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Abstract

Defining the biochemical alterations that occur in the brain during ‘‘normal’’ aging is an important part of understanding
the pathophysiology of neurodegenerative diseases and of distinguishing pathological conditions from aging-associated
changes. Three groups were selected based on age and on having no evidence of neurological or significant
neurodegenerative disease: 1) young adult individuals, average age 26 years (n = 9); 2) middle-aged subjects, average age 59
years (n = 5); 3) oldest-old individuals, average age 93 years (n = 6). Using ELISA and Western blotting methods, we
quantified and compared the levels of several key molecules associated with neurodegenerative disease in the precuneus
and posterior cingulate gyrus, two brain regions known to exhibit early imaging alterations during the course of Alzheimer’s
disease. Our experiments revealed that the bioindicators of emerging brain pathology remained steady or decreased with
advancing age. One exception was S100B, which significantly increased with age. Along the process of aging, neurofibrillary
tangle deposition increased, even in the absence of amyloid deposition, suggesting the presence of amyloid plaques is not
obligatory for their development and that limited tangle density is a part of normal aging. Our study complements a
previous assessment of neuropathology in oldest-old subjects, and within the limitations of the small number of individuals
involved in the present investigation, it adds valuable information to the molecular and structural heterogeneity observed
along the course of aging and dementia. This work underscores the need to examine through direct observation how the
processes of amyloid deposition unfold or change prior to the earliest phases of dementia emergence.
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Introduction

Aging comprises a series of inevitable time-dependent and

progressive molecular changes. The rate at which an individual

ages is genetically determined, but is also powerfully modulated by

the cumulative effects of disease as well as complex environmental

and behavioral factors. Aging is the most important risk factor for

the development of neurodegenerative diseases and in particular

for sporadic Alzheimer’s disease (AD), the most common form of

dementia. An unintended consequence of the impressive enhance-
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ment in average life expectancy has been a dramatic increase in

AD prevalence.

The precuneus (Pc) and posterior cingulate gyrus (PCG) of the

cerebral cortex are regions that are of great neuropathological

interest as they exhibit imaging alterations in the initial stages of

AD development. The Pc is localized to the postero-medial

portion of the parietal lobe and is involved in visuospatial imagery,

episodic memory retrieval and self-consciousness [1]. The PCG is

situated below and adjacent to the Pc and participates in internally

direct thought, memory recollection, control of cognition and

behavior modification due to environmental changes [2]. More-

over, these areas of the brain exhibit loss of gray matter in the

early stages of AD as measured by magnetic resonance imaging

(MRI) voxel-based morphometry [3]. Single photon emission

computed tomography (SPECT) studies revealed that these brain

regions have reduced cerebral blood flow in the initial stages of AD

[4]. The Pc and PCG are watershed perfusion areas irrigated by

the terminal branches of the pericallosal artery, a branch of the

anterior cerebral artery, and/or by the terminal branches of the

posterior cerebral artery [5]. Continuous arterial spin labeling

(ASL) perfusion MRI studies have detected decreased perfusion in

the Pc and PCG in mild cognitive impairment and AD relative to

age-matched healthy controls [6–11]. A reduction in brain

perfusion may precipitate the early failure of energy metabolism

and consequential neuronal and glia injury observed in AD. Both

Pc and PCG regions also demonstrate early stage hypometabolic

activity as shown by fluorodeoxyglucose (FDG)-positron emission

tomography (PET) scans, which is accentuated in apolipoprotein E

(APOE) e4 gene allele carriers [12–20]. In addition, the PCG

demonstrates a significant reduction of mitochondrial cytochrome

C oxidase activity in young adults that carry the APOE e4 allele

[21]. The Pc and PCG have been associated with a higher burden

of fibrillar Ab in cognitively normal older individuals as

determined by Pittsburgh compound B (PiB)-PET scans [22],

although this observation has been disputed [23]. Lastly, the Pc

and PCG are components of the default mode network (DMN), a

complex system of functionally linked neurons active when the

individual is disconnected from the outside environment. The

DMN has been suggested to malfunction in AD and other

neurological disorders [24–26]. Whether these morphological,

biochemical and hemodynamically-related perturbations affecting

DMN communication are a facet of primary AD pathogenesis or

are a secondary process remains to be established.

Aging is the major risk factor for the most prevalent

neurodegenerative disorders, making it of paramount importance

to contrast progressive molecular changes consistent with preser-

vation of cognitive function with those associated with neurological

disease. This task is complicated by the fact that normal aging and

neurodegenerative diseases have many convergent phenotypes

such as mitochondrial dysfunction [27–31], protein accumulation

[32–36], inflammation [33,37–40] as well as variable degrees of

blood-brain barrier dysfunction [41–43]. It has been reported that

only about 17% of elderly non-demented individuals demonstrate

little or no evidence of brain degeneration [44]. To evaluate the

regional neurochemical evolution of the Pc and PCG with aging,

we quantified a selected group of proteins related to neurodegen-

erative diseases. Our objective was to investigate if along the

process of putatively ‘normal brain aging’ the levels of these key

molecules increase, decrease or remain stable. For this purpose, we

examined individuals without clinical evidence of neurological

disease or significant neurodegenerative disease changes and

differentiated solely according to age: young adult (YA), middle-

aged (MA) and oldest-old (OO). The OO group served as a

biochemical benchmark of ‘successful aging’ without clinically

detectable cognitive failure. A substantial body of evidence

suggests that amyloid plaques form well in advance of the clinical

manifestations of cognitive failure [45]. However, it is unclear

whether such deposits induce immediate and directly proportion-

ate consequential biochemical alterations or if responses are

minimal until total amyloid deposition reaches a threshold level.

Our experiments enabled us to assess if the biochemical alterations

associated with dementia accumulate steadily with advancing age

as well as to compare the molecular response profiles exhibited by

YA and MA groups to that of neurologically successful aging

present in the OO cohort. In addition, we discuss the relevance of

these molecules in terms of normal function and their potential

involvement in pathological processes.

Materials and Methods

Human subjects
Three cohorts without clinical evidence of neurological disease

were selected and divided by age: 1) YA (range = 18–38 years), 2)

MA (range = 53–65 years) and 3) OO (range = 91–99 years). The

initial factors for inclusion were: the absence of amyloid deposits as

well as the absence of clinically evident neurological disorders

which was substantiated by neuropathological analyses (Table 1
and 2). A limitation in the study is the unavoidable lack of clinical

and some neuropathological information in the YA group, since

these were young individuals who died as the result of unexpected

accidents. For cases aged 38 and older, all subjects were

participants in the Arizona Study of Aging and Neurodegenerative

Disorders (AZSAND), a longitudinal clinicopathological study.

Autopsies were performed by the Banner Sun Health Research

Institute (BSHRI) Brain and Body Donation Program [46].

Written informed consent was obtained for all clinical and autopsy

procedures, including those related to this study, and all approvals

were obtained by the Banner Health and Western Institutional

Review Boards. Eight of the YA brains (range 18–35 years) were

obtained from The National Institute for Child Health and

Human Development (NICHD) Brain and Tissue Bank for

Developmental Disorders at the University of Maryland (Balti-

more, MD) which receives cases from the Office of the Chief

Medical Examiner (Baltimore, MD). Verbal informed consent was

provided by the donor’s next of kin. The consent process is the

same for minors and adults with the next of kin (an adult) being the

person authorized to make decisions pertaining to the deceased.

Verbal consent must be obtained during the two hour period

between rounds at the Office of the Chief Medical Examiner and

the time that the autopsy starts. One project coordinator reads the

consent to the family and a witness then speaks to the family to

verify that they have given consent for tissue donation. Once

verbal consent is acquired, it is inappropriate to obtain a follow up

written consent, however a follow up letter is sent to the families

acknowledging their tissue donation. The verbal consent has been

approved by the Internal Review Board of the Department of

Health and Mental Hygiene for the State of Maryland and by the

Internal Review Board for the University of Maryland School of

medicine since 1991. Both Pc and PCG were available for all YA

cases with the exception of case #2, for which PCG brain tissue

was not available. All YA individuals died from multiple traumatic

injuries (Table 1). Case #9 (38 years old) was added to this group

which originated from BSHRI. The second and third cohorts with

average ages of 59 (range 53 to 65) and 93 (range 91 to 99) years

were respectively classified as MA and OO. The last MMSE

scores for all the OO individuals were 29–30. APOE genotypes for

all cases were obtained from DNA isolated from cerebellar samples

by a technique modified from Hixson and Vernier [47]. APOE e4
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allele frequencies among the groups were: YA = 5.6%, MA = 0%

and OO = 8.3% (Table 1 and 2). Patient demographics (age,

gender, postmortem interval (PMI)), brain weight, neuropathology

scores (when available) and cause of death of the study subjects are

given in Table 1 and 2.

Neuropathological evaluation
BSHRI cases. Forty mm brain sections were used for

histological studies. Campbell-Switzer, Thioflavine-S, Gallyas

and hematoxylin and eosin (H&E) staining procedures were used

to identify and score the severity of amyloid plaques, neurofibril-

lary tangles (NFT), Lewy-type synucleinopathy and white matter

rarefaction [46]. Amyloid plaque densities were rated as none,

sparse, moderate and frequent and reported numerically as 0, 1, 2

and 3, respectively, using the CERAD templates [48,49]. The

Braak stage (I–VI) was determined by the previously described

method by Braak and Braak [50]. In addition, total plaque score

was obtained by summation of all amyloid plaque types (compact,

neuritic, classical and diffuse) in 5 brain regions: frontal, temporal,

parietal, hippocampal and entorhinal, for a total maximum score

of 15. Similarly, the total NFT score was evaluated as described for

the total plaque score, using the published CERAD templates.

White matter rarefaction (WMR) and total cerebral amyloid

angiopathy (CAA) scores were ascertained in the frontal, temporal,

parietal and occipital lobes and scored as none, mild, moderate

and severe which were converted into numeric scores of 0, 1, 2, 3

(maximum total score of 12). Lewy body disease staging followed

the Unified scheme [51].

Neuropathological evaluation
University of Maryland Cases. Brain sections from the Pc

and PCG were cut at 40 mm and stained for Ab using the 6E10

clone antibody (Millipore, Billerica, MA), for phosphorylated tau

using AT8 antibody (Millipore) [52], and were also processed with

Campbell-Switzer silver stain and thioflavine-S to assess the

presence of AD neuropathology [46].

ELISA quantification
Gray matter (200 mg) from the Pc and PCG were submitted to

ELISA. In brief, brain samples for amyloid-b (Ab)1–40, Ab1–42,

tau and a-synuclein ELISAs were homogenized in 90% glass

distilled formic acid (GDFA) and centrifuged at 250,000 x g for

1 hr. The supernatant was dialyzed against distilled water followed

by 50 mM ammonium bicarbonate. The dialyzed specimens were

lyophilized and reconstituted in 5 M guanidine hydrochloride

(GHCl), 50 mM Tris-HCl, pH 8.0, containing a protease inhibitor

cocktail (PIC, Roche Diagnostics, Mannheim, Germany). For

complete sample preparation details, see reference [53]. Brain

specimens used in ELISA experiments to quantify ApoE, tumor

necrosis factor-a (TNF-a), CD200, brain-derived neurotrophic

factor (BDNF) and glial fibrillary acidic protein (GFAP) were

homogenized in RIPA buffer (see below).

Total protein was quantified in all samples with the Pierce

Micro BCA Protein Assay kit. ELISA kits from Life Technologies

Corp. (Carlsbad, CA) were used to quantify Ab, tau and a-

synuclein while TNF-a and BDNF levels were measured with a kit

from PromoKine (Heidelberg, Germany), according the manu-

facturers’ instructions. The detailed ELISA protocols for ApoE,

CD200 and GFAP are published elsewhere [53].

Western blot analysis
Gray matter (200 mg) from the Pc and PCG was homogenized

in 2 ml RIPA buffer (Sigma, St. Louis, MO) containing PIC
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(Roche) using an Omni TH tissue grinder (Kennesaw, GA) and

centrifuged at 14,000 x g for 20 min in a Beckman 22R centrifuge.

Total protein was determined in the recovered supernatant with a

Micro BCA protein assay (Pierce, Rockford, IL). Supernatant

samples, adjusted to contain equivalent total protein quantities,

were placed into 2X XT sample buffer (Bio-Rad, Hercules, CA)

supplemented with 50 mM dithiothreitol and heated for 10 min at

80uC. Proteins were separated on Criterion XT 4–12% Bis-Tris

26-well gels (Bio-Rad) with XT 1XMES running buffer (Bio-Rad)

containing NuPage antioxidant (Life Technology Corp.) and

transferred onto 0.45 mm nitrocellulose membranes (Life Tech-

nology Corp.). Certain antibodies (CT20APP, APLP1) required

the nitrocellulose membranes to be boiled in 1XPBS (EMD

Chemicals, Gibbstown, NJ) for 5 min following protein blotting to

expose protein epitopes. Furthermore, APLP2 was run under non-

reducing conditions. Membranes were blocked in 5% Quick-

Blocker (G-Biosciences, St. Louis, MO) in 1XPBS containing

0.5% Tween 20. Primary and secondary antibodies (Table 3)
were diluted in blocking buffer. After protein detection (Super-

Signal WestPico Chemiluminescent Substrate, Pierce) and visual-

ization (CL-Xpose film (Pierce) and Konica-Minolta SRX-101A

autoprocessor, Wayne, NJ), antibodies were stripped from the

membranes with Restore Western Blot Stripping Buffer (Pierce)

and re-probed with anti-mouse, anti-rabbit actin or GAPDH

antibody (Table 3) to provide a protein loading control. The

trace quantity feature in Quantity One software (Bio-Rad) is

defined as the measured area under each band’s intensity profile

curve and was used to determine the optical density (OD) x mm.

The trace quantity of the primary proteins was divided by the

trace quantity of the actin or GAPDH re-probes. This adjusted

value was used for statistical analyses.

Statistical analysis
All data were analyzed with GraphPad Prism 5 software (La

Jolla, CA). Significance was set at p#0.05. Given the small sample

size, the 3 age groups were statistically compared using the non-

parametric Kruskall-Wallis test. Dunn’s multiple comparison test

was used to adjust for multiple group comparisons and yielded the

following p-value ranges for groupwise comparisons that were

statistically significant: *p = 0.05–0.01; **p = 0.01–0.001; ***p#

0.001. We are well aware of the small number of individuals in the

cohorts under study. This is due to the difficulty in obtaining high

quality tissues with short postmortem intervals and without

evidence of neuropathological signs of AD or other associated

neurodegenerative disorders.

Results

I. Human Subjects and Neuropathology Analyses
Whole brain samples were not available for cases 1–8 in the YA

cohort, so it was not possible to perform standard neuropatholog-

ical examinations such as total plaque score, Braak staging, total

NFT score, etc. However, assessments of Ab load in the Pc and

PCG were determined using immunohistochemistry (6E10 anti-

body), Campbell-Switzer and thioflavine-S staining. None of the

YA cases exhibited any amyloid plaque neuropathology with the

sole exception of case #4 which harbored some vascular/

parenchymal amyloid cores. Phosphorylation of tau was deter-

mined using AT8 antibody immunohistochemistry. Cases #3, #5

and #7 had rare positive tau fibers while the remaining YA cases

did not possess detectable phosphorylated tau-related pathology.

Case #9, who was 38 years old and the only YA case originating

from BSHRI, as well as all cases in the MA and OO groups (all

from BSHRI) had total plaque scores of zero or low values

(Table 1 and 2). Total NFT scores were #2 (out of a max. of 15)

in the MA group, while these values were intermediate in the OO

nonagenarian cohort (range 4.0–8.5; out of a max. of 15). The

Braak score was I for the YA case #9. All individuals in the MA

group had a Braak Score of I while the OO cohort ranged from

III–IV (Table 2). The WMR score was 0 for YA case #9 and the

MA group and had an average of 2.0 (out of a max. of 12). The

average WMR score in the OO group was 2.3 (Table 2). The

only case to have detectable cerebral amyloid angiopathy (CAA)

was case #23 in the MA group (Table 2). Lastly, the Lewy body

stage was 0 in all the BSHRI participants in the study.

II. APP/CTF/Ab and related peptides
The mean levels of amyloid precursor protein (APP) did not

significantly change with age in the Pc (Figures 1A). However,

Table 3. Antibodies Used for Western Blot Analysis.

Primary antibody Antigen specificity or immunogen Secondary antibody Company/Catalog #

APP573 aa 573–596 of APP M Covance/SIG-39180

CT20APP Last 20 aa of APP R Covance/SIG-39152

BACE1 3D5 clone, aa 46–460 M Kindly provided by Dr. R. Vassar

APLP1 Mouse myeloma cell line NS0-derived recombinant human APLP1 M R&D Systems/MAB3908

APLP2 Mouse myeloma cell line NS0-derived recombinant human APLP2 M R&D Systems/MAB49451

ApoJ Recombinant ApoJ G Millipore/AB825

PEDF Human PEDF R BioProducts MD/AB-PEDF1

S100B Synthetic C-terminal peptide of human S100B R Abcam/ab52642

Actin Ab-5 Clone C4 M BD Transduction Laboratories/
A65020

Actin N-terminus of human a-actin R Abcam/Ab37063

GAPDH Full-length human GAPDH protein M Life Technologies/39-8600

APP, amyloid-b precursor protein; aa, amino acids; BACE, b-site APP cleaving enzyme; APLP, amyloid precursor-like protein; BACE, b-site APP-cleaving enzyme; Apo,
apolipoprotein; PEDF, pigment epithelium derived factor; ApoE, apolipoprotein E; ApoJ, apolipoprotein J; M, HRP conjugated AffiniPure goat-anti mouse IgG (catalog
#115-035-146, Jackson Laboratory); R, HRP conjugated AffiniPure goat-anti rabbit IgG, (catalog #111-035-144 Jackson Laboratory); G, HRP conjugated AffiniPure
bovine-anti goat IgG (catalog #805-035-180).
doi:10.1371/journal.pone.0105784.t003
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the YA PCG levels of APP were significantly higher than in the

MA and OO groups (Figure 1B, p = 0.0244). Interestingly, cases

#5 and #8 in the YA Pc and #31, #34 and #35 in the OO Pc

had a relatively low abundance of APP (Figure 1A). In the PC

and PCG, the levels of the APP C-terminal fragment (CTF),

CT99, did not significantly differ among the 3 age groups while in

both the Pc and PCG, CT83 significantly decreased with age

(Figure 1C, p = 0.0213 and Figure 1D, p = 0.0481, respective-

ly). However, the levels of Ab40 and Ab42 did not exhibit

significant changes among the 3 age groups and there was a high

degree of individual variability in the Pc and PCG (Figures 1E–
1H). Several cases had relatively high Pc Ab40, Pc Ab42 and

PCG Ab42 levels (Figure 1E – case #23; 1G – case #23, #30,

#33; 1H – case #23, #33). Case #23 was the only individual to

have evidence of CAA (Table 2) which may explain the relatively

high amounts of Ab in this subject. Excluding these cases from the

statistical calculations also yielded non-significant p-values (Fig-
ure 1E, p = 0.06; Figure 1G p = 0.45; Figure 1H p = 0.42).
Overall, the majority of cases had Ab40 and Ab42 concentrations

in the pg/mg total protein range (Figures 1E–1H), although in

29 out of 78 ELISA determinations for the Ab peptides, the values

were below the limit of detection (Figures 1E–H).

III. BACE1 and APLPs
The mean b-site APP-cleaving enzyme (BACE)1 levels exhib-

ited an interesting trend in both the Pc and PCG. Enzyme levels

increased in the MA in relation to the YA, but decreased in the

OO to amounts similar to those in the YA (Figures 2A and 2B).
The differences did not reach statistical significance in the Pc

(Figure 2A, p = 0.3540). However, in the PCG, the MA had

significantly more BACE1 than the OO group (Figure 2B,

p = 0.0321; Dunn’s multiple comparison test p = 0.05–0.01). The

Pc cases #5 and #8 demonstrated low BACE1 quantities

(Figures 2A) which were proportionate to those observed for

the APP (Figures 1A).
The amounts of amyloid precursor-like protein (APLP)1

detectable in the Pc and PCG did not show significant differences

between age cohorts (Figures 2C and 2D). In contrast,

differences in APLP2 levels in the Pc and PCG reached statistical

significance, but these 2 different areas of the brain showed

different trends (Figure 2E p = 0.0155 and Figure 2F
p = 0.0399). In the Pc, APLP2 levels in the YA were significantly

lower than in the OO subjects (Figure 2E, p = 0.0155; Dunn’s

multiple comparison test p = 0.05–0.01). In the PCG, APLP2

levels in the YA were significantly higher than in the MA subjects

(Figure 2E, p = 0.0399; Dunn’s multiple comparison test

p = 0.05–0.01).

IV. Tau and a-synuclein
The mean levels of tau and a-synuclein remained fairly

consistent among the 3 cohorts in the Pc (Figures 3A and
3C). In contrast, in the PCG, both tau and a-synuclein levels

significantly decreased with age (p = 0.0021 and p = 0.0013,

respectively) among the 3 groups under study, with greater

amounts in the YA, intermediate in the MA and lesser in the OO

cohorts (Figures 3B and 3D). Furthermore, a comparison

between YA and OO groups also yielded significant differences

(Figure 3B, tau p = 0.01–0.001 and Figure 3D, a-synuclein p#

0.001).

V. Apolipoproteins
ApoE (Figures 4A and 4B) and ApoJ (clusterin) (Figures 4C

and 4D) were all analyzed in both the Pc and PCG. Only ApoJ

showed statistically significant differences. The a-chain of this

protein sharply increased from YA to MA in both the Pc

(Figure 4C, p = 0.01–0.001) and PCG (Figure 4D, p#0.001).

The a-chain of ApoJ was also significantly increased in the OO

relative to YA in the Pc (Figure 4C, p = 0.05–0.01). In addition,

the Pc ApoJ b-chain level was also significantly elevated in the MA

group in comparison to the YA cases (Figures 4C, p = 0.01–

0.001). ApoJ b-chain levels in the PCG followed a similar age-

related pattern (Figure 4D, p = 0.05; Dunn’s multiple compari-

son p = 0.05–0.01).

VI. Inflammatory and Vascular Proteins
The pro-inflammatory molecule tumor necrosis factor (TNF)-a,

on the average, demonstrated very small elevations with increasing

age in the PCG (Figure 5B) while there were no changes in the

average levels of TNF-a in the Pc (Figure 5A). On the other

hand, the anti-inflammatory protein, CD200, declined with age

(p = 0.0285) and was significantly decreased in the OO relative to

the YA cases in the PCG (Figure 5D. p = 0.05–0.01). However,

this trend was not observed in the Pc (Figure 5C). The relative

mean quantities of the anti-angiogenic factor pigment epithelium

derived factor (PEDF) were similar in YA and OO cohorts and

slightly elevated in MA subjects in both the Pc (p = 0.1431) and

PCG (p = 0.1278); however the values were not statistically

significant (Figure 5E and 5F, respectively).

VII. BDNF, GFAP and S100B
While the mean levels of the neurotrophin BDNF tended to be

lower in the OO group, the values were not statistically significant

in either the Pc or PCG (Figure 6A and 6B). GFAP levels

exhibited no significant changes in the Pc (Figure 6C), while in

the PCG a significant increase with age was observed between the

YA and OO groups (Figure 6D, p = 0.05–0.01). Interestingly, the

neurotrophic factor S100B consistently and dramatically increased

with age among the 3 groups under study, being statistically

significant in both the Pc (Figure 6E, p = 0.0044) and PCG

(Figure 6F, p = 0.0004). S100B levels were significantly increased

in the OO cohort relative to the YA subjects in both the Pc

(Figure 6E, p = 0.01–0.001) and PCG (Figure 6F, p#0.001).

Discussion

Our investigation focused on how proteins involved in

neurodegeneration change with non-pathological aging in the Pc

and PCG. The selection of these brain regions was based on the

observation that these two regions of the brain have been

considered to be initial sites in the development of AD [4,17,54–

58]. Our goal was to investigate a series of variables which are

classically associated with the development of AD and quantify

them along the process of aging from YA to OO cohorts. The MA

group died prematurely from other non-neurological, cancer-

related morbidities and hence were short of reaching the present

average life expectancy (,80 years) prevailing in the USA. One

striking observation of our study is the individual variability that

occurred among the 20 subjects under investigation.

Our data suggest that the brains of individuals without any

symptoms of neurological disorders, lose about 15% weight

between the 6–7th and 10th decade of life (mean brain weight in

the MA 1328 g vs.1140 g in OO; p = 0.035). Multiple studies have

reported a loss of brain volume that occurs with age [32,59–64].

Stereological studies showed that normal neuronal loss accounts

for ,10% between the ages of 20–90 years while there is no

statistically significant loss of glial cells [65]. Alternatively, others

have reported that there is no apparent loss in numbers of neurons

in normal aging, but there is a loss of synapses and changes in the
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size and structure of neurons [31,33,66–68]. We suggest that the

differences between MA and OO groups, which encompass 3

decades, could be adjudicated to general aging atrophy. However,

in the absence of neuropathology, which may account for obvious

neuronal and glial loss [69] and myelin decline [70,71], cellular

shrinkage, dehydration and diffuse wasting similar to that observed

in skeletal muscle sarcopenia may account for the reduction in

brain weight in the last decades of life.

Our data reveal that the burden of amyloid plaques can be

substantially low or undetectable in MA individuals and in

mentally healthy nonagenarians suggesting that the physiological

mechanisms responsible for triggering amyloid deposition might

be absent in some elderly individuals without clinical symptoms of

dementia. Multiple studies have also shown that individuals with

amyloid plaques can be non-demented [44,53,72–80] which

undermines the idea of these lesions as being the chief culprit

for the expression of dementia. In this respect, it has been recently

suggested that at equal amyloid plaque loads the difference

between demented and non-demented individuals lies upon the

higher amount of Ab oligomers in the former relative to the latter

[81].

The incidence of NFT formation increases with age [73,82–84],

and the difference between demented and non-demented subjects

is mainly due to greater tangle densities and the spread of tangles

across the neocortex in AD [85]. Likewise, we found that the NFT

score was very low in non-demented MA subjects which was

matched by a Braak stage of I, while in the OO, without the

symptoms of dementia and without amyloid deposits, the NFT

scores reached an intermediate average value of 5.8 (out of a

maximum score of 15) with Braak scores of III–IV. The NFT

score was not used for the selection of study subjects. Taken

together these observations suggest that in humans the presence of

amyloid plaques does not precede or is necessary for the

development of NFT. Limited NFT deposition is consistent with

normal aging and is either tolerable or perhaps serving as an

adaptive/rescue event to preserve cytoskeletal integrity and axonal

transport patency or involved in the management of hazardous

waste resulting from damaged organelles [86].

White matter rarefaction, a neuropathological entity that has

been variously interpreted as resulting from white matter

hypoperfusion or primary oligodendroglial pathology or as being

secondary to cortical gray matter loss, leads to a significant loss of

myelin and axonal degeneration in AD [87–89]. In the current

study, the total WMR score was relatively low or absent in MA

and OO individuals (averaging 2.0 and 2.3, respectively, out of a

maximum score of 12, suggesting relative myelin and axonal

conservation. In a previous study [53], we observed that in non-

demented OO-high pathology control (HPC = individuals with

high amyloid plaque burden, but without dementia) subjects, the

total average WMR score was 2.3 while in OO cases with AD it

was 5.5. Likewise, the average CAA score in OO-HPC cases was

3.5 which contrasted with the OO-AD score of 6.5 (out of a

maximum score of 12). These two observations suggest that the

differences between OO-AD on the one hand, and OO or OO-

HPC on the other, may be due to a generally better preserved

brain microcirculation in the latter, although relative preservation

of oligodendroglia and cortical gray matter must also be

considered. Supporting the changes in microcirculation, hemody-

namic assessments using transcranial Doppler ultrasound demon-

strated significantly altered measures in AD, in terms of mean flow

velocities and pulsatility indices, when compared to non-demented

control subjects [90]. Along this topic, degenerated string

capillaries were elevated in OO-AD, implying greater microvas-

cular dysfunction, when compared to septuagenarian and nona-

genarian non-demented groups [91]. Intriguingly, APOE e4
carriers had significantly higher string vessel counts than non-

APOE e4 carriers. However, whether these changes are primary

or secondary is unknown. In addition, the OO-AD brains revealed

a severe depletion of vasoactive cholinergic and noradrenergic

fibers when compared to non-demented controls, potentially

resulting in loss of cerebral blood flow control [91]. Incidentally,

selective depletion of cholinergic cells of the nucleus basalis

magnocellularis in rabbits induces cortical cholinergic deafferen-

tation that results in Ab deposition in the microvessels of the

cerebral cortex [92]. Taken together these findings strongly

suggest the participation of a dysfunctional brain microcirculation

in the pathogenesis and pathophysiological evolution of AD.

In relation to the APP family of proteins, the mean amounts of

APP, APP-CT99 and APLP1 were not statistically different among

the 3 age groups under investigation in both the Pc and PCG with

the exception of APP in the PCG in which the YA had

significantly more of this protein than the MA and OO. The

levels of APP-CT83 were inversely correlated with age; as age

increased, the levels of this peptide decreased, suggesting that the

ability to generate P3 (Ab residues 17–42) is reduced. The APP-

CTF peptides are important in the development of AD since they

are usually increased and probably retained in the walls of cellular

organelles and plasma membranes causing neuronal pathology

and cognitive disturbances [102–105]. With increasing age,

APLP2 in the Pc became significantly elevated while APLP2 in

the PCG was significantly decreased between YA and MA. The

APP family of proteins still represents a functional conundrum in

the maintenance of brain homeostasis. However, these molecules

are apparently involved in synapse formation and function as well

as in synaptic plasticity and consolidation of memory [93,94].

Their molecular differences and functions suggest molecular

redundancy between APP, APLP1 and APLP2 supporting their

importance in brain metabolism [95]. Both APLP1 and APLP2

are capable of forming dimers which appear to be important in

transcellular synaptogenesis [96]. An interesting feature of the APP

family is that all 3 molecules generate signal peptides upon

hydrolysis of their C-terminal domains by the action of presenilin/

c–secretase. Both APP and APLP2 C-terminal fragments translo-

cate to the nucleus while the corresponding APLP1 C-terminal

peptide localizes to plasma membrane [97]. In our study, the YA

cohort poses some specific challenges because these individuals

died as the result of severe trauma and there was no additional

information concerning their post-traumatic clinical course.

Figure 1. Amyloid precursor protein and proteolytic-derived peptides assessed by Western blot or ELISA. Sample numbers correspond to
young adult (1–9), middle-aged (20–24) and oldest-old (30–35). Full length APP was detected in the precuneus (A) and posterior cingulate gyrus (B) by
Western blot. C-terminal peptides (CT99 and CT83) of APP were determined by Western blot using an antibody against the last 20 amino acids of APP in
the precuneus (C) and posterior cingulate gyrus (D). A total of 40 mg of total protein was loaded per lane. Data are reported in optical density units and
were adjusted for actin. Actin loading probes are shown below each primary antibody blot. The molecular weight is shown on the left side of each blot.
Brain tissue that was homogenized in GDFA/GHCl (see Materials and Methods) was used to quantify Ab40 and Ab42 in the precuneus (E, G) and posterior
cingulate gyrus (F, H) by ELISA. The ELISA concentrations are reported in pg per mg of total protein. Abbreviations: Pc, precuneus; PCG, posterior
cingulate gyrus; YA, young adult; MA, middle-aged; OO, oldest-old; APP, amyloid precursor protein; CT, C-terminal. The 3 age groups were statistically
compared using the non-parametric Kruskall-Wallis test followed by the Dunn’s multiple comparison test (*p = 0.05–0.01; **p = 0.01–0.001; ***p#0.001).
doi:10.1371/journal.pone.0105784.g001
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Therefore, the mean holoAPP molecular levels observed in the YA

Pc and PCG regions may represent a response to severe brain

concussion as has been reported for acute traumatic brain injury

with axonal damage [98–101].

Of pivotal importance in the metabolism of the APP molecule

are the Ab peptides derived by endoproteolytic action of the a-, b-

and c-secretases. In the present investigation, 29 out of a total of

78 independent ELISA estimations, comprising both regions (Pc

and the PCG) in the 3 groups under study, yielded values below

the detection limit of 5 pg/ml for Ab40/Ab42. Cases with

detectable levels exhibited a spread of Ab values with 3 cases

having relatively high levels of Ab, but still far below the low range

Figure 2. Western blot analyses of BACE1 and APLP1 and APLP2. Sample numbers correspond to young adult (1–9), middle-aged (20–24)
and oldest-old (30–35). Western blotting was used to detect BACE1 in the precuneus (A) and posterior cingulate gyrus (B), APLP1 in the precuneus (C)
and posterior cingulate gyrus (D) and APLP2 in the precuneus (E) and posterior cingulate gyrus (F). All Western blots were loaded with a total of
40 mg of protein per lane. APLP2 blots were performed under non-reducing conditions. Data are reported in optical density units and were adjusted
for actin (BACE1, APLP1) or GAPDH (APLP2). Actin and GAPDH loading probes are shown below each primary antibody blot. Abbreviations: Pc,
precuneus; PCG, posterior cingulate gyrus; YA, young adult; MA, middle-aged; OO, oldest-old; BACE1, b-site amyloid precursor protein-cleaving
enzyme-1; APLP, amyloid precursor-like protein. For statistical treatment see legend to Figure 1.
doi:10.1371/journal.pone.0105784.g002
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of Ab observed in AD. The higher amounts of Ab in the Pc and

PCG in one isolated case (#23) may be explained by the presence

of mild CAA. In the remaining brain regions and age categories

investigated, the Ab levels were in accord with those observed in

non-demented individuals and were compatible with the potential

presence of soluble Ab forms which are beyond microscopic

detection. Among the 3 age groups that we characterized, BACE1,

the secretase responsible for the N-terminal cleavage of Ab from

APP, had in quantitative terms the same pattern in both Pc and

PCG with a modest elevation between YA and MA and a decrease

in OO possibly ascribable to aging-related decay. This enzyme has

recently been the target of intensive research which has

demonstrated that its proteolytic activity is exerted on an

increasing number of diverse molecules, thereby complicating

the design of effective inhibitors of APP cleavage [106,107].

Recent perspectives in understanding pathogenic factors for

neurodegenerative diseases have advanced tau and a-synuclein as

paradigms in which pathologically misfolded molecules lead to

self- propagation and accumulation of noxious aggregates that

corrupt brain homeostasis [108]. Increasing evidence suggests

considerable similarity between b-amyloidosis, tauopathies and

synucleopathies in neurodegenerative disorders. These molecules

are capable of generating complex arrays of insoluble extracellular

protein deposits and/or intracellular inclusions as well as soluble

oligomeric species that eventually result in irreversible neuronal

damage [109–115]. On the other hand, it is possible that some of

these protein aggregates may have some beneficial functions [116–

121]. Furthermore, intrinsic aging appears to induce aberrant

protein conformations on molecules such as Ab, tau and a-

synuclein, which in a large number of demented individuals blend

to yield complicated and/or difficult to interpret clinical outcomes.

We observed a significant decrease in total tau and a-synuclein

with age in the PCG, but not in the Pc. Two explanations may

account for these phenomena: either there was an increasing

reduction in protein synthesis (YA.MA.OO) or along aging the

soluble pool of these molecules decreased because of their

increasing incorporation into insoluble inclusions that escape

detection in aqueous-based immunoassays.

The apolipoproteins are multifunctional proteins whose exact

role in the metabolism of APP/Ab remains to be elucidated [122–

124]. However, in the particular context of AD, ApoE probably

functions in Ab transport [125]. In particular, the APOE e4 allele

represents the best known molecular risk factor for AD [126–128],

since individuals carrying this gene in the heterozygous or

homozygous conditions, will acquire sporadic AD at a younger

age. However, the presence of APOE e4 is not a deterministic

factor for AD because many carriers will never develop this

condition during their lifetimes. Intriguingly, ApoE in AD is

abundantly present in both cerebrovascular and parenchymal

amyloid deposits [129]. Apolipoprotein E must therefore play an

important function in the vascular and parenchymal deposition of

Ab and possibly function as an in situ catalytic effector in Ab
polymerization. Moreover, ApoE may also participate in the

association of Ab with molecules of the extracellular matrix which

are abundant in the amyloid deposits [130–133]. Our MA and

OO groups were specifically selected on the basis of not being

demented and having no or very low amyloid plaque scores.

Hence, it was interesting to observe that the allelic frequency of

APOE e4 was reduced to one heterozygous individual among the

11 MA and OO participants in the study. There were no

observable differences in the levels of ApoE among the 3 age

groups, as determined by ELISA. Western blots of ApoJ (clusterin)

demonstrated 2 bands that corresponded to ApoJ-a and ApoJ-b
chains with a more abundant representation of the former. The

functional dimeric ApoJ is also capable of binding and transport-

ing Ab peptides [125,134]. In both the Pc and PCG, there was a

noticeable increase of both isoforms in the MA group relative to

the YA and a subsequent decrease in OO subjects which may be

Figure 3. ELISA quantitative analyses of tau and a-synuclein. Sample numbers correspond to young adult (1–9), middle-aged (20–24) and
oldest-old (30–35). Tau results are shown in Figures A and B and a-synuclein are presented in Figures C and D for both precuneus and posterior
cingulate gyrus as indicated. Concentrations are reported in ng per mg of total protein. Tau and a-synuclein were detected in GDFA/GHCl
homogenates (for details see Materials and Methods section). Abbreviations: Pc, precuneus; PCG, posterior cingulate gyrus; YA, young adult; MA,
middle-aged; OO, oldest-old; a-syn, a-synuclein. For statistical analyses see legend to Figure 1.
doi:10.1371/journal.pone.0105784.g003
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associated to age-related atrophy. On the other hand, recent

studies have demonstrated that in non-demented individuals

elevated CSF ApoJ correlates with a substantial degree of

entorhinal cortex atrophy assessed by MRI, apparently indepen-

dent from elevated p-tau, suggesting that ApoJ may hasten the

progression of neurodegeneration [135].

Mild but chronic inflammation has been observed in senescent

cells and the aging brain (reviewed in [33]) and neuroinflamma-

tion is common in neurodegenerative diseases. In the absence of

neurodegeneration and Ab deposition, there were no significant

changes in the levels of TNF-a among the 3 groups under study.

On the other hand, levels of CD200 decreased with age in the

PCG. CD200 and its receptor CD200R are capable of generating

anti-inflammatory signals that when deficient, as it occurs in

disease or aging, may exacerbate chronic neuroinflammation.

CD200 is expressed in neurons and oligodendrocytes [136],

astroglia and endothelial cells [137], while CD200R is expressed in

microglia [136]. CD200 and its receptor are decreased in regions

with severe AD pathology [136].

In reference to the neurotrophic factors PEDF and BDNF, and

the structural GFAP, our experiments revealed very little age-

related fluctuation for PEDF and BDNF, although GFAP

significantly increased between YA and OO age groups in the

PCG. Other investigators have also shown that the presence of

GFAP increases with age [33,138–143]. Intriguingly, S100B

demonstrated a large and statistically significant difference among

the studied groups which was more evident between the YA and

OO, being substantially elevated in the latter group. S100B is a

multifunctional protein that, like GFAP, is relatively restricted to

astrocytes and has served as a marker for brain damage in

neurodegenerative diseases [144,145]. This molecule has a

deleterious role in hypoxia/ischemia and stroke where it increases

gliosis, infarct expansion and proinflammatory activity [144–147].

Ironically, S100B also has a powerful neuroprotective function on

Figure 4. ELISA quantitative analyses of total ApoE and Western blot analyses of ApoJ. Sample numbers correspond to young adult (1–9),
middle-aged (20–24) and oldest-old (30–35). ELISA analyses for ApoE were performed in RIPA homogenates from the precuneus (A) and posterior
cingulate gyrus (B). ELISA concentrations are reported in ng per mg of total protein. Western blotting was used to visualize ApoJ-a and ApoJ-b chains
in the precuneus and posterior cingulate gyrus (C, D). For Western blots, a total of 40 mg of total protein was loaded per lane. Data are reported in
optical density units and were adjusted for actin. Actin loading probes are shown below each primary antibody blot. The molecular weight is shown
on the left side of each blot. Abbreviations: Pc, precuneus; PCG, posterior cingulate gyrus; YA, young adult; MA, middle-aged; OO, oldest-old; ApoE,
apolipoprotein E; ApoJ, apolipoprotein J. For statistical treatment see legend to Figure 1.
doi:10.1371/journal.pone.0105784.g004

Brain Aging and Alzheimer’s Disease

PLOS ONE | www.plosone.org 11 August 2014 | Volume 9 | Issue 8 | e105784



cholinergic neurons of the nucleus basalis of Meynert during

oxygen and glucose deprivation [148].

Concluding Remarks

We quantified key molecules in the Pc and PCG brain regions

which exhibit early pathological alterations in AD. In general, the

majority of molecules assessed showed decreased levels in the OO

group relative to YA and MA cases or remained unchanged in a

few instances. Interestingly, S100B, a molecule with neuroprotec-

tive activity, exhibited substantial increases with advancing age in

both PC and PCG. A salient observation was that even in two

closely adjacent areas of the cerebral cortex, like the Pc and PCG,

the levels of some molecules substantially differ which may be

explained by anatomical and functional heterogeneity.

The kinetics and role of Ab accumulation in the pathogenesis of

AD still presents a major conundrum in understanding the clinical

progress of dementia. Our results indicate that some non-

demented nonagenarian individuals free of parenchymal and

vascular amyloid deposits did not develop AD pathology to the

same degree as that observed in demented AD subjects.

Conversely, we demonstrated in a previous study that some

nonagenarian individuals with a heavy load of amyloid (known as

high pathology controls = HPC), similar to those commonly

observed in the final stages of AD, likewise did not manifest

cognitive impairment and dementia [53]. This apparent paradox

implies that amyloid accumulation may be critically important in

the development of cognitive failure in some individuals but might

not represent the sole decisive factor for the induction of clinically

manifested AD. These issues are further complicated by the recent

recognition of a third group classified as suspected non-amyloid

pathology (SNAP) cases in which clinical symptoms and signs of

neurodegeneration are present while amyloid accumulations

remain undetectable by imaging methods [149–151]. The

cognitive failure of AD occurs when the burden of both amyloid

and tangles is widespread [45]. Some observations insinuate that

Figure 5. ELISA quantitative analyses of TNF-a and CD200 and Western blot analyses of PEDF. As indicated in the Figure both the
precuneus (A, C and E) and posterior cingulate gyrus (B, D and F) were investigated. Sample numbers, shown above each blot, correspond to young
adult (1–9), middle-aged (20–24) and oldest-old (30–35). ELISA concentrations are reported in ng per mg of total protein. For Western blot analyses a
total of 40 mg of total protein was loaded per lane. Data are reported in optical density units and were adjusted for actin. The actin loading probes is
shown below the primary antibody blot. The molecular weight is shown on the left side of each blot. Abbreviations: Pc, precuneus; PCG, posterior
cingulate gyrus; YA, young adult; MA, middle-aged; OO, oldest-old; TNF-a, tumor necrosis factor-a; PEDF, pigment epithelium-derived factor. For
statistical treatment see legend to Figure 1.
doi:10.1371/journal.pone.0105784.g005
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AD etiology is mechanistically heterogeneous and that other

complicating causal conditions related to aging, in addition to Ab,

are necessary and sometimes sufficient for dementia emergence

[152]. It has been recently shown that the development of AD may

be linked to the nuclear loss of the repressor element 1-silencing

transcription factor (REST), a molecule associated with cognitive

preservation and longevity, in some neurodegenerative disorders

[153]. In understanding the role of Ab in the pathogenesis of AD,

two important questions remain unanswered: 1) what are the

triggering mechanisms that primarily induce Ab deposition? and

2) why does Ab relentlessly accumulate in such a destructive

manner? The first question has not been fully addressed, although

some interesting hypotheses have been advanced [116,117,154–

157]. In relation to the second, recent data suggest that Ab
deposits self-propagate through the continuous accretion of

misfolded and degradation-resistant molecules [108,158]. These

toxic Ab molecules may result from structurally altered confor-

mations, possibly induced or stabilized by posttranslational

modifications common in the AD brain [159]. Furthermore, once

nucleated, noxious Ab molecules may propagate in a time-

dependent fashion through cell-to-cell transmission as proposed

for tau and a-synuclein (reviewed in [160]).

An interesting inference derived from our observations is that

the deposition of amyloid in the OO ($90 years of age) does not

appear to be critical for the development of dementia, since these

individuals can possess high plaque scores and be non-demented

[53]. Dementia is clearly more associated with age-related vascular

dysfunction and the spread of NFT throughout the neocortex [85].

However, there may be other factors at play, including the age-

related inability to restore molecular damage, or an accumulation

of a variety of other ‘lesions’, that result from the loss of, or

increases in, a large number of adaptive brain processes present in

most OO individuals surviving beyond the average life expectan-

cy. Most individuals with dementia in our previous study were

Braak stage V and VI [53], while those without dementia (present

study) were classified as Braak stage III and IV. In addition, non-

Figure 6. ELISA quantitative analyses of BDNF and GFAP and Western blot analyses of S100B. As indicated in the figure both the
precuneus (A, C and E) and posterior cingulate gyrus (B, D and F) were investigated. Sample numbers, shown above each Western blot correspond to
young adult (1–9), middle-aged (20–24) and oldest-old (30–35). ELISA concentrations are reported in ng per mg of total protein. For the S100B
Western blot, a total of 25 mg of total protein was loaded per lane. Data are reported in optical density units and were adjusted for GAPDH. The
GAPDH loading probe is shown below the primary antibody blot. The molecular weights are shown on the left side of each blot. Abbreviations: Pc,
precuneus; PCG, posterior cingulate gyrus; YA, young adult; MA, middle-aged; OO, oldest-old; BDNF, brain-derived neurotrophic factor; GFAP, glial
fibrillary acidic protein; S100B, S100 calcium binding protein-B. For statistical analyses see legend to Figure 1.
doi:10.1371/journal.pone.0105784.g006
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demented OO individuals exhibited a better brain perfusion

preservation with lesser degrees of CAA and WMR compared to

demented OO subjects [53]. To complicate matters further,

neuropathological examination of individuals diagnosed with

dementia of the Alzheimer’s type revealed the presence of other

concurrent neuropathological lesions that by themselves are

sufficient to induce the symptoms of dementia, thus confounding

clinical diagnoses as well as complicating the interpretation of

clinical trial outcomes [152,161,162].

The latest AD amyloidosis model is based on the assumption

that Ab deposition follows a time-dependent sigmoidal kinetics

with an asymptotic approach to saturation virtually coincident

with the onset of dementia [45]. The slope of the sigmoidal curve

is likely to be variable since the deposition of amyloid in the

cerebral cortex occurs at different rates and it is important to note

that the early phases of the amyloid deposition processes are not

well defined. It is clear that familial AD is characterized by Ab
accumulation that starts at an early age, about the third and fourth

decades of life, while in sporadic AD cases the deposition of

amyloid begins about the fifth and sixth decades of life. However,

in neither situation is it clear that amyloid deposition progresses in

a smooth, time-dependent pattern. In addition, total amyloid levels

exhibit substantial variability in AD subjects and dementia itself is

not strongly correlated with amyloid burden [163]. The occur-

rence of OO-HPC subjects reveals that amyloid deposition itself is

not completely incompatible with cognitive function and suggests

that a transition to dementia may be delayed or avoided. Our

study adds to a body of work revealing molecular and structural

heterogeneity in the development of aging and dementia and

underscores the need to examine through direct observation how

the processes of amyloid deposition unfold or change prior to

dementia emergence.
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