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Abstract

Motivation: Genome-wide association studies (GWAS) are a powerful method to detect even weak associations
between variants and phenotypes; however, many of the identified associated variants are in non-coding regions,
and presumably influence gene expression regulation. Identifying potential drug targets, i.e. causal protein-coding
genes, therefore, requires crossing the genetics results with functional data.

Results: We present a novel data integration pipeline that analyses GWAS results in the light of experimental epi-
genetic and cis-regulatory datasets, such as ChIP-Seq, Promoter-Capture Hi-C or eQTL, and presents them in a single
report, which can be used for inferring likely causal genes. This pipeline was then fed into an interactive data
resource.

Availability and implementation: The analysis code is available at www.github.com/Ensembl/postgap and the inter-
active data browser at postgwas.opentargets.io.

Contact: helpdesk@ensembl.org

1 Introduction

Genome-wide association studies (GWAS) are a powerful method to
analyse common diseases in a large cohort. Taking advantage of af-
fordable large-scale genotyping chip technologies, such studies are
now routinely run across cohorts large enough to detect even weak
associations between common variants and a phenotype of interest.
There are now enough GWAS studies to warrant the existence of
specialized databases, such as the GWAS Catalog (MacArthur et al.,
2017).

Despite this wealth of data, GWAS have not succeeded in
translating into many therapeutic success stories (Huang, 2015).
The main bottleneck is inferring truly causal genes from the GWAS
results that can then be used as drug targets and thus new therapies.
This gap between genetics research and translational applications is
largely explained by the difficulty in functionally interpreting
non-coding variants. Although annotating and prioritizing coding
variants are a well-studied problem, determining the regulatory
effect of non-coding variants is still difficult. In effect, many of the
drug targets tested by the pharmaceutical industry fail to yield a new
drug because they are revealed to be unrelated to the phenotype
(Cook et al., 2014).

To close this gap, a number of experimental techniques have
been developed, such as molecular Quantitative Trait Loci (QTL)

(Brem et al., 2002), covariance analysis in chromatin state between
distant regions of the genome (Thurman et al., 2012) or sequencing-
based assays, such as Promoter-Capture Hi-C (Javierre et al., 2016).
Existing pipelines (Shen et al., 2017) integrate all these datasets but
they do not connect directly to databases to gather their latest
results.

We present here a pipeline that compares GWAS results to a
collection of useful cis-regulatory datasets. We have run our pipeline
across all GWAS Catalog studies and present the results in an inter-
active web interface, which can be used to examine the evidence
supporting the candidate causal genes.

2 Methods

The analysis automates a number of standard post-GWAS data inte-
gration steps as follows:

1. (Optional) Search through public GWAS databases: GWAS

Catalog, GRASP (Leslie et al., 2014) or PheWAS Catalog

(Denny et al., 2013), using ontology terms where possible [using

the EMBL-EBI Zooma (https://www.ebi.ac.uk/spot/zooma) term

suggestion service to map text where possible to ontology

terms].
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2. Linkage disequilibrium (LD) expansion. By default, the 1000

Genomes genotypes (The 1000 Genomes Project Consortium,

2015) are used; however, it is possible to replace them with

other cohorts, simply by replacing VCF files. Any significant sin-

gle nucleotide polymorphism (SNP) is connected to nearby com-

mon SNPs with a Pearson r2 correlation >0.7.

3. Clustering. Each significant SNP and its LD neighbours form a

cluster. Overlapping clusters in the same study are merged.

4. Alignment to known regulatory annotations, indicative of

whether an SNP has any regulatory effect, in particular, the

Ensembl Regulatory Build (Zerbino et al., 2015) and

RegulomeDB (Boyle et al., 2012).

5. Alignment to known cis-regulatory annotations, indicative of

whether an SNP regulates a specific gene, in particular, GTEx

(GTEx Consortium, 2017), Ensembl VEP (McLaren et al.,

2016), Fantom5 (Andersson et al., 2014), ENCODE DNAseI

hypersensitivity correlations (Thurman et al., 2012) and

Promoter-Capture Hi-C calls (Javierre et al., 2016), each evi-

dence being assigned a weight between 0 and 1.

6. Computing an aggregate score for each (SNP, Gene) pair by

summation of all the scores obtained in steps (4) and (5).

2.1 A deployable pipeline
The pipeline is coded in Python and was designed to be easily
installed locally and run privately, whether against public databases
or on a private dataset (provided as summary statistics in a tab-
delimited file).

2.2 An interactive website
The Open Target post-GWAS web browser allows users to browse
through the pre-computed results of the pipeline run across all of
GWAS Catalog. If searching from an SNP rsID or a gene symbol the
browser displays either a genomic view or a table of associations
(see Fig. 1). If searching for a disease, a table of known associations
are displayed.

3 Results

We ran our pipeline on all GWAS Catalog studies at the time (last

update December 7, 2018). This comprised 2092 phenotypes and
diseases, described in 3187 publications, and a total of 67 771 sig-

nificant SNPs. After LD expansion, a total of 923 891 unique SNPs
were analysed, each SNP being involved in 290 publications on aver-
age. The average run time for each study was 40 min.

4 Conclusions

GWAS is a powerful approach to understanding disease mechanism

but requires functional analysis to produce actionable results. The
Open Targets post-GWAS pipeline facilitates this process, both
through an automated tool and pre-processed results, freeing GWAS

analysts from the laborious process of data integration.
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Fig. 1. Screenshot of the post-GWAS browser. At the top, dynamic filters control

what is displayed. Below, a genomic browser represents a genomic locus with genes,

which are connected to nearby regulatory variants, which are in turn in LD with tag

SNPs, associated with given phenotypes
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