajectory (i.e., ‘‘splitter cells’’) following the learning of a spatial

strategy (Dudchenko andWood, 2014). Therefore, high-rate and
low-rate neurons may differentially represent a learned task.
However, no study to our knowledge has investigated if high-rate
and low-rate neurons in the mPFC better represent features
of SWM.

To split our recorded population into high-rate and low-rate
groups, we visualized the mean firing rates across all neurons
using a histogram. Upon initial observation, we observed that
about 56% of the neurons exhibited a session averaged firing rate
of less than 2 Hz (Figure 5A), with 2 Hz being rather consistent
with a median split of 1.86 Hz. Thus, we grouped neurons into a
high-rate category if they exceeded 2 Hz, and low-rate category
if they exhibited a rate less than 2 Hz. When we trained/tested
a linear classifier using the high-rate neuronal population, we
found that it could accurately decode whether rats were turning
right/left on the sample phase (Figure 5B, top panel) and also
predict a future decision during the choice phase (Figure 5C,
top panel). Interestingly, this was in contrary to the low-rate
population, as these neurons did not collectively discern current
(Figure 5B, bottom panel) nor future behaviors (Figure 5C,
bottom panel).

However, we possibly did not observe any effect in the
low-rate population due to lower statistical power compared
to the high-rate population. It is well known that SVM based
classification methods are sensitive to large scaling differences in
the dataset (Müller and Guido, 2016). Therefore, to account for
the lower firing-rate values present in the training/testing data of
the low-rate group, we scaled firing-rates to range between 0 and
1, per neuron for all iterations. We found no drastic differences
in classification performance after scaling the data, for either
the high-rate or low-rate groups (data not shown). Thus, scaling
differences between features is not a likely explanation for our
results. However, it is still possible that low-rate neurons are
contributing important information that our methods are unable
to detect.

Next, we inspected the firing rate preferences of the high- and
low-rate populations at the single-unit level. Using a two-way
analysis of variance with the firing rate as the dependent
variable, a unit was considered trajectory modulated if there
was a significant main effect of trajectory or interaction between
stem bin and trajectory. Focusing on the choice phase, we first
visualized examples of units that were significantly modulated
by trajectory (Figures 6A,B). Then, concerning the low-rate
population, we predicted the following: (1) there would be a
greater proportion of high-rate neurons modulated by trajectory;
and (2) a greater number of high-rate neurons would dissociate
left/right turns at the second stem bin. As expected, a greater
proportion of high-rate neurons were significantly modulated by
trajectory (Figure 6C, 31% high-rate neurons modulated, 19%
low-rate neurons modulated). To then test if more high-rate
units were modulated by trajectory during early stem running
and T-junction occupancy, we performed paired t-tests on data
taken from the second stem bin and T-junction locations. After
Bonferroni correction (alpha = 0.025), 18% of high-rate neurons
were modulated by trajectory at the second stem bin, while
only 5% of low-rate neurons significantly differed in firing rates
(Figure 6D). Interestingly, a similar proportion of high-rate
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FIGURE 5 | High-rate neurons reflect current and future behavior during well-learned DNMP performance. (A) Fifty-six percentage of neurons exhibited a session
averaged firing rate <2 Hz, a firing rate that approximated the median of 1.86 Hz. We split the data according to a 2 Hz threshold (dashed line) and define high-rate
neurons as having a firing rate that exceeds the 2 Hz threshold, and low-rate neurons as having a firing rate that is below 2 Hz. (B) Top panel: high-rate neurons
collectively predicted current trajectory at T-junction during sample phase (Z = 2.7, p = 0.007, N = 89 neurons). Bottom panel: low-rate neurons do not collectively
reflect trajectory information (N = 98 neurons). Magenta lines indicate significance using a z-test (see “Materials and Methods” section). Data are represented as
mean ± standard deviation of classification accuracies. (C) Top panel: high-rate neurons collectively predicted the future trajectory during early stem traversals
(Z = 2.1, p = 0.036), but exhibited a trending effect at T-junction (Z = 1.9, p = 0.053). Bottom panel: low-rate neurons do not collectively reflect trajectory information
on the choice phase. Data are represented identically as described in panel (B).

units were significantly modulated at the T-junction (7%) in
comparison to the low-rate population (5%). Taken together,
these results suggest that highly active mPFC populations in
well-trained animals collectively represent both current actions
and future decisions. Additionally, the ability to dissociate
between two possible future actions was apparent at the
single-unit and population level.

A Large Proportion of Neurons Are
Required to Predict a Future Decision
While the high-rate/low-rate populations were split rather evenly
(98 low-rate neurons, 89 high-rate neurons), a larger number of
low-rate neurons might have been required to predict current
and future trajectories. However, the total sample size that
would be required to achieve above chance accuracy would
likely vary depending on the algorithm’s inputs. Therefore, we
reasoned that modeling future classification accuracies, under
increasing sample sizes, would provide an approximate estimate
for the required low-rate sample sizes to predict current and
future trajectories.

Ito et al. (2015, 2018) demonstrated that population decoding
is highly sensitive to the number of neurons included.
Additionally, their data suggest a non-linear relationship
between classification accuracy and neuron count. Thus,
while preliminary analyses on our dataset revealed a positive
correlation between classification accuracy and the number
of neurons included from a given session (see ‘‘Materials
and Methods’’ section), we wanted to start with a better
characterization of the relationship between sample size and
classifier accuracy.

To estimate the relationship between the number of neurons
and model performance, we iteratively and randomly added
neurons to the classifier in increasing increments of five, training

and testing the classifier 5,000 different times per sample size
(we increased the number of iterations from 1,000 because
we introduced more variability by selecting random neurons
for classification). First, we focused on trajectory coding at
T-junction from sample phase traversals given the high-accuracy
noted in Figure 3A. Given the non-linear shape of the raw
accuracy scores when plotted against sample size (Figure 7,
left panels), we log-transformed the data (see ‘‘Materials
and Methods’’ section), finding a stronger linear correlation
(Figure 7A, right panel) when compared to the non-log-
transformed data (Figure 7A, left panel). Additionally, we
used sample size to predict classification accuracy with linear
regression and found that log-transforming the dataset provided
the lowest residual error (as assessed by the sum of squared
errors), and allowed for a strong linear relationship between
sample size and model performance (as assessed by an adjusted
r-squared value).

We then used the same procedure to quantify the relationship
between sample size and classifier accuracy using data taken
from Figure 3D (trajectory coding on early stem traversals
of choice phases) and Figure 5 (high-rate populations). In all
cases examined (see Figures 7B through 7D), log-transforming
the data provided the highest linear correlations and best-fit
regression models. Therefore, there is a logarithmic relationship
between the number of added neurons and the ability for the
classifier to represent both current and future behaviors.

After plotting the number of neurons necessary to reach
significance, we found that the required sample size to predict
trajectory seemed to scale with cognitive demand. More
specifically, at T-junction during the sample phase, around
55 neurons were required to predict left and right trajectories
(Figure 7A). This is because 55 neurons provided the first
classification accuracy above a chance level distribution. This
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FIGURE 6 | Trajectory modulation is evident at the single-unit level from the high and low-rate populations. (A) Three example units from the high-rate population
that were significantly modulated by trajectory on the stem of the DNMP task. Using a two-way analysis of variance, a unit was considered “significantly modulated”
if there was a significant main effect of trajectory or a significant interaction between stem bin and trajectory on firing rates. Data are displayed as the trial-averaged
mean ± SEM of firing rates. (B) Three example units from the low-rate population that were significantly modulated by trajectory. Note that while units exhibited a
session average of <2 Hz, their firing rates on the stem can be above 2 Hz. (C) Pie charts from the high-rate population (left panel) and low-rate population (right
panel) demonstrating the proportion of units modulated by trajectory. Note the greater percentage of high-rate neurons that are trajectory-modulated. (D) Follow up
paired t-tests were performed on firing rates from the T-junction and the second stem bin. Alpha level was corrected using Bonferroni’s method (alpha = 0.025) and
only units that had a p-value less than the corrected alpha level were included. Notice in the high-rate population, 18% of units were significantly modulated during
early stem running, and 7% were modulated at T-junction. This is in contrast to the low-rate population where only 5% of the trajectory-modulated units exhibited
preferential firing towards one trajectory at the second stem bin and T-junction. Note that the second stem bin is the first bin where the rat is completely enclosed by
stem walls.

is contrary to the 125 neurons required to predict a future
decision (Figure 7B). Thus choice phase prediction during
early stem running required a 56% increase in population size
when compared to a forced turn. Additionally, when focusing

on the high-rate population (Figures 7C,D), we found that
30 high-rate neurons were required to represent the current
trajectory at T-junction (Figure 7C, left panel), while 75 neurons
were required to reflect the future trajectory on choice phase
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FIGURE 7 | More neurons are required to predict a future choice than are required to reflect a forced behavior. (A) The classifier was iteratively trained/tested to
predict whether rats were on the left or right trajectory at sample phase T-junction. Notice that 55 neurons were required to achieve above-chance prediction.
Additionally, there is a strong positive correlation between classifier accuracy and the number of added neurons (r = 0.94, ****p = 3.2e-18), with the relationship being
linear following log-transformation (r = 0.999, ****p = 4.3e-47). Linear regression modeling revealed lower residual error and greater prediction with log-transformed
data (non-transformed data SSE = 448.2, r2 = 0.885; log-transformed data SSE = 0.03 r2 = 0.997). Each gray dot indicates the grand mean classification average
over 5,000 shuffles of N (sample size) neurons. (B) The classifier was trained to predict choice phase left vs. right during early stem runs (second stem bin). Notice
that 125 neurons were required to approach above chance accuracy. Additionally, the relationship between classifier accuracy and the number of neurons added
was linear following a log-transformation (r = 0.97, ****p = 3.3e-22 not-transformed data; r = 0.995, ****p = 3.6e-37 log-transformed data; Pearson’s correlation).
Linear regression modeling revealed lower residual error and greater prediction with log-transformed data (non-transformed SSE = 177, r2 = 0.931; log-transformed
SSE = 0.102, r2 = 0.991). (C) High-rate neurons were trained to predict left vs. right trajectory at sample phase T-junction similar to (A,B). Log-transformed data
have higher linear correlation (non-transformed r = 0.953, ****p = 3.4e-09; log-transformed data r = 0.999, ****p = 2.1e-21). A linear regression revealed that
log-transformed data have lower residual error and greater predictability (non-transformed data SSE = 153.2, r2 = 0.9; log-transformed data
SSE = 0.012, r2 = 0.998). (D) High-rate neurons were trained to predict left vs. right trajectory during choice phase early stem traversal (second stem bin) with
increasing number of added neurons to the classifier. Log-transformed data have a higher linear correlation (non-transformed r = 0.972, ****p = 7.1e-11;
Log-transformed r = 0.997, ****p = 4.6e-18) exhibit lower residual error (non-transformed SSE = 59.2; log-transformed SSE = 0.03), and better model classification
accuracy (non-transformed r2 = 0.942; log-transformed r2 = 0.994) using a linear regression. For all data in this figure, a z-test was used to determine significance
and a magenta line indicates p < 0.05.

(Figure 7D, left panel). Again, this demonstrates a relationship
between sample size and cognitive demand but also reveals
that a fewer number of high-rate neurons were required to
reflect current and future behaviors in comparison to the
entire population. However, looking back through the data,
we noticed that the classifier performed around 84% accuracy
when predicting if rats were on a sample right vs. choice left at
T-junction (Figure 2G). Therefore, we iteratively trained/tested
the classifier with increasing sample size, and found that the
classifier required approximately 75 neurons to predict those
conditions. Given that this sample size is 40% less than what is
required to reflect a future decision, the lower accuracy observed
between the sample right vs. choice left predictions do not
confound an interpretation that cognitive demand and ensemble
size may be linked.

Taken together, log-transforming the classification accuracy
and sample size vectors, provides a backbone for modeling future
accuracies given the tight relationship observed between the
variables. Additionally, while we set out to characterize how
model performance varied with the number of added neurons,
we discovered a relationship between sample size and cognitive
demand. Specifically, we found that a higher proportion of
neurons are required to reflect decision-making processes when
compared to a forced behavior that always amounts to a reward.

Modeling Classifier Performance Using
Linear Regression
Given the strong linear relationship between sample size and
model performance after log-transformations, we reasoned that
we could take advantage of the linear regression model to predict
future accuracies. Therefore, we created a simple modeling
procedure that utilizes log-transformations (Figure 8A). This
modeling procedure required us to first add neurons to
the classifier iteratively and randomly (added in increasing
increments of five, 5,000 different times per increment). We then
log-transformed the data, fit a linear regression model to the
dataset, then re-converted the modeled data to percent accuracy
via anti-log. This procedure allowed us to use our output model
equation to predict accuracies on sample sizes larger than our
existing data set (Figure 8A). To further illustrate this process,
we used classification data trained to predict trajectory at sample
phase T-junction (Figures 8A,B). We were able to use the
equation from the fit model (Figure 8B) to forecast future
accuracies on larger sample-sizes (Figure 8C actual N = 187,
predicted N = 300). To further assess the effectiveness of this
procedure, we used data from Figure 5C, whereby the high-rate
group fell short of predicting left/right trajectory at T-junction
(trending effect: Z = 1.9, p = 0.053). We reasoned that this
trending effect was due to insufficient sample size, and indeed
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FIGURE 8 | Modeling future classification accuracies reveal that low-rate neurons may weakly dissociate distinct trajectories at T-junction. (A) Classification
accuracies and their corresponding sample-size (number of added neurons) were log-transformed, fit with a linear regression model, then converted back to
classification accuracies via anti-log. Once the linear regression equation was obtained, we could forecast future classification accuracies (brown). Data were taken
from the classification of trajectory at sample phase T-junction. (B) An example whereby the modeled estimates fit the recorded data with high accuracy (adjusted
R2 = 0.997, SSE = 0.033) along with the regression equation. Data were taken from the classification of trajectory at sample phase T-junction. Gray dots indicate the
averaged classification per sample size (averaged over 5,000 random combinations of neurons), while red dots indicate modeled data. (C) A demonstration of
modeled accuracies from a population size that was not obtained. Data is the same as (A) and (B). Recorded population N = 187. Gray dashed line indicates
chance level accuracy. Brown box indicates predicted data. Dashed lines above model accuracies indicate significance utilizing a z-test. (D) Notice that a sample
size of 100 neurons was predicted to yield a p < 0.05 (Z = 1.98, p = 0.047). The high-rate population did not exhibit the above-chance classification performance at
T-junction (Figure 5C) due to the low sample size (actual sample size = 89 neurons). Compare this to Figure 7D; notice that 25% fewer neurons were required to
predict a future decision. (E) A sample size of 600 neurons was estimated to predict trajectory at the T-junction of sample phases when considering a low-rate
population (Z = 1.96, p = 0.0499 at 600 neurons). (F) Low-rate neurons do not effectively reflect future decision-making. Note the scale shown here is from 0 to
100,000 neurons and the data was taken from the second stem bin.

found that 100 neurons were required to achieve above-chance
accuracy, as opposed to the 89 high-rate neurons recorded
(Figure 8D). However, it should be noted that rat 17–77, but
not rat 18–28’s population, predicted choice phase trajectory
at T-junction (Figure 4B). Additionally, removal of 17–77’s
neuronal data precluded the ability for the classifier to perform
above the chance level at T-junction (data not shown). While
17–77 did spend significantly more time sampling the T-junction
on left choice phase runs when compared to right choice phase
runs, the same was true for 18–28 (data not shown). Therefore,
time-spent sampling one of the trajectories could not explain the
ability for the classifier to dissociate trajectory at this location
for 17–77. Given that approximately 100 high-rate neurons were

required to predict T-junction location (Figure 8D), and because
removal of low-rate neurons reduced classification accuracy at
T-junction (compare Figure 3D to Figure 5C), we reason that
classification prediction of this location requires a large ensemble
of neurons.

Finally, once we developed the modeling procedure, we could
examine whether low-rate neurons would predict current and
future trajectories under larger sample sizes. Therefore, we first
modeled future decoding accuracies of trajectory at sample phase
T-junction using the low-rate group. Our procedure forecasted
that approximately 600 neurons would be required to reflect
the current trajectory at T-junction (Figure 8E). Additionally,
600 neurons would only predict the current trajectory at
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around 78% accuracy, with 1,000 neurons predicting the current
trajectory at 82% accuracy. This is in contrast to the high-rate
group, where only 30 neurons (5% of what would be required
among the low-rate group) predicted sample phase trajectory at
a level of 79% and 85 neurons predicted trajectory at 93%. These
findings suggest that the low-rate population contains some level
of trajectory dependent information during forced turns that
always amount to a reward.

Next, we wondered if low-rate neurons contained information
regarding a future trajectory. Based on Grosmark and Buzsáki
(2016), we predicted that a low-rate group (after the well-learned
performance of the DNMP task) would not be informative
about future decisions. We originally modeled the classification
accuracies to 1,000 neurons, like in Figure 8E, however, the
accuracy was extremely low (60%). Thus, we modeled the
data on 100,000 neurons and found a classification nearing
77%, still below significance (Figure 8F). We then attempted
200,000 neurons, but still, no significance was obtained (data
not shown). Together, these findings support low-rate groups
being weakly sensitive to forced behaviors, but likely not
linked to future outcomes. However, it should be noted that
drawing from classification accuracies near 50% could generate
similar findings irrespective of the population. Additionally,
modeling future classification accuracies on the raw classification
outputs from the low-rate population in Figure 8F did not
fit the data as robustly as our other analyses in Figure 8.
Nonetheless, log-transforming the low-rate data provided the
strongest correlation between classifier performance and sample
size vectors (r = 0.86, p = 1.92e-06 Pearson’s correlation
between log-transformed accuracy and sample size; r = 0.71,
p = 0.007 Pearson’s correlation between classifier accuracy
and sample size), while also providing the best fit model
(adjusted R2 = 0.73, SSE = 0.232 linear regression between
log-transformed classifier performance and sample size vectors;
adjusted R2 = 0.48, SSE = 52.1 linear regression between
classifier performance and sample size). Therefore, to the best
of our knowledge and understanding, this modeling procedure
is a leading approach to estimate future outcomes on the
low-rate population.

Taken together, given that no increases inmean accuracy were
noted among the low-rate population that would predict a future
decision (Figure 5C), and given that our modeling procedures
did not reveal strong evidence for the low-rate population
predicting a future decision in the same stem-bin as the high-rate
group (Figure 8F), our results support high-rate populations, but
not low-rate populations, being relevant for decision-making.

DISCUSSION

In this study, we aimed to better characterize prefrontal
representations of memory on a task that experimentally
isolates encoding dominant and retrieval dominant phases
of SWM. We demonstrate that high-firing rate, but not
low-firing rate populations, effectively represent whether rats
are actively engaged in a trajectory-dependent action during
memory encoding, and also predict a future decision. Using a
simple modeling procedure, we further reveal that the ability

to reflect current trajectory dependent behaviors is weakly
represented among low-rate populations. In essence, the ability
to reflect trajectory-dependent behaviors seems to be a conserved
phenomenon across themPFC. This conclusion is also supported
at the single-unit level, given that a similar proportion of
high and low-rate neurons dissociate left and right turns
at the T-junction. We suspect that through learning, certain
populations are selected to collectively reflect current actions
and predict future decisions. However, while differences in
scaling could not explain our results, it is still possible that
highly active neurons conferred a statistical advantage over the
low active neurons, and that this statistical advantage may be
independent of a special role that the high-rate neurons play
in cognition. Nonetheless, focusing on the high-rate population,
we demonstrated that a larger proportion of neurons were
required to represent decision-making processes when compared
to a forced behavior. This suggests that high-stakes decision-
making processes likely employ a larger population than what
is required to reflect a simple behavior that always amounts
to a reward (i.e., a forced turn). Against our predictions, we
found that apparent task phase coding was better explained by
representations of overt trajectory-behaviors. Taken together,
our study provides evidence that highly active mPFC ensembles
are tuned to efficiently represent current and planned trajectory
dependent actions, and that decision-making processes require
larger ensemble sizes than forced behaviors in the rat.

It has been proposed that the mPFC acts as a counterpart
to the motor cortex, whereby internalized action-plans are
sent to limbic regions, as opposed to the spinal-cord for
down-stream action (Buzsaki, 2019). Given that trajectory-
dependent behaviors were almost always observed with above-
chance decoding, and given that the population could predict
a future decision in the absence of changes in behavior, our
results may support such a role. However, we are not the first
to provide evidence for a link between mPFC neuronal activity
and trajectory-dependent behaviors. Euston and McNaughton
(2006) demonstrated that neuronal activity from a sequence-task
was strongly influenced by trajectory-dependent behaviors.
Furthermore, Ito et al. (2015) used an open-field task and
continuous alternation paradigm to demonstrate that mPFC
neuronal activity was tightly linked to the movement direction,
with spiking both preceding and following the motion. In
conjunction with our work, it seems clear that the mPFC is
strongly linked to the planning of trajectory-related actions,
with goal-locations likely tuning this ability (Spellman et al.,
2015). While these results are not the first to reveal evidence
for the planning of a future decision (Baeg et al., 2003; Ito
et al., 2015; Guise and Shapiro, 2017; Myroshnychenko et al.,
2017), our study differs from past work that used a spatial
alternation task with each traversal including encoding and
retrieval dominant processes (Baeg et al., 2003; Ito et al.,
2015). Additionally, our results differ from Myroshnychenko
et al. (2017) in that we focused on trajectory-specific outcomes,
as opposed to encoding/retrieval dominant phases of a task.
Collectively, our findings support a highly specific role for the
mPFC in the planning of future decisions, as mPFC lesions
impair decision-making when prospective coding is thought to
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be required (Kesner, 1989). Future work should be aimed at using
high-density recordings with real-time detection of neuronal
patterns, so that inactivation procedures can shed light on the
causal mechanisms of prefrontal representations.

Grosmark and Buzsáki (2016) reported that hippocampal
neurons initially classified by a low firing rate profile acquire
task-relevant activity and exhibited evidence of plasticity through
learning. However, in our study, we find that highly active
mPFC populations specifically support the encoding of on-going
behavior and future trajectories during well-learned SWM
behaviors. We suspect that these highly active mPFC neurons
acquired rate-dependent increases through learning. If low-rate
populations become tuned to reflect task-demands, one would
expect to observe weak representations of trajectory-dependent
behaviors and little evidence for prospective coding. Indeed,
our modeling procedures suggest a weak representation of the
current position during a forced behavior, with little evidence
for the planning of a future outcome. On the contrary, when we
focused on the high-rate group, we show that a comparably small
sample size of high-rate neurons was required for the classifier
to predict a trajectory in the presence of changes in behavior,
as opposed to decision-making processes requiring on the order
of 2.5–3.4 times the number of neurons. These findings allow
us to conclude and predict the following: (1) mPFC populations
are broadly tuned to reflect discrepancies in on-going behavior,
given that both low-rate and high-rate neurons can collectively
reflect trajectory in the presence of divergence in behavior;
(2) highly active mPFC ensembles may be necessary to represent
prospective experiences; and (3) there is a relationship between
cognitive demand and the employed ensemble size in the rat
mPFC. It should be noted that an alternative explanation is
that highly active neurons confer a statistical advantage over
low-active neurons in classifier outcomes. However, neurons
classified by a session averaged firing rate of <2 Hz, can exceed
2 Hz at various maze locations (see Figure 6B). Additionally,
analyses at the single-unit level revealed that a higher proportion
of high-rate neurons were significantly modulated by early stem
running, during choice phase traversals (see Figure 6D). It
should also be noted that our results do not preclude a specific
involvement of low-rate neurons in SWM behaviors. Specifically,
low-rate neurons may be involved in temporal coding, as has
been demonstrated in dCA1 neurons (Buzsaki, 2019). Moreover,
it is reasonable to suspect that low-rate neurons provide support
for certain population representations. Our data could support
this conclusion for two reasons: (1) there were increases in
the ability to predict trajectory among the low-rate population
around T-junction (Figures 5B,C); and (2) there are trajectory
modulated units during the choice phase (Figure 6C). Therefore,
future studies are required to reveal the causal nature of high and
low-rate populations in decision-making.

How do these results fit with and modify our current
understanding of the role that the mPFC plays during
SWM-guided behaviors at the systems level? It is well
documented that the mPFC and hippocampus (HPC) are dually
required for accurate SWM performance (Floresco et al., 1997;
Churchwell et al., 2010; Churchwell and Kesner, 2011; Maharjan
et al., 2018). Recently, work has demonstrated that the nucleus

reuniens (Re) of the ventral midline thalamus coordinates
mPFC-HPC communication (Ito et al., 2015; Hallock et al.,
2016), explaining its importance for SWM usage (Hallock et al.,
2013c, 2016; Layfield et al., 2015; Maisson et al., 2018). In
line with these findings, Ito et al. (2015) demonstrated that
the Re supports the ability for the dCA1 to reflect the future,
but not past, trajectories. They provide further analyses to
suggest that the mPFC likely informs the Re of the future
trajectory, revealing a unidirectional path for the representations
of prospective experiences. Thus, our work modifies the current
understanding of how this circuit is implicated in memory-
guided behavior by revealing that high-rate, but not low-rate,
prefrontal ensembles likely inform dCA1 of plans. Additionally,
our work suggests a relationship between ensemble size and
cognitive demand, such that a greater number of neurons
are required to inform down-stream targets of future actions.
Finally, if mPFC coding for future trajectories is causal to
the choice-action, we hypothesize that Re suppression during
memory encoding disrupts future decision making (Maisson
et al., 2018) by degrading prospective coding in the mPFC during
the choice phase. Future work will target multisite recordings
with optogenetic procedures to understand the impact of Re
suppression on representations of SWM features among mPFC
and HPC ensembles.

In summary, our study experimentally dissociated encoding
dominant and retrieval dominant phases of SWM to better
characterize prefrontal population representations. We show
that high-firing but not low-firing mPFC populations, efficiently
represent current and future trajectory-dependent actions. We
also provide evidence of a relationship between prefrontal
ensemble size and cognitive demand, while demonstrating that
apparent task phase coding is explained by trajectory-dependent
behaviors. Together, our findings extend on our understanding
of the functional role the mPFC plays during SWM guided
behavior, putting a specific emphasis on the representations of
on-going behavior and future actions.
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