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Improved growth performance, 
food efficiency, and lysine 
availability in growing rats fed with 
lysine-biofortified rice
Qing-Qing Yang1,2, Pui Kit Suen2, Chang-Quan Zhang1,3, Wan Sheung Mak2, Ming-Hong Gu1, 
Qiao-Quan Liu1,3 & Samuel Sai-Ming Sun2,3

Rice is an excellent source of protein, and has an adequate balance of amino acids with the exception of 
the essential amino acid lysine. By using a combined enhancement of lysine synthesis and suppression 
of its catabolism, we had produced two transgenic rice lines HFL1 and HFL2 (High Free Lysine) 
containing high concentration of free lysine. In this study, a 70-day rat feeding study was conducted 
to assess the nutritional value of two transgenic lines as compared with either their wild type (WT) or 
the WT rice supplemented with different concentrations of L-lysine. The results revealed that animal 
performance, including body weight, food intake, and food efficiency, was greater in the HFL groups 
than in the WT group. Moreover, the HFL diets had increased protein apparent digestibility, protein 
efficiency ratio, and lysine availability than the WT diet. Based on the linear relationship between 
dietary L-lysine concentrations and animal performance, it indicated that the biological indexes of the 
HFL groups were similar or better than that of the WT20 group, which was supplemented with L-lysine 
concentrations similar to those present in the HFL diets. Therefore, lysine-biofortified rice contributed 
to improved growth performance, food efficiency, and lysine availability in growing rats.

Transgenic strategies may improve the nutritional value of crops and ensure food security1. Transgenic crops with 
enhanced nutritional value may have improved nutrient bioavailability and/or lower levels of anti-nutritional 
factors2–4, such as high-methionine lupin5, lupin that expresses methionine-rich sunflower albumin6, low-phytate 
transgenic maize7, and tryptophan-enriched rice8.

As an essential amino acid (EAA), lysine cannot be synthesized by humans or farm animals and represents an 
indicator of other dietary EAAs9. Animal growth performance, carcass characteristics, and immune function are 
affected by lysine deficiency10–16. Supplementation with synthetic lysine enhances nitrogen retention and protein 
accretion and improves animal growth performance and immune function10, 17–20. In cereals, lysine is a limiting 
EAA. In an attempt to reduce the incidence of lysine deficiency, cereals such as maize21, sorghum22, and rice23–25 
have been biofortified with the amino acid. Animal studies have shown that the bioefficacy of high-lysine trans-
genic maize is similar to that wild-type maize supplemented with L-lysine, and high-lysine transgenic maize is 
considered to be more nutritious than wild-type maize26–28. In pigs, lysine bioefficacy is dependent on the source 
of dietary lysine29. Altogether, these studies have shown that animal weight gain, protein digestibility, and amino 
acid bioavailability are associated with increased dietary lysine.

Rice represents an important source of energy and protein for approximately one-third of the world’s popu-
lation30. Rice has an adequate balance of amino acids with the exception of lysine31. We have developed several 
types of high-lysine transgenic rice by overexpressing endogenous rice histone proteins enriched with lysine24 or 
heterogeneous lysine-rich proteins32. Furthermore, we have generated high-lysine transgenic rice by modifying 
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lysine metabolism23, 25. The transgenic rice lines HFL1 and HFL2 were developed by enhancing lysine anabolism 
and reducing lysine catabolism25. These two HFL transgenic lines contain free lysine levels in seeds up to 25-fold 
over that of the wild type, but without the selectable marker gene. All target transgenes in both transgenic lines 
were integrated into the intragenic region of the rice genome, with no differences in major agronomic traits, 
including yield25. These two transgenic rice lines, which are currently undergoing nutritional and food safety 
assessments, could potentially alleviate malnutrition33.

The objective of this study was to evaluate the nutritional value of HFL transgenic rice. Transgenic rice and 
their wild-type counterpart were fed to growing rats. Animal growth performance, food efficiency, and protein 
and amino acid availability were analyzed and compared. Additionally, to evaluate whether lysine in transgenic 
rice is bioavailable to animals, another feeding trial was performed with wild-type rice supplemented with differ-
ent dosages of L-lysine (Table 1).

Results
Grain composition and amino acid balance in HFL and WT rice.  The composition of HFL and WT 
rice grains is shown in Table 2. The free lysine level dramatically increased in the two HFL lines, and total lysine 
content was higher in HFL1 (+24%) and HFL2 (+19%) than in WT rice. Additionally, the total protein content 
in transgenic rice seeds was also slightly higher, by 1.05% and 0.85% in HFL1 and HFL2, respectively, than that of 
WT rice. There were no significant differences in moisture, ash, fiber, lipid, or carbohydrate contents between the 
transgenic and WT rice flour. Furthermore, in rat feeding study, the two HFL diets showed higher lysine content 
than the non-supplemented WT diet (Fig. 1 and Supplementary Table S1) as well.

Ingredient (g/kg) WT WT10 WT20 WT40 HFL1 HFL2

Rice flour 849.5 849.3 849.0 848.5 849.5 849.5

L-Lysine 0 0.235 0.47 0.94 0 0

Corn oil 60 60 60 60 60 60

Fiber 40 40 40 40 40 40

Mineral mix (AIN-93G-MX) 35 35 35 35 35 35

Vitamin mix (AIN-93G-VX) 10 10 10 10 10 10

L-Cystine 3 3 3 3 3 3

Choline bitartrate 2.5 2.5 2.5 2.5 2.5 2.5

Tert-butylhydroquinone 0.014 0.014 0.014 0.014 0.014 0.014

Table 1.  Formulation of the experimental rice-based diets.

Composition* WT HFL1 HFL2

Free lysine (μg/g) 20.91 ± 0.93 
a

427.89 ± 22.55 
b

314.59 ± 3.38 
c

Total lysine (mg/g) 2.35 ± 0.01 a 2.89 ± 0.02c 2.77 ± 0.02 b

Protein (%) 6.74 ± 0.07 a 7.79 ± 0.08 b 7.59 ± 0.08 b

Fiber (%) 0.39 ± 0.10 a 0.32 ± 0.02 a 0.30 ± 0.00 a

Fat (%) 0.70 ± 0.06 a 0.66 ± 0.06 a 0.76 ± 0.06 a

Ash (%) 0.71 ± 0.05 a 0.65 ± 0.04 a 0.63 ± 0.04 a

Carbohydrate (%) 87.03 ± 0.94 
a 86.13 ± 1.75 a 86.94 ± 2.09 a

Moisture (%)* 5.26 ± 0.52 a 5.92 ± 0.93 a 5.22 ± 0.80 a

Table 2.  Grain composition of HFL and wild type rice (n = 3). *Dry weight basis except for moisture. Different 
letters represent significant differences from WT (P < 0.05).

Figure 1.  Lysine concentrations in the different diets. Error bars represent SD (n = 3). Different letters represent 
significant differences (P < 0.05).
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We calculated the amino acid scores (AAS) in HFL and WT diets (Supplementary Table S2) based on the pro-
tein reference pattern recommended for school-aged children and adolescents34. In WT rice, the first, second, and 
third limiting EAAs are lysine, threonine, and leucine, respectively35. In this study, the WT diet had a total lysine 
content of 1.94 mg/g (Fig. 1) and an AAS of 0.75 (Supplementary Table S2). HFL1 and HFL2 had a total lysine 
content of 2.40 and 2.32 mg/g, respectively (Fig. 1), and an AAS of 0.83 and 0.78, respectively (Supplementary 
Table S2). Lysine was the first limiting EAA in transgenic and WT rice. However, lysine AAS was significantly 
higher in the two transgenic diets than in the WT diet. There were no differences in threonine and leucine AAS 
between the transgenic and WT diets (Supplementary Table S2). Therefore, diets containing transgenic rice HFL1 
and HFL2 had a better amino acid balance than diets containing WT rice.

Enhanced growth performance in HFL groups.  During the 70-d feeding trial, the rats grew well, and no 
diseases or deaths were recorded. Body weight changes are presented in Fig. 2 and Supplementary Fig. S1. All rats, 
which had a similar initial body weight of ~50 g (Supplementary Table S2), grew similarly during the preliminary 
feeding stage (the first 7-d). Following this preliminary feeding stage, rats fed ad libitum either HFL transgenic 
rice diets or L-lysine-supplemented WT rice diets grew faster than those fed the non-supplemented WT rice diet. 
Interestingly, body weight increased with increasing lysine concentrations (from 1.94 mg/g in WT to 2.88 mg/g in 
WT40; Fig. 2 and Supplementary Table S3).

Compared with the WT group, the HFL groups had greater growth performance (Fig. 2). At the end of 70-d 
feeding trial, the final body weights of the HFL1 and HFL2 groups were 134.08 g/rat and 134.54 g/rat, respectively, 
which were 25.97% and 26.40% higher, respectively, than that of the WT group (Supplementary Table S3). The 
growth curve of the two HFL groups was quite similar to that of the WT20 group. The WT20 diet contained 20% 
more L-lysine than the WT diet and similar total lysine concentrations as the HFL diets (Fig. 1).

Increased food efficiency in rats fed with HFL rice diets.  After one week of preliminary feeding, the 
food intake, body weight gain and food efficiency increased in either HFL or L-lysine-supplemented WT groups 
than in WT group. At the end of the experiment, the HFL groups had higher food intake and food efficiency than 
the WT group (Fig. 3 and Supplementary Table S3). Similarly, food intake, body weight gain and food efficiency 
were higher in the L-lysine- supplemented groups than in the WT group (Fig. 3). Food efficiency of the HFL1 and 
HFL2 diets was similar to that of the WT10 and WT20 diets, but lower than that of the WT40 diet.

Figure 2.  Body weight changes in rats fed different diets for 70 d.

Figure 3.  Food intake (a) and food efficiency (b) of rats fed different diets for 70 d. Error bars represent SD 
(n = 8). Different letters represent significant differences (P < 0.05).
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Improved protein digestibility and nitrogen balance in HFL groups.  During the nitrogen-balance 
stage (6-d following the 7-d acclimation period), fecal and urine samples were collected separately and analyzed. 
There were no significant differences in total feces (dry weight, g/6 d/rat) or fecal nitrogen (g/6 d/rat) among the 
six groups (Supplementary Fig. S2). Therefore, fecal excretion was normal during the experimental stage. The 
HFL1 and HFL2 groups had higher total protein intake (Supplementary Fig. S2) and greater protein apparent 
digestibility than the WT group (Fig. 4a). The protein efficiency ratio (PER) of the HFL groups was higher than 
that of the WT group, but similar to that of the WT20 group (Fig. 4b).

Among the L-lysine-supplemented WT diets, their protein apparent digestibility reached highest in the case 
of WT40 while improvement was observed accordingly with increasing lysine content in the diet from 1.94 mg/g 
to 2.88 mg/g (Fig. 4a). In addition, the PER was also significantly enhanced in accordance with the increase in 
supplementary L-lysine in the diets between the WT10 and WT40 groups (Fig. 4b).

Improved availability of EAAs in growing rats fed HFL rice diets.  The availability of most amino 
acids is presented in Fig. 5 and Supplementary Fig. S3. As expected, lysine availability was 90.69% and 89.85% for 
the HFL1 and HFL2 groups, respectively, which was higher than that of the WT or L-lysine-supplemented WT 
groups, especially of the WT group (85.57%; Fig. 5a). Among the L-lysine-supplemented groups, lysine availa-
bility was the highest in the WT20 group, but not in others including WT 40, implying that there is an optimum 
requirement of lysine level in the diet for animal feeding.

In addition to lysine, leucine and threonine are also limiting EAAs in rice. Even though the AAS of lysine was 
higher in the two HFL transgenic rice diets than in the WT diet, the AAS of leucine and threonine were similar 
between the transgenic HFL and WT diets. Interestingly, the availability of other three EAAs, including leucine, 
methionine and isoleucine, improved in HFL rice diets (Fig. 5b–d). There was no difference in the availability of 
other amino acids between transgenic HFL and WT diets (Supplementary Fig. S3).

Effect of HFL diets on viscera coefficient.  At the end of the feeding experiment, the rats were anaesthe-
tized and their main organs were collected and weighed. No abnormity was observed. The viscera coefficient of 
each group was calculated as the ratio between organ weight and body weight (Supplementary Table S4). There 
were no significant differences in viscera coefficient among the six groups. Liver and kidney coefficients of the 
HFL groups were lower than those of the WT group, but similar to those of the group consuming commercially 
available the standard rat diet (2018SX, Teklad Global, USA, containing 18% protein) (data no shown). Therefore, 
lysine had no effect on the health of the growing rats.

Enhanced levels of serum lysine and muscle nitrogen in growing rats fed HFL diets.  At the end 
of the feeding experiment, the free lysine in serum and nitrogen in some organs of all groups were measured, and 
the data were presented in Fig. 6. The results shown that serum lysine content was increased significantly in the 
HFL groups and WT40 group, with no significant increase in WT10 and WT20 groups, compared with that of 
WT groups (Fig. 6a). Furthermore, nitrogen content in spine muscle was positively correlated with dietary lysine 
level (Fig. 6b), while moisture in muscle was not significantly different within different groups (Supplementary 
Fig. S4). But, there was similar nitrogen level in heart and liver tissues among the six groups, except it was greater 
in the WT40 group than other groups. (Fig. 6c,d) These data suggested that the serum lysine level and muscle 
nitrogen content could be improved in growing rats fed either high lysine HFL transgenic rice or wild type rice 
supplemented with crystalline L-lysine.

Curve fitting for diets differing in lysine content.  All diets in present study, which were derived from 
the same rice cultivar (same genetic background), differed in lysine content. Thus, we evaluated the relationship 
between lysine content in the diets and animal growth performance as well as biomarkers (Fig. 7). Animal growth 
performance parameters (e.g., body weight, food efficiency, protein apparent digestibility, PER, and lysine avail-
ability) were higher in WT10, WT20, or WT40 groups than in WT group. The data were subjected to regression 
analysis to assess the dietary lysine requirement of growing rats. We obtained a linear relationship between lysine 

Figure 4.  Protein apparent digestibility (a) and protein efficiency ratio (b) of rats fed different diets. Error bars 
represent SD (n = 8). Different letters represent significant differences (P < 0.05).
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Figure 5.  Availability of essential amino acids lysine (a), methionine (b), isoleucine (c), and leucine (d) in rats 
fed different diets. Error bars represent SD (n = 8). Different letters represent significant differences (P < 0.05).

Figure 6.  The free lysine content in serum (a), nitrogen content in spine muscle (b), liver (c), and heart (d) 
of rats fed different diets. Error bars represent SD (n = 8). Different letters represent significant differences 
(P < 0.05).
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concentration and feeding response (Fig. 7). Except for food intake, all other animal growth performance param-
eters had R2 values more than 0.95 (P < 0.05) (Fig. 7).

Amino acid analyses revealed that lysine concentrations increased by 24% and 19% in HFL1 and HFL2 trans-
genic rice flour, respectively (Table 2). The biological indicators of rats fed the HFL1 and HFL2 diets might be 
similar to those of rats fed the WT20 diet, because all three diets had similar lysine concentrations. According 
to the regression line (Fig. 7e), the theoretical apparent digestibility values of the HFL1 and HFL2 groups were 
71.21% and 69.69%, respectively (R2 = 0.978). Interestingly, the actual apparent digestibility values of the HFL1 
and HFL2 groups were 74.01% and 71.98%, respectively, which were slightly higher than the theoretical values. 
Similar results were also observed with other indexes, including body weight gained, food efficiency, protein effi-
ciency ratio, and lysine availability (Fig. 7).

Discussion
The two HFL transgenic rice lines had higher lysine concentrations, total protein concentrations, and lysine scores 
than WT rice25 (Supplementary Table S2). The nutritional value of foods depends on the protein amount, protein 
quality, and amino acid balance36. In general, the quality or nutritional value of proteins is dependent on the 
capacity to replace the nitrogen that the organism inevitably loses during metabolic processes37. Therefore, die-
tary proteins must be evaluated in terms of amount, amino acid profile, and availability38. Our findings revealed 
that the availability of both proteins and amino acids was higher from HFL transgenic rice than from WT rice 
(Figs 4 and 5).

Several studies have evaluated the nutritional value of transgenic crops, such as rice39, 40, maize41, soybean42, 
and wheat43. In this study, growing rats fed HFL transgenic rice diets had similar growth performance parame-
ters as those fed WT20 diet. The actual protein values and amino acid scores of the HFL groups were within the 
scope of the theoretical values obtained from curve fittings based on supplemented WT diets (Fig. 7). Therefore, 
lysine-biofortified rice improved the nutritional value of the crop without affecting other nutrients (Table 2).

Figure 7.  Linear relationship between dietary lysine concentrations and growth biomarkers. The coefficient 
fitted the value of the linear function. Observed mean values are represented by blue (WT, WT10, WT20, and 
WT40) and red (HFL1 and HFL2) dots. Solid line represents the fitted dose-response curve. A–F represent the 
dose-response curve between lysine concentrations and body weight gain (a), food intake (b), food efficiency 
(c), protein efficiency ratio (d), protein apparent digestibility (e), and lysine availability (f).
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Up to now, many studies had shown that the food intake increased in rats fed with diet containing additional 
lysine, and subsequently the body weight gain, feed efficiency, and growth responsiveness were also improved26–28. 
Indeed, feed intake is usually affected by dietary amino acids44, 45. The linkage between dietary lysine to appetite 
and feed intake had been reported by several groups46, 47. The results by Liao et al. showed that lysine is a substrate 
for generating body proteins, peptides, and non-peptide molecules in typical swine diets46. Nguyen et al. reported 
that the neuropeptide Y serves as an orexigenic factor48. But, these studies suggested further investigation to 
elucidate the linkage between dietary lysine to arginine ratio and regulation of appetite and food intake. Recently, 
Liao et al. reported that dietary supplementation of crystalline lysine can increase the muscle nitrogen retention 
and protein accretion, and improved the growth performance of animals46.

In this study, the serum lysine content and muscle nitrogen level in rats were also significantly increased in the 
HFL groups compared with that of WT group (Fig. 6). Both suggested that protein synthesis might be enhanced 
in rats fed with high lysine diets than those fed WT diet, in agreement with previous reports. Further, in our study, 
the nitrogen level in other organs (liver and heart) showed no significant difference between the HFL groups and 
WT group, in agreement with the results of Luo et al.49, with the exception that the WT40 group rat fed high 
lysine diet had higher nitrogen content in liver than those fed with WT or WT20 diet (Fig. 6c). This is probably 
because of liver is regarded as a site for primary pathway of lysine catabolism (saccharopine pathway), which 
contributes to the whole body lysine catabolism46, 50, 51, while supplemental L-lysine level in WT40 diet might be 
excessive to be digested in time in the growing rats.

The de novo synthesis of amino acids, especially lysine, by gut bacteria takes place in both the small and large 
intestines52. A number of studies have shown that dietary protein including protein source and amino acid com-
position can greatly influence the gut microbial community53. These may be due to decarboxylation of amino 
acids and peptides leading to the formation of a large array of amines, which are considered to be contributed by 
the clostridia, bifidobacteria and bacteroides54. However, there were also studies on lysine supplementation that 
indicated lysine as limiting amino acid in the basal diet, but it did not influence the microbial counts in feces and 
small intestine55. In our study, as the main objective was to evaluate the nutritive value of HFL rice on growing 
rats, we did not measure the gut microflora. It would be interesting to further elucidate the mechanism and func-
tion of additional lysine on animal growing.

The quality of food ingredients is estimated by digestibility, availability, and efficiency of amino acids and pro-
tein56. Among them, amino acid availability is an important factor because amino acids might interact with other 
components in the diet57. O’Quinn et al.26 reported that digestible lysine increased from 0.80% to 1.15% in young 
pigs fed high-lysine maize diets. Compared to wild-type lupin seeds, high-lysine and high-methionine transgenic 
lupin seeds contributed to greater weight gain and higher net protein efficiency and biological value in rats58. In 
this study, lysine availability increased in growing rats fed HFL diets (Fig. 5). Moreover, body weight and PER 
increased in the groups fed high-lysine transgenic rice diets (Figs 2 and 4). The lysine-biofortified transgenic rice 
not only contributes to a more cost-effective and sustainable food/feed, but also reduces nitrogen emission levels.

Due to ethical considerations, this study did not include a group of rats fed with diet without protein to pro-
vide quantitation of endogenous nitrogen from protein metabolism, thus the protein apparent digestibility was 
calculated instead of true digestibility. Boisen et al.59 reported that true digestibility of three raw Indica rice diets 
(7.5 to 10.4% protein) ranged between 68% and 78%. In this study, apparent digestibility was slightly lower (60% 
to 75%), possibly due to a lower protein content in milled rice than in non-milled rice. Lysine availability ranged 
between 85% and 90%, which was slightly higher than that reported from high-lysine corn (80%)60.

Dietary lysine may affect the metabolism of other nutrients61, 62, 63. Excessive dietary lysine has antagonis-
tic effects on arginine in rats, chicks, guinea pigs, and dogs, but not in growing pigs or adult cats64, 65. Baker64 
reported that excessive dietary lysine enhances arginine catabolism by inducing the synthesis of arginase in the 
kidneys. In pigs, excessive dietary lysine affects growth performance rates65. In addition, excessive lysine may 
affect calcium metabolism, protein methylation, and hormone synthesis in animals46, 62, 66. In fish, excessive lysine 
decreases protein and lysine deposition67. In this study, we evaluated the effects of lysine on the absorption of 
other amino acids. The results revealed that lysine had no obvious effects on arginine, threonine, valine, phenyla-
lanine, or histidine absorption in the WT40 group (Fig. 5 and Supplementary Fig. S3).

The shape and slope of dose-response curves have been used to assess drug doses, relative biological effective-
ness, dietary nutrient requirements67, 68, 69, 70. In this study, we obtained a linear relationship between lysine con-
centrations and weight gain, food efficiency, apparent digestibility, PER, and lysine availability (Fig. 7). However, 
food intake was not affected (P > 0.05) by dietary lysine concentrations71. The curve fitting results revealed that 
apparent digestibility, PER, and lysine availability of high-lysine transgenic rice HFL1 and HFL2 were slightly 
superior to the theoretical values (Fig. 7f). It might due to: (1) The HFL1 and HFL2 contain not only higher 
lysine content but also more other nutrients, such as total protein and leucine (Table 2 and Supplementary 
Table S1); (2) The increase level of lysine in biofortified rice gives much higher nutritive value than that in 
L-lysine-supplemented WT rice. Taken together, the present HFL transgenic rice lines had higher nutritional 
value not only than the non-transgenic wild type but also wild type rice supplemented with corresponding level 
of L-lysine (Figs 2–4, Table 2, and Supplementary Table S1). Therefore, our lysine biofortified rice could be fur-
ther considered for either food or feed application. We are currently conducting food safety assessment of these 
transgenic rice.

Methods
Rice flour preparation.  Two high-lysine pyramid transgenic rice lines HFL1 and HFL2 and the non-trans-
genic wild-type (WT) Wuxiangjing 9 (Oryza sativa L. spp. japonica) were simultaneously grown at the exper-
imental fields of Yangzhou University (Yangzhou, China) under identical climatic conditions. Seeds were 

http://S3
http://S1)
http://S1


www.nature.com/scientificreports/

8Scientific Reports | 7: 1389  | DOI:10.1038/s41598-017-01555-0

harvested, milled, and processed into flour for composition analyses. For nutrient analyses, three random samples 
were selected from each type of rice, and each sample was analyzed in triplicate.

Diet preparation.  A total of six rice diets were prepared based on the American Institute of Nutrition AIN-
93G formulation (Table 1) for feeding experiments72. Two diets, HFL1 and HFL2, were prepared with rice flour 
from HFL1 and HFL2, respectively. The WT diet contained rice flour from the non-transgenic control WT. The 
WT10, WT20, and WT40 diets were prepared from WT rice flour supplemented with different concentrations 
(0.235, 0.47 and 0.94 g/kg, respectively) of crystalline L-lysine (Sigma, USA). L-lysine-supplemented WT rice 
contained 10% (WT10), 20% (WT20), and 40% (WT40) more lysine than the WT rice flour. Accordingly, HFL1 
and HFL2 transgenic rice lines contained about 24% and 19% more total lysine content, respectively, in grains 
compared with that of the WT rice (Table 2).

All the above six diets contained the same level of mineral, vitamin and fiber. The protein, amino acids 
and starch were solely derived from rice and lysine supplement, amounting up to 85% (by weight) of the diets 
(Table 1). The rice diets were vacuum-packed with polyethylene bags until use.

Animals and experimental design.  Animal feeding experiments were carried out in an animal house 
of the the Chinese University of Hong Kong (CUHK; Hong Kong, China). The experimental procedure was 
approved by the Animal Experimentation Ethics Committee of CUHK (AEEC No. 14/131/MIS). All experiments 
were performed in accordance with the guidelines for the use of live animals. In this study, 48 weaned, male 
Sprague-Dawley (SD) rats (3 weeks of age, body weight at 50 g around) were divided into six groups (with eight 
rats per group) and fed the corresponding diets (Table 1). Initially, rats were housed individually in polycarbonate 
cages with stainless steel covers. The room was maintained at 22 ± 2 °C and 45 to 60% relative humidity with 12-h 
light/dark daily cycles. Following a seven-day acclimation period, rats were housed individually in stainless steel 
metabolic cages in the same environment, and fecal and urine samples were collected. After six days of nitrogen 
balance, the rats were transferred to the polycarbonate cages for the end of the experiment.

During the experiments, the rats had ad libitum access to feed and water. Body weight and food intake were 
recorded daily. Urine and fecal samples were stored at −80 °C. At the end of the experiment, the rats were anaes-
thetized with sodium barbital and blood was collected through cardiac puncture. Serum was collected from blood 
samples by centrifugation (3000 x g for 30 min at 4 °C), then stored at −70 °C until analysis. Muscle samples from 
Longissimus dorsi, liver, heart, kidneys, stomach, spleen, lung, and intestine were collected and weighed. All sam-
ples were stored at −70 °C until analysis.

Chemical analysis.  Dry matter, ash, fiber, and total fat of rice flours were determined by AOAC methods73. 
Carbohydrate concentration was calculated using the following equation, carbohydrates (%) = 100% − (% pro-
tein + % fat + % moisture + % ash)73. Crude protein content was estimated by Kjeldahl74. Starch and amino acid 
content were determined as reported by methods we used previously25, 75. Moisture in grains and muscle were 
determined by standard methods70. The organ samples were freeze-dried and then ground for nitrogen analyses. 
The serum was deproteinized using an Ultrafree-MC 10,000 nominal molecular weight limit filter unit (Millipore, 
Bedford, MA, USA) at 5000 g, 4 °C for 30 min76, and the supernatant filtrate was analyzed for amino acids by 
HPLC analysis25.

Feces and urine, which were collected daily during six days of nitrogen balance, were pooled and stored at 
−80 °C77, 78. The samples were freeze-dried and ground for nitrogen and amino acid analyses. The dried urine 
samples were acidified with 1 mol/L HCl, and the dried fecal samples were hydrolyzed by HCl and subjected to 
HPLC analysis25.

Calculations
Amino acid score (AAS) was calculated according to WHO recommendations for school-aged children and ado-
lescents34. The AAS of sulfur-containing amino acids (methionine and cysteine) was not determined because 
cysteine was added to the diets. AAS was calculated using the following equation, AAS = amino acid (mg) in 
1 g of test protein/reference pattern. The reference pattern of each amino acid is presented in Supplementary 
Table S3. Food intake (g diet/rat/day) was determined from the average amount of diet consumed by each rat 
during 70 d. Food efficiency (%)79 was calculated as body weight gain (g)/food intake (g) × 100. Apparent pro-
tein digestibility of proteins was calculated from (IP - FP) × 100/IP, where IP and FP represent ingested proteins 
and fecal proteins by weight, respectively. Protein content was calculated using a nitrogen-to-protein conversion 
factor of 6.25. Protein efficiency ratio (PER) was determined as: PER = (final body weight - initial body weight)/
protein intake80. Amino acid availability was determined by the method45, 81:

= −
× .

amino acid availability(%) (the total intake of amino acid fecal excretion of amino acid)/
(total intake of amino acid) 100

Statistical analysis.  Results are presented as mean ± SD. Statistical comparisons were designed to determine 
whether the differences between the transgenic and WT groups were attributed to lysine content. Homogeneity 
of variance was determined by one-way analysis of variance (ANOVA) using SPSS 17.0 for windows (SPSS Inc., 
Chicago, IL, USA). Differences were considered significant at P < 0.05. Regression model and curve fitting were 
used to determine the optimal dietary lysine concentration for growing rats. The relationship between dietary 
lysine and biological indicators were subjected to regression analysis. Theoretical values were determined from 
curve fitting.
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