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Abstract: Targeting cancer hallmarks is a cardinal strategy to improve antineoplastic treatment.
However, cross-talk between signaling pathways and key oncogenic processes frequently convey
resistance to targeted therapies. The p53 and Wnt pathway play vital roles for the biology of
many tumors, as they are critically involved in cancer onset and progression. Over recent decades,
a high level of interaction between the two pathways has been revealed. Here, we provide a
comprehensive overview of molecular interactions between the p53 and Wnt pathway discovered in
cancer, including complex feedback loops and reciprocal transactivation. The mutational landscape
of genes associated with p53 and Wnt signaling is described, including mutual exclusive and co-
occurring genetic alterations. Finally, we summarize the functional consequences of this cross-talk
for cancer phenotypes, such as invasiveness, metastasis or drug resistance, and discuss potential
strategies to pharmacologically target the p53-Wnt interaction.
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1. Introduction

Cancer is the second most common cause for premature death worldwide [1] and,
therefore, a major medical challenge. In recent decades, considerable insights into the
biology of cancer have been obtained, and this knowledge has been partly translated into
novel therapeutic approaches exploiting tumor-specific cellular and molecular vulnerabili-
ties [2,3]. Among the identified hallmarks of cancer, resistance to cell death, mutational and
genomic instability, and sustained oncogenic signaling play exceptional roles as druggable
targets [4]. The importance of these hallmarks for cancer biology is further highlighted by
the high frequency of mutational events observed in genes associated with these key onco-
genic processes, including TP53, APC, PIK3CA or KRAS [5]. Furthermore, many hereditary
cancer syndromes can be traced back to the dysregulation of either mutational stability
(e.g., Li-Fraumeni syndrome, Lynch syndrome) or intracellular signaling (e.g., Familial
adenomatous polyposis [FAP] syndrome, Cowden syndrome) [6]. Targeting these hall-
marks is seen as a fundamental approach to improve cancer therapy. However, while many
small molecules directed against these altered processes, such as kinase inhibitors, have
been developed and tested in preclinical models, only few compounds were successfully
introduced into clinical practice. A potential reason for this failure is that cancer hallmarks
are often tightly intertwined in feedback and -forward loops, resulting in molecular and
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cellular networks that are robust to external perturbations, e.g., drug treatment [7,8]. Hence,
deciphering critical intersection points between cancer hallmarks can reveal novel and
potent therapeutic targets. Two pathways that play major roles for tumor biology are the
p53 and Wnt signaling pathway, as they act as central nodes of many cancer hallmarks. In
this review, we summarize how p53 and Wnt signaling interact in cancer through multiple
regulatory routes and on different molecular levels [9–11]. The mutational landscape of
p53 and Wnt associated genes across different cancer entities is outlined, with a focus on
co-occurring or mutual exclusive mutational events. The phenotypic consequences of the
cross-talk between p53 and Wnt pathways for major tumor phenotypes are highlighted
and therapeutic opportunities by targeting this interaction are discussed.

2. p53 and Its Role in Cancer

The transcription factor p53, encoded by the TP53 gene, is one of the most well-studied
human genes [12]. p53 functions as a sensor for a variety of cellular stress signals, including
DNA damage, oncogene activation and hypoxia. As a response to these stimuli, p53 can
trigger apoptosis, cell cycle arrest and senescence through the transcription activation of
key regulators (Figure 1A) [6,13]. The critical role of p53 for tumor suppression is well
described by loss-of-function mouse models that spontaneously develop tumors in a variety
of tissues, such as soft tissue sarcoma or lymphoma [14,15]. Functionally, mutations in
TP53 can lead to either inactivation or gain-of-function of the protein [16,17]. Murine
tumor models indicate that tumors arising from either gain- or loss-of-function mutations
have distinct phenotypes, underlining that mutant p53 can have oncogenic properties as
well [18,19]. A major characteristic of mutant p53 is that it can exert a dominant-negative
inhibition of its wild-type counterpart [20,21]. In addition, specific missense p53 mutants
are able to actively reshape the interactome of p53, thereby modulating cellular pathways
and support cancer proliferation, migration and metastasis [10]. Over recent decades,
more diverse cellular effects of p53 were revealed, which contribute to tumor growth
control as well. For instance, p53 can regulate cellular metabolism [22] and sensitize cells to
ferroptosis-associated cell death [23]. In addition, p53 also controls autophagy [24], cellular
differentiation and stem cell renewal [25], which are critical processes for the maintenance
of cancers. The functional relevance of these additional mechanisms for tumor suppression
is highlighted by several mouse models with specific p53 mutations, which show that p53
retains tumor suppressive activity despite impaired effects on cell cycle and apoptosis
regulation [26,27].

p53 Associated Proteins and Transcriptional Targets

p53 exerts its tumor suppressive function through interaction with a variety of
upstream and downstream interaction partners [28]. The main regulator of p53 is the
E3 ubiquitin ligase MDM2 [29], which can activate the degradation of p53 by the ubiquitin
system [30,31]. The transcription of MDM2 itself can be activated by p53, resulting in a
negative feedback loop that balances levels of MDM2 and p53 [32]. Besides ubiquitina-
tion, p53 can also be phosphorylated at Ser15, Thr18 or Ser20 residues, which interrupts
its interaction with MDM2 [33–35]. In untransformed cells, these three residues are not
phosphorylated, and p53 is maintained at low levels by MDM2 [34,36]. In the presence
of specific stress signals, protein kinases, such as ATM, DNA-PK, CHK1 and CHK2, are
activated and phosphorylate p53 at either of the three aforementioned residues, leading
to the stabilization of p53 (Figure 1A) [37]. After the stress stimulus is reverted, the these
kinases are no longer active, and p53 will be quickly dephosphorylated by phosphatases
such as PP1, leading to its subsequent degradation by the accumulated MDM2 [38]. Further-
more, p53 is subject to many other post-translational modifications, such as acetylation and
methylation, which can fine-tune its function [39,40]. In concert with its family members
p63 and p73, p53 controls the expression of a large network of target genes [41,42]. The
main transcriptional targets can be summarized into groups that regulate the cell cycle (p21,
Gadd45 and 14-3-3), DNA repair and damage prevention (p53R2, p48 and sestrins), and
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apoptosis (Bax, Apaf-1, PUMA and NoxA) [41]. In addition, several genes involved in key
metabolic processes are transcriptionally controlled by p53 [22]. For instance, p53 regulates
glucose metabolism through the expression of GLUT transporters [43] and TIGAR [44],
a protein that blocks glycolysis. Furthermore, fatty acid metabolism is also under the
transcriptional control of p53 via the expression of AMPKα2, LKB1, and SIRT1 [45]. Finally,
transcription-independent effects of p53 were also described, for instance on apoptosis
through physical interaction with Bcl-2 family members, providing an additional layer of
complexity to the biological function of p53 [46].
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activation of specific effector proteins (ATM, ATR, DNA-PK, CHK1/2, P14ARF), which stabilize
p53 through phosphorylation or by inhibition of MDM2, the main negative regulator of p53. p53
itself can increase expression of MDM2, thereby creating a negative feedback loop. Activation of
p53 increases the transcriptional activity of many target genes which are involved in key cellular
processes (exemplary processes with target genes are shown). (B) Schematic overview of canonical
Wnt signaling. In the inactive state (left), the absence of WNT ligands results in the phosphorylation
of β-catenin by the destruction complex, which comprises the scaffold protein AXIN1, APC, GSK3β
and CK1α. Upon phosphorylation by GSK3β, β-catenin is ubiquitinated and targeted for proteasomal
degradation. Canonical Wnt signaling is activated upon binding of secreted WNT ligands to FZD
receptors and LRP co-receptors (right). Plasma membrane levels of FZD and LRP receptors are
regulated by secreted Wnt antagonist, such as DKK, or by the R-spondin/RNF43/ZNRF3 module.
Upon binding of WNT ligands, LRP receptors are phosphorylated by CK1α and GSK3β, which leads
to the activation of Dishevelled (DVL) proteins, thereby inactivating the destruction complex. As a
consequence, β-catenin is stabilized, translocates to the nucleus and forms an active complex with
LEF (lymphoid enhancer factor) and TCF (T-cell factor) transcription factors and co-activators such
as BCL9, leading to the transcriptional activation of multiple target genes.

3. Wnt Signaling

Wnt signaling comprises several evolutionarily highly conserved pathways which
are modulated by the family of Wnt proteins (WNTs), and is diverted into canonical and
non-canonical Wnt signaling [11]. The Wnt pathway is implicated in crucial biological
processes in animals, including embryological development, morphogenesis and tissue
organization [9]. WNTs are secreted from cells to exert their biological function in an
autocrine or paracrine fashion [47]. The effect of WNTs is mediated by a multitude of
receptors and co-receptors including Frizzled (FZDs), LRP or ROR/RYK [48,49]. Canonical
Wnt signaling depends on β-catenin (encoded by the CTNNB1 gene), which transduces
Wnt signals into a transcriptional response in cooperation with TCF/LEF transcription
factors [50]. The abundance and subcellular distribution of β-catenin is tightly regulated
by the destruction complex, a multiprotein complex consisting of its core components APC,
GSK3β, AXIN1/2, CKIα and the ubiquitin ligase β-TrCP [28]. By means of phosphorylation
and subsequent ubiquitination, the destruction complex primes β-catenin to proteasomal
degradation (Figure 1B) [51]. Due to its important biological function, the canonical Wnt
signaling is tightly regulated on several levels. On the receptor level, the abundance
of WNTs, their respective antagonists (SFRPs, WIFs, DKKs, NOTUM) and their cognate
membrane receptors influence canonical Wnt signaling [48,52]. Furthermore, R-spondin
ligands were found to positively affect Wnt signaling [53]. These secreted proteins bind to
the plasma membrane receptors LGR4-6, which in turn inhibit the function of the two E3
ubiquitin ligases ZNRF3 and RNF43 [54]. The ZNRF3/RNF43 module targets FZD receptors
for lysosomal degradation, which limits its availability at the plasma membrane [55].
Further downstream, the pathway can be regulated by the composition of the destruction
complex, and by the interaction and stability of its core components [51]. The destruction
complex frequently integrates signals from other oncogenic pathways that modulate Wnt
signaling, such as the Ras and Hippo pathways [56,57]. Lastly, transcriptional co-regulators
of LEF/TCF transcription factors, such as CBP/p300 or BCL9, can impact the biological
effects of the canonical Wnt pathway [9]. In adult human tissues, canonical Wnt signaling
is required for the maintenance of stem cells and tissue renewal [58]. Spatiotemporal
regulation of Wnt signaling therefore plays a vital role for tissue homeostasis and renewal,
which is well described for the intestinal epithelium [59–61]. In contrast to canonical Wnt
signaling, non-canonical Wnt signaling acts independently of β-catenin. It is initiated by a
subgroup of Wnt ligands (e.g., WNT5A and WNT11) in interactions with specific FZDs and
ROR/RYK receptors [62]. Non-canonical Wnt signaling cascades include the Wnt planar
cell polarity (Wnt-PCP) and Wnt-Ca2+ pathway [11]. These pathways modulate processes
such as cell migration and polarity and are implicated not only in development and tissue
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homeostasis, but also in pathophysiological processes such as metastasis [63–65]. Due to
the key role of Wnt signaling in cell proliferation, polarity and migration, it is not surprising
that aberrant Wnt signaling is a vital component of several diseases [9]. In mice, germline
deletion of Wnt pathway components is often lethal or leads to severe developmental
defects [66]. Upregulation of canonical Wnt signaling occurs in many cancer types, such as
colorectal or breast cancer [67]. For further reading on the role of Wnt signaling in cancer,
we refer to more comprehensive reviews [9,11,48,68–70].

4. The Mutational Landscape of p53 and Wnt Pathway Genes in Cancer

Wnt signaling is frequently dysregulated in human cancer. Depending on the type
of cancer, the Wnt pathway can be upregulated by different mechanisms, including the
overexpression of specific components [71,72], epigenetic dysregulation (e.g., APC promoter
hypermethylation [73]), somatic mutations [11] or gene fusions [74]. As regulation of Wnt
signaling is highly complex, cancer-relevant mutations occur on different levels of the
pathway, with specific functional implications. For example, truncating mutations of
RNF43 or ZNRF3 can result in a ligand-dependent hyperactivation of Wnt signaling [75].
Furthermore, genetic alterations are frequently observed in components of the destruction
complex, such as APC or AXIN1 [76–78], but can also occur on the level of nuclear signal
transducers (CTNNB1, TCF7L2) [79,80]. These different mutations show a heterogenous
distribution across cancer types with some genetic alterations occurring predominantly in
selected cancer entities, indicating tissue-specific dependence on differential Wnt pathway
activation to enable carcinogenesis [80,81] (Figure 2A). For instance, mutations of APC
occur as an early driving event in colorectal carcinogenesis and can be observed in ~50% of
sporadic colorectal cancers [82,83]. APC mutations also occur in 20–25% of small intestinal
cancers as well as in 12–32% of gastric cancers [84–86]. Heterozygous germline mutations
of APC predispose to colorectal adenomas and early-age colorectal cancer, which are
described by the familial adenomatous polyposis (FAP) syndrome [87]. Mutations of
the Wnt pathway are found in several cancer entities besides gastrointestinal cancers. In
hepatocellular carcinoma, gain-of-function mutations of CTNNB1 (20–25%) and loss-of-
function mutations of AXIN1 and AXIN2 are frequently observed [5]. Furthermore, in
endometrial cancer, RNF43 and CTNNB1 mutations are regularly detected, with CTNNB1
mutations being associated with aggressive cancers and poor survival [75,88]. Moreover,
different Wnt pathway mutations are implicated in prostate cancer, and a significant number
of castration-resistant tumors carry mutations of CTNNB1, APC or RNF43/ZNFR3 [89].

TP53 is the most frequently mutated gene in cancer [5,81]. The Li–Fraumeni-syndrome,
a hereditary disposition to multiple types of cancer, is caused by heterozygous germline
mutations of TP53, indicating a conserved role for tumor suppression across different
tissues [90]. Data from the International Agency for Research on Cancer database show that
of all observed TP53 single nucleotide substitutions in cancer, 88% are missense mutations
which occur in the DNA-binding domain [91,92]. Known mostly as a tumor suppressor
gene, gain-of-function phenotypes of mutant p53 have also been described [91,93]. For
instance, missense mutations, but not the deletion of TP53, could drive tumor cell invasion
and activate Wnt/β-catenin signaling to enhance cancer invasiveness in a colorectal cancer
mouse model [94]. In contrast to p53, few mutations are observed for its most important
binding partner, MDM2. However, MDM2 amplifications are frequently found in sarcomas
and preferentially occur in TP53 wild-type tumors [58].

An indicator of functional interaction between genes in cancer is mutual exclusion or
co-occurrence of genetic alterations [95]. In a study of prostate cancer tissue, mutations in
the Wnt/β-catenin signaling pathway were found to occur less frequently in TP53 mutant
than in TP53 wild type samples [96]. Moreover, CTNNB1 mutations occurred mutually
exclusive to TP53 mutations in a panel of hepatocellular cancer tissue samples, suggesting
that either of the two mutations is sufficient to initiate carcinogenesis [97]. A pan-cancer
study revealed the mutual exclusivity of TP53 mutations with certain driver mutations
(such as VHL mutations in renal clear cell carcinoma), but not with APC mutations in
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colorectal cancer [81] (see Figure 2B for examples). This corroborates the assumptions of
the adenoma-carcinoma-sequence model, which suggests that colorectal cancer requires
mutations in both APC and TP53 for progression [81,83]. Taken together, current cancer
genomics data indicate a cancer type-specific interplay between mutations in the Wnt and
p53 pathway. However, the functional implications of these distinct mutational patterns
are not yet understood.

As mutations of the Wnt and p53 pathways play an important role for cancer biology,
many studies correlated the presence of these mutations with cancer aggressiveness and
patient survival. Occurrence of TP53 mutations was generally found to be associated
with poor survival in cancer patients. In several tumor entities, including hepatocellular
carcinoma [98], lung adenocarcinoma [99], CRC [100,101], bladder cancer [102] and breast
cancer [103,104], TP53 mutations predicted poor survival. Furthermore, in a meta-analysis,
a correlation between TP53 mutation and risk of distant metastasis was observed [105].
In contrast, the prognostic value of mutations in components of the Wnt pathway is
more diverse. In CRC, studies have shown either an association of APC mutations with
favorable prognosis or no influence on patient survival [106–108]. However, CRC with
concomitant APC, KRAS and TP53 mutations were found to have a poor prognosis [107],
underlining the importance of combined APC and TP53 mutations for the biology of CRC.
In other cancer types, APC mutations are associated with either reduced or increased
survival [109,110]. Similarly, CTNNB1 mutations are differentially associated with survival.
In hepatocellular and lung adenocarcinoma, no association of the CTNNB1 mutational
status with prognosis was found, while in certain subtypes of early stage endometrial
carcinoma, CTNNB1 mutations predicted disease recurrence and reduced disease-free
survival [111–113]. However, these results need to be interpreted with care, as sample sizes
and definition criteria of mutations vary significantly between studies.
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tissue type is shown. (B) Examples for mutual exclusive and co-occurring mutations in Wnt and p53
pathway associated genes. For Venn diagrams, only samples which were tested for mutations in both
of the indicated genes were included. For this subset, the percentage of samples with mutations of
either one or both genes were calculated. Tumor genome sequencing data were obtained from the
COSMIC database [114].
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5. Molecular Interactions between p53 and Wnt Pathway in Cancer

Observations from a variety of tumor models suggest that the p53 and Wnt signaling
pathways cooperate with each other to drive tumor initiation and progression [17,80].
Therefore, many studies have focused on identifying molecular mechanisms that underlie
this interaction. In the following chapter, we comprehensively summarize the different
levels of cross-talk between the p53 and Wnt pathways which were observed in various
cancer models (Figure 3).
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Figure 3. Molecular interactions between p53 and Wnt signaling in cancer. (A) Effects of Wnt
pathway components on p53 function. These include β-catenin-dependent upregulation of P14ARF,
an inhibitor of MDM2, the main negative regulator of p53. Other interactions include the modulation
of p53 function by direct interaction with GSK3β, Wnt-dependent repression of p53 transcription via
miR-52, and stabilization of p53 by WNT5A. Interacting Wnt pathway components are colored in
red. (B,C) Biological effects of wild-type (blue symbol) and mutant p53 on different Wnt pathway
components (colored in red). Inhibitory (B) and activating (C) interactions are shown. Arrows indicate
activation and T-shaped arrow heads indicate inhibitory interactions. The main inhibitory effects of
p53 on Wnt signaling include GSK3β and SIAH1-dependent ubiquitination of β-catenin, miRNA and
lncRNA-mediated repression of Wnt target genes, and induction of secreted Wnt antagonists such as
DKK1 (B). p53 stimulates Wnt signaling by increasing the expression of different WNT ligands and
Fzd receptors (C).

5.1. Interactions of p53 with the β-Catenin Destruction Complex

The autoregulatory loop of β-catenin and p53 is one of the earliest discovered and
most well described molecular interactions between both pathways in cancer. In 1999,
Damalas et al. demonstrated that the overexpression of β-catenin induced the accumula-
tion of transcriptionally active p53, which triggered an inhibitory p53 response in lung
adenocarcinoma cells [115]. This β-catenin effect was caused by the inhibition of the MDM2-
mediated proteolytic degradation of p53. The same stabilization of p53 could be triggered
by the overexpression of an upstream Wnt pathway component, Dishevelled (DVL) [115].
Later, the same group showed that excess β-catenin caused the constitutive accumulation of
p53 via transcriptional upregulation of an alternative reading frame product of the INK4A
tumor suppressor locus (P14ARF/CDKN2A), which binds to and inhibits MDM2 [116]
(Figure 3A). As a consequence, cellular senescence is induced, which is considered as
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a safeguard mechanism against Wnt-induced carcinogenesis [116]. Correspondingly, in
p53-impaired conditions, either caused by the expression of a p53 loss-of-function vari-
ant or ablation of P14ARF, β-catenin regains its oncogenic effects and is able to drive
carcinogenesis, most notably in colorectal cancer [116,117].

Interestingly, high levels of wild-type, active p53 were found to downregulate
β-catenin, thus generating a bidirectional negative feedback loop between p53 and Wnt
signaling [118]. The underlying mechanism relies on ubiquitination and proteasomal degra-
dation of β-catenin, which requires the function of GSK3β [118], a core component of the
destruction complex (Figure 3B). Mutations in GSK3β phosphorylation sites of β-catenin,
which are commonly observed in human cancers [119], renders the protein more resistant
to p53-stimulated ubiquitination and subsequent proteasomal degradation [118].

Furthermore, p53 can also directly interact with GSK3β which modifies the structure
and function of both interaction partners. In neuroblastoma cells, an association of GSK3β
with p53 was observed upon chemotherapy-induced DNA damage [120], which led to an
activation of GSK3β. Interestingly, this interaction occurs in a nuclear protein-complex,
suggesting a function of GSK3β that is independent from its role in the cytosolic destruction
complex. In another study, the C-terminus of the p53 basic domain and the N-terminus
of GSK3β were found to be required for the mutual interaction, which resulted in a
change of p53 acetylation [121]. The functional consequences of this p53-GSK3β interaction
are complex and partly contradictory. For instance, the inhibition of GSK3β by either a
dominant negative mutant or pharmacological inhibitors could attenuate p53-dependent
induction of p21 and caspase-3 upon DNA damage [120]. This observation was confirmed
by another study which showed that parallel treatment of colorectal cancer cells with the
DNA damaging agent doxorubicin and GSK3β inhibitors could reduce p53-dependent p21
induction [122]. However, p53-dependent apoptosis was increased under these conditions,
which relied on the BAX-associated mitochondrial apoptosis pathway. In contrast, another
study observed that targeting GSK3β by RNAi or pharmacological inhibitors resulted in
p53-dependent induction of p21 and apoptosis in colorectal cancer cells harboring wild-type
p53, thereby inhibiting tumor growth in xenograft mice models [123].

Ablation of another component of the β-catenin destruction complex, CKIα, could
trigger the activation of the p53 pathway. In a mouse model, this p53 activation counteracted
the carcinogenic effects of Wnt hyperactivation, which was induced by the gut-specific
ablation of Csnk1a, the mouse homologue of CKIα [124]. Additional ablation of p53 or its
target gene p21 resulted in increased invasive tumor growth in this mouse model, indicating
a network of p53 and Wnt signaling against intestinal carcinogenesis [124]. However, if
CKIα and p53 also interact directly on a molecular level is yet unclear.

Furthermore, p53 was reported to promote the expression of the E3 ubiquitin ligase
SIAH1 [125]. SIAH1 leads to the polyubiquitination of β-catenin through a multiprotein
complex that also engages APC and thereby reduces Wnt activity [125–127] (Figure 3B).
Through the SIAH1 axis, not only ectopically expressed p53, but also the endogenous
p53, induced by UV irradiation or the DNA-damaging agent doxorubicin, could mediate
β-catenin degradation [125]. In addition, hypoxia, a typical feature of the tumor mi-
croenvironment, was shown to reduce β-catenin levels by the upregulation of SIAH1 in a
p53-dependent manner [128].

In summary, the interactions between p53 and the β-catenin destruction complex
are highly diverse. The underlying mechanisms and the phenotypic consequences are
not understood in all cases and may depend on the mutational background of the tumor
models in which these interactions were observed.

5.2. Interactions of p53 with Secreted WNT Ligands and Antagonists

p53 was also found to interact with Wnt signaling via WNT ligands and secreted
antagonists (Figure 3C). Webster et al. identified a positive feedback loop between p53 and
non-canonical Wnt signaling in melanoma, showing that high WNT5A levels could stabilize
wild-type p53 and increase its half-life, thus generating a slow-cycling, therapy-resistant
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cancer phenotype [129]. Furthermore, in lung cancer and glioma cells, an antagonizing
network against tumor formation relying on p53 and DKK1, a secreted inhibitor of Wnt
signaling, was described [130]. Wild-type, but not mutant p53, induced DKK1 expression
upon DNA damage through binding to a responsive element located upstream of the DKK1
transcription start site [130] (Figure 3B). Recently, an interaction of p53 with canonical Wnt
signaling via transcriptional control of WNT7B expression in hepatocellular carcinoma
cells was described [131]. One subunit of TCP1, which is part of a chaperone complex,
activates the expression of WNT7B and β-catenin by interacting with p53, thus influencing
tumor proliferation and metastasis of hepatocellular carcinoma [131]. Moreover, it was
reported that wild-type p53 could induce the transcription of WNT3, which in turn activates
canonical Wnt signaling, and thereby promotes cancer stemness in different colorectal
cancer models, including ApcMin/+/Lgr5EGFP mice and cancer organoids [132]. Similar
activating effects of wild-type p53 on the expression of different secreted WNTs, particularly
WNT3, were also observed in human and mouse embryonic stem cells [133,134]. These
observations indicate that the transcriptional induction of secreted WNT ligands by p53 is
not restricted to cancer but can be traced back to embryonic development.

5.3. Interactions of p53 with Wnt Transcription Factors

While manifold cross-talk of p53 with WNT ligands and destruction complex com-
ponents were observed, much less is known about the interaction of Wnt transcription
factors with p53. Rother et al. reported that TCF4, a major transcription factor of the
Wnt/β-catenin pathway, is transcriptionally regulated by p53 [135]. Increased p53 lev-
els were shown to downregulate the expression of TCF4 in cancer cells from different
tissue backgrounds [135] (Figure 3B). This effect was dependent on wild type p53, and
not observed in p53 mutants with deficient DNA binding sites. However, the underlying
mechanism is not completely understood. No potential p53-binding sites were identified in
the TCF4 promoter region, but p53 could downregulate the TCF/LEF-responsive reporter
even in the presence of the degradation-resistant β-catenin mutant S33Y. This finding
indicates that the downregulation of TCF4 by p53 is independent of changes in β-catenin
levels. However, further studies are needed to further confirm this interaction between
TCF4 and p53.

5.4. Mutant p53 Specific Interactions with Wnt Signaling

It has been long suggested that the mutational inactivation of TP53 could trigger the activa-
tion of Wnt signaling through promoting the aberrant accumulation of β-catenin [118,136,137].
However, not only loss-of-function, but also gain-of-function mutations of p53 with onco-
genic properties were reported to interact with Wnt signaling. For instance, Kadosh et al.
uncovered that the frequently occurring p53R172H gain-of-function mutation could impose
both tumor-suppressive and oncogenic effects in mouse models of Wnt-driven intestinal
cancer (generated by Csnk1a1 (encoding CKIα) deletion or APCmin mutation) [138]. The
p53R172H mutant attenuated the formation of tumors in the proximal gut (duodenum and
jejunum) while enhancing tumorigenesis in the ileum/colon. Mechanistically, p53R172H

interferes with the Wnt pathway by interrupting the TCF4-chromatin interaction, leading to
tumor suppression and the promotion of differentiation in mouse tumor-derived organoids.
Surprisingly, when the gut microbiome was eradicated by antibiotic treatment, p53R172H

exerted a tumor suppressive effect also in the distal gut, which was associated with reduced
dysplasia and diminished Wnt signaling. The effect of the gut microbiome in counteracting
p53 and promoting tumorigenesis was specifically mediated by a bacterial metabolite called
gallic acid [138]. These findings demonstrate that environmental factors can influence the
interaction between Wnt signaling and mutant p53 in cancer. In another mouse model of
intestine carcinogenesis, the effect of the p53R270H mutant, which is also considered as a
gain-of-function mutation, was investigated. A combination of p53R270H with Wnt activa-
tion by the Apc∆716 background resulted in the development of tumors with accelerated
submucosal invasion and enrichment of fibroblasts in the tumor stroma [94]. Interestingly,
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this phenotype was not observed when using p53 null mutants [94]. These mouse models
show that gain-of-function mutations of p53 interact in a distinct manner with the Wnt
pathway in colorectal cancer, leading to specific tumor phenotypes.

5.5. Interactions of p53 and Wnt Signaling Mediated by Non-Coding RNAs

MicroRNA (miRNA) and long non-coding RNAs (lncRNAs) are non-coding tran-
scripts, sized respectively from 19–25 and >200 nucleotides [139,140], with important
functions for tumor biology [141,142]. miRNAs are frequently downregulated in tumors
and play an important role in tumor suppression [143], while lncRNAs act not only as
suppressors, but also as oncogenes [144]. Several miRNAs/lncRNAs have been reported to
participate in the cross-talk of p53 and Wnt pathway. For instance, miR-34, as a well-known
direct transcriptional target of p53 [145], was linked to Wnt signaling in cancers [146].
Mechanistically, p53 suppresses canonical Wnt signaling through expression of miR-34,
which targets several highly-conserved sites of untranslated regions in a set of Wnt pathway
associated genes (CTNNB1, WNT1, LRP6, WNT3 and LEF1), and leads to the repression of
TCF/LEF activity in different cancer cell lines, including breast cancer, colorectal cancer and
neuroblastoma [147,148]. Similarly, in colorectal cancer, miR-552 transduced hyperactive
Wnt signaling to the transcriptional downregulation of p53 [149]. As an underlying mecha-
nism, it was suggested that the β-catenin/TCF4 complex binds directly to the promoter
region of miR-552 and thus enhances its expression [149]. For lncRNAs, it was recently
reported that p53 could transcriptionally target the promoter of the lncRNA ST7 antisense
RNA 1 (ST7-AS1) [150]. LncRNA ST7-AS1 inhibits Wnt target gene expression in human
glioma cell lines, possibly through interaction with PTBP1, a splicing factor belonging to
the subfamily of nuclear ribonucleoproteins. This inhibition of Wnt signaling induced by
the p53-ST7-AS1 axis was able to repress proliferation, migration and invasion in glioma
cells. These examples show that p53 and Wnt signaling are not only interacting through
protein interactions but also through non-coding RNAs.

6. The Impact of p53-Wnt Cross-Talk on Cancer Phenotypes

In specific tumor entities, the interaction of p53 and Wnt signaling has a pivotal effect
on different cancer phenotypes (Figure 4). The importance of this cross-talk for tumor
initiation is highlighted by several genetically engineered mouse models. For instance, the
adrenocortical tissue-specific expression of a gain-of-function β-catenin variant in combi-
nation with Trp53 (the murine homologue of TP53) deletion resulted in the development
of metastatic and hormonally active adrenocortical carcinoma, which shares similar gene
expression profiles with primary human adrenocortical carcinoma [151]. This neoplastic
transformation only occurred in mice harboring both alterations, emphasizing the syn-
ergistic effect of p53 and Wnt signaling for tumorigenesis. Similarly, the tissue-specific
deletion of both APC and TP53 resulted in the development of pancreatic mucinous cystic
neoplasms [152], pancreatic acinar cell carcinoma [153], acute myeloid leukemia [154] and
mammary neoplasms [155]. Notably, haploinsufficiency of APC was sufficient to drive
carcinogenesis in some of these tumor models [153,154]. However, p53 inactivation can also
abolish the dependence of tumor cells on external Wnt stimulation for proliferation. For
instance, in a transgenic mouse model of WNT1-induced mammary adenocarcinoma, loss
of one Trp53 allele enabled the tumors to grow and progress independently of WNT1 stimu-
lation [156]. Chromosomal instability (CIN) is common in many colorectal carcinomas [157].
In the established model of colorectal carcinogenesis, the adenoma-carcinoma-sequence,
p53 puts a brake on cell proliferation and inhibits CIN after the initial APC mutation [83,158].
In a human colon organoid, CRISPR-based engineering of combinatorial APC and TP53
loss resulted in the development of CIN [159].
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Another link between Wnt signaling and p53 signaling was described for cancer
stem cells, which are frequently implied in therapy resistance and metastasis, and often
exhibit an upregulated Wnt pathway [68,160,161]. Physiological and aberrant p53 function
have been shown to contribute to Wnt-driven cancer cell stemness. In colorectal cancer
cell lines and tumor organoids, wild-type p53 stimulates the expression and secretion of
WNT3 upon DNA damage by 5-fluorouracil, which drives cancer stemness and therapy
resistance [132]. Likewise, a gain-of-function mutant of p53 was shown to induce cancer
stemness in colorectal cancer by activating Wnt target genes in an Apc∆716 Trp53R270H mouse
model [94]. Furthermore, in colorectal cancer cell lines, BMP signaling can inhibit Wnt
signaling, while the loss of TP53 renders the cells resistant to BMP-mediated Wnt inhibition,
possibly contributing to colorectal cancer progression [162].

The upregulation of components of the Wnt pathway by loss of p53 signaling has been
shown to play an important role in metastasis formation. In genetically engineered mouse
models of breast cancer, activation of Wnt signaling upon loss of Trp53 could be shown. This
Wnt activation was mediated by the increased expression and secretion of multiple WNT
ligands, which stimulated tumor-associated macrophages and a systemic inflammatory
environment that facilitated tumor metastasis. In line with this finding, inhibition of WNT
secretion in this model could reduce pulmonary metastasis formation [163]. Not only
secreted WNT ligands, but also the expression of their cognate receptors can be increased
by TP53, thereby affecting cancer metastasis. In prostate cancer, deletion of Trp53 has
been shown to upregulate the WNT receptor FZD8, which in turn promotes invasion
and migration in prostate cancer cell lines, but also bone metastasis in a prostate cancer
mouse model [164,165]. These findings are further supported by an electroporation-based
genetically engineered mouse model of prostate cancer [166]. Local overexpression of Myc
and deletion of Trp53 resulted in the formation of metastatic prostate cancers. Interestingly,
the metastatic cancer cells acquired additional mutations in Wnt pathway components
(APC mutations or amplifications of LRP6 and WNT2B), underlining the importance of
Wnt signaling for metastasis [166].

In several models of colorectal carcinogenesis, Wnt activation and loss of normal p53
function interact to promote tumor invasiveness. In a mouse model with intestine-specific
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Apc∆716 Trp53R270H mutations, tumor invasiveness was found to be accelerated. Organoids
derived from these invasive tumors showed an increased expression of Wnt genes such
as WNT5B and FZD10 [94]. In another murine model of intestinal carcinogenesis, an
induction of p53 signaling after Wnt hyperactivation by Csnk1a1 ablation was observed.
The additional deletion of Trp53 drastically increased the invasiveness of the transformed
cells, highlighting the interplay of Wnt hyperactivation and p53 abrogation for colorectal
cancer cell invasion [124]. In summary, several cancer phenotypes are driven by the
interaction of either wild-type or mutant p53 with Wnt/β-catenin signaling, highlighting
the importance of both pathways and their synergistical action for cancer biology. In
particular, metastasis and cancer invasiveness are likely facilitated by the Wnt/p53 cross-
talk. The importance of the Wnt/p53 interaction is particularly relevant in colorectal cancer,
as the sequential hyperactivation of Wnt signaling and the loss of p53 contribute to CIN as
well as cancer stemness and tumor invasiveness.

7. Targeting the p53-Wnt Cross-Talk for Cancer Therapy

As both the p53 and Wnt pathways are critically involved in many cancer pheno-
types, targeting their cross-talk has been considered as a promising anticancer approach.
Efforts have been made, for instance, in colorectal cancer cell lines. In this tumor entity,
Cheng et al. identified a novel inhibitor, labeled as compound 2, that could activate mi-
totic stress signaling, and lead to both the inhibition of canonical Wnt signaling and the
activation of p53 [167]. In xenograft models, this compound could repress tumor growth
with no obvious toxicity. Mechanistically, compound 2 was found to be a tubulin inhibitor,
acting similarly to paclitaxel or vinblastine [167]. Recently, in hepatocellular carcinoma
cells, the natural compound trans-chalcone was reported to increase p53 protein expression
and decrease β-catenin levels, thereby inducing autophagic cell death and decreasing the
metastatic capacity of HuH7.5 tumor cells [168]. Another study in glioblastoma cell lines
showed that a histone deacetylase 8 inhibitor called NBM-BMX was able to downregulate
Wnt/β-catenin signaling and to promote p53-mediated inhibition of the O6-methylguanine
methyltransferase (MGMT) expression in glioblastoma cell lines [169]. This reduction of
MGMT levels increased the sensitivity of tumor cells towards treatment with the alkylating
chemotherapeutic agent temozolomide. Despite promising data, all these identified com-
pounds have pleiotropic effects, and the specificity of this dual inhibition of the Wnt and
p53 pathways, as well as the underlying molecular mechanisms, are not yet clarified.

Alternatively, combining chemotherapeutic agents that elicit a p53 response with
inhibitors of the Wnt pathway is a potential strategy to target specific feedback loops. For
instance, an increased efficacy was observed when 5-fluorouracil was combined with the
WNT secretion/porcupine inhibitor LGK-974 for the treatment of colorectal cancer [132].
5-fluorouracil is known to enhance p53 levels by increasing its translation and protein
stability [170,171]. Cho et al. revealed that 5-fluorouracil treatment also increased Wnt
signaling by stimulating the expression of WNT3, which caused the enrichment of cancer
stem cells in colorectal cancers [132]. Interesting, this effect was dependent on p53, as the
induction of cancer stem cells was not observed in isogenic colorectal cancer cells with loss
of p53 or expression of the non-functional p53R248W/− mutant. Furthermore, the biological
effects caused by the 5-fluorouracil-induced WNT3 expression were inhibited by LGK-974.
Concordantly, LGK-974 reduced regrowth of both patient-derived tumor organoids and
cell lines after 5-fluorouracil treatment [132], indicating that targeting salvage pathways
could be a potent approach for future combination therapies.

Pharmacological modulators of p53 stability were shown to have antineoplastic effects
in preclinical cancer models [172]. One subgroup of p53 modulators, MDM2 inhibitors,
stabilize wild-type p53 and induce cell cycle arrest and apoptosis [173]. MDM2 inhibitors
are currently tested in advanced phase clinical trials as a treatment for hematological
cancers [174]. Interestingly, they were also found to interact with Wnt pathway components
in preclinical studies. For instance, the MDM2 inhibitor nutlin-3a could selectively reduce
growth of CTNNB1-mutated adrenocortical cancer cells, but not of cells with wild-type
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CTNNB1 [175]. In non-small cell lung cancer cells, nutlin-3 treatment was able to reduce
TCF4 expression and thereby sensitize tumor cells to axitinib-induced apoptosis [176].
Furthermore, the beta-carboline-derivate SP141, a small molecule inhibitor of MDM2, could
induce ubiquitination and degradation of β-catenin in pancreatic cancer cells, which was
independent of the effect of the compound on MDM2 [177].

8. Outlook

Targeted cancer therapies aim at modulating core oncogenic and tumor-suppressive
processes [178], but their clinical efficacy is often limited by a network of cellular feedback
mechanisms. Deciphering the precise mechanisms of dysregulation and the associated
interacting networks is, therefore, critical to improve cancer therapy. Both the p53 and
Wnt pathways play key roles in cancer biology, as they have a broad impact on many
cellular processes that are relevant for tumor survival and progression [179–181]. In this
review, we summarized the current knowledge on the interaction of p53 and Wnt signaling
in cancer. Both processes interact on multiple cellular levels, including direct protein
interactions of core components, the regulation of protein stability and the transcriptional
activation of key regulators. This manifold cross-talk can result in both positive and
negative feedback loops, which translate to distinct cancer phenotypes. The quality of
interaction, i.e., mutual activation or inhibition, is largely determined by two factors:
the tissue background of the cancer model and the mutational status of Wnt pathway
components and TP53. As highlighted in this review, specific alterations in TP53 can either
confer loss- or gain-of-function phenotypes. Similarly, genetic alterations of the WNT
pathway can occur at either the ligand-receptor level or in genes of the destruction complex,
resulting in differential effects on tumor biology. Accurate analysis of the combination of
various TP53 mutants and WNT pathway alterations in different tissue models is required
to decipher the context-specific impact of the cross-talk on cancer phenotypes. A potential
approach to disentangle the complexity of these genetic interactions is the combination
of organoid culture with novel genome editing tools. In recent years, organoid cultures
of many primary tissue types have been successfully established, including colon, liver
and lung [182–185]. De novo introduction of mutations in these models could recreate key
steps of carcinogenesis [186,187]. Using novel genome editing tools such as CRISPR base
editing [188], it will be possible to rapidly introduce defined mutations in these normal
tissue organoids, thereby creating isogenic models with different combinations of Wnt and
p53 mutations. In-depth characterization of these models will enable a more profound
insight into the biological consequences and underlying mechanisms of p53-Wnt cross-talk.
As therapeutic strategies directed against both pathways have been largely unsuccessful in
the past, understanding the tissue and mutational contexts of the interaction will help to
develop more tailored and efficient treatment strategies against cancer.
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