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ABSTRACT

Background

Childhood acute lymphoblastic leukemia (ALL) is the most common cancer in children, and
can now be cured in approximately 80% of patients. Nevertheless, drug resistance is the major
cause of treatment failure in children with ALL. The drug methotrexate (MTX), which is widely
used to treat many human cancers, is used in essentially all treatment protocols worldwide for
newly diagnosed ALL. Although MTX has been extensively studied for many years, relatively
little is known about mechanisms of de novo resistance in primary cancer cells, including
leukemia cells. This lack of knowledge is due in part to the fact that existing in vitro methods
are not sufficiently reliable to permit assessment of MTX resistance in primary ALL cells.
Therefore, we measured the in vivo antileukemic effects of MTX and identified genes whose
expression differed significantly in patients with a good versus poor response to MTX.

Methods and Findings

We utilized measures of decreased circulating leukemia cells of 293 newly diagnosed children
after initial “up-front” in vivo MTX treatment (1 g/m?) to elucidate interpatient differences in
the antileukemic effects of MTX. To identify genomic determinants of these effects, we
performed a genome-wide assessment of gene expression in primary ALL cells from 161 of
these newly diagnosed children (1-18 y). We identified 48 genes and two cDNA clones whose
expression was significantly related to the reduction of circulating leukemia cells after initial in
vivo treatment with MTX. This finding was validated in an independent cohort of children with
ALL. Furthermore, this measure of initial MTX in vivo response and the associated gene
expression pattern were predictive of long-term disease-free survival (p < 0.001, p = 0.02).

Conclusions

Together, these data provide new insights into the genomic basis of MTX resistance and
interpatient differences in MTX response, pointing to new strategies to overcome MTX
resistance in childhood ALL.

Trial registrations: Total XV, Therapy for Newly Diagnosed Patients With Acute
Lymphoblastic Leukemia, http://www.ClinicalTrials.gov (NCT00137111); Total XIlIBH, Phase llI
Randomized Study of Antimetabolite-Based Induction plus High-Dose MTX Consolidation for
Newly Diagnosed Pediatric Acute Lymphocytic Leukemia at Intermediate or High Risk of
Treatment Failure (NCI-T93-0101D); Total XIIIBL, Phase Ill Randomized Study of Antimetabolite-
Based Induction plus High-Dose MTX Consolidation for Newly Diagnosed Pediatric Acute
Lymphocytic Leukemia at Lower Risk of Treatment Failure (NCI-T93-0103D).

The Editors’” Summary of this article follows the references.
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Introduction

Childhood acute lymphoblastic leukemia (ALL), the most
common cancer in children, can now be cured in approx-
imately 80% of patients [1,2]. Pharmacogenomics aims to
elucidate the genomic determinants of treatment response
and why treatment fails to cure the remaining 20% of
patients, many of whom have favorable prognostic features
[3,4]. Prior studies have provided insight into the genomic
determinants of resistance to several antileukemic agents [5],
but methodological constraints have precluded such genome-
wide studies of in vitro methotrexate (MTX) resistance. This
research gap is unfortunate because MTX is widely used in
the treatment of many human cancers, including essentially
all treatment protocols for newly diagnosed ALL [1].

The pharmacokinetics and pharmacodynamics of MTX in
ALL cells are well understood, whereas the genomic
determinants of the antileukemic effects of MTX remain to
be elucidated [6,7]. Cellular uptake of MTX is mediated by the
protein reduced folate carrier [8], whereas its efflux is
mediated by ATP-binding cassette (ABC), subfamily C 1
(ABCC1) and ABCC4 [9-11]. MTX is a tight-binding inhibitor
of its primary target, enzyme dihydrofolate reductase
(DHFR), which disrupts cellular folate metabolism [12].
Within leukemic cells, MTX is metabolized into poly(y-
glutamate) forms (MTXPGs) by an adenosine triphosphate
(ATP)-dependent reaction catalyzed by folylpolyglutamate
synthetase [13]. Compared to their monoglutamate form,
MTXPGs are retained longer in cells because they are not
readily effluxed by ABC transporters [14,15]. MTXPGs are
more potent inhibitors of other target enzymes such as
thymidylate synthetase, glycinamide ribonucleotide trans-
formylase, and aminoimidazole carboxamide transformylase.
These enzymes are involved in biosynthetic pathways that are
critical for DNA synthesis, DNA repair, and cell replication
[14,15]. Furthermore, accumulation of MTXPG has also been
shown to differ among major ALL subtypes [16] and to
influence treatment response and outcome in childhood ALL
[17-19].

A more complete understanding of the mechanisms of
MTX resistance in ALL cells is needed if new treatment
strategies are to be developed for patients whose leukemia is
resistant to this important component of ALL chemotherapy
[6]. Prior genomic studies of ALL chemotherapy resistance
have not focused on MTX [5,20,21], because the resistance of
primary ALL to MTX cannot be accurately measured by in
vitro methods such as the MTT assay [22]. For this reason, we
used the in vivo response of newly diagnosed patients to
initial single-agent MTX treatment, measured as an initial
decrease in circulating ALL cells, to quantitate the anti-
leukemic effects of MTX. We then aimed to identify genes
whose expression in primary ALL cells is significantly related
to the in vivo antileukemic effects of MTX.

Methods

Patients and Genetic Characterization of Leukemia Cells
A total of 293 children aged 18 y or younger with newly
diagnosed ALL, enrolled on the St. Jude Total Therapy XIII
and XV protocols, were included in this study (Figures 1 and
S1). The investigation was approved by the Institutional
Review Board at St. Jude Children’s Research Hospital, and

@ PLoS Medicine | www.plosmedicine.org

Antileukemic MTX Genomics and Outcome

signed informed consent was obtained from parents or legal
guardians before enrollment. Patient characteristics (race,
sex, age, pretreatment white blood cell count [WBCpgg], ALL
subtype) were assigned by investigators at St. Jude Children’s
Research Hospital. Race, sex, and age were determined by
questionnaire; WBCprg, ALL subtype were determined
according to the clinical protocol. The diagnosis of ALL
was based on morphology, cytochemical staining, and
immunophenotyping of blast cells for classification as B cell
lineage or T cell lineage, as previously described [23-28]. The
only patients excluded were those who did not have a
diagnosis of ALL, or were aged < 1y or > 18y, or were given
ALL treatment prior to referral to SJCRH.

After stratification for age, WBCprg, immunophenotype,
and sex, patients were randomized to receive initial intra-
venous treatments of high-dose MTX (HDMTX: 1 gim?) either
as HDMTX4H (HDMTX by infusion over 4 h; n = 108), as
HDMTX24H (HDMTX by infusion over 24 h; n = 125), or as
HDMTX24H+MP (HDMTX by infusion over 24 h plus
mercaptopurine [MP] 1 g/m? by intravenous injection; n =
60). All patients who received allopurinol less than 72 h prior
to HDMTX were excluded from the analyses because of
potential effects on de novo purine synthesis.

Circulating leukemia cells were measured before therapy
(WBCpgrg) and at day 3 following start of HDMTX treatment
(WBCp,ys), prior to the administration of other antileukemic
agents. Leukocyte counts were determined with a Coulter
counter (model F_STKR; Coulter, Hialeah, Florida, United
States).

Isolation of ALL Blasts from Bone Marrow Aspirate

ALL blasts were obtained from bone marrow aspirates at
diagnosis and 42-44 h following treatment. Samples consisted
of 5-10 ml of bone marrow collected in syringes containing
800 units of heparin and kept on ice until processed.
Leukemic cells were obtained by density separation over a
Ficoll-Hypaque gradient and washed three times with a
solution of HEPES, Hanks buffered solution, and heparin, as
previously described in detail [18].

RNA Extraction and Gene Expression Profiling of
Diagnostic Bone Marrow ALL Cells

Of the 293 patients treated with up-front HDMTX, 161 had
sufficient diagnostic ALL cells for gene expression analysis
(i.e., had sufficient leukemia cells in their diagnostic bone
marrow aspirates to permit RNA isolation from 5 X 10 to 1 X
107 ALL cells). High-quality total RNA was extracted with
TriReagent (MRC, Cincinnati, Ohio, United States) from
cryopreserved mononuclear cell suspensions from bone
marrows at diagnosis. Total RNA was processed and
hybridized to the HG-UI33A oligonucleotide microarray
(Affymetrix, Santa Clara, California, United States). This
array contains 22,215 gene probe sets, representing approx-
imately 12,357 human genes, plus approximately 3,820
expressed sequence tag clones with unknown function [29].
Following removal of probe sets with >95% absent calls,
13,488 probe sets remained. Scaled expression values of all
probe sets were logarithmically transformed to stabilize
variance.

Additional information on the microarray methods and
results can be found at http:/f/www.stjuderesearch.org/datal.
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Assessed for eligibility: Patients with diagnosis of ALL less than

n= 709)
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Analysis (n=70)

Figure 1. CONSORT Flow Chart Describing Patients Enrolled in Randomized Clinical Trials at St. Jude Children’s Research Hospital, from Which the

Current Study Population Was Derived

The flow chart includes study relevant protocol information for the St. Jude Children’s Research Hospital Total Therapy Protocols XIIIA, XIlIB, and XV.
Specifically, from the population that received ALL treatment according to one of these three protocols, the current study included only patients who
received HDMTX as initial therapy. These protocols included a randomization to determine whether patients received HDMTX or not as initial treatment,
the infusion time of HDMTX, and whether MP was given after MTX (LDMTX, low-dose methotrexate). Patients with an insufficient number of ALL cells
for gene expression analysis were excluded, as were patients with insufficient data on circulating ALL cells to assess response over 3 d.

doi:10.1371/journal.pmed.0050083.g001

Determination of MTX Polyglutamylated Metabolites in
Bone Marrow ALL Cells 42-44 Hours Post-treatment

Intracellular MTXPGs were extracted from 42- to 44-h
post-treatment bone marrow ALL cells kept in a buffered
solution (Tris, EDTA, and 2-mercaptoethanol [pH 7.8]) by
first boiling (100 °C for 10 min), then stored frozen at —80 °C
until analysis. The HPLC separation and the radioenzymatic
quantitation of MTX and six polyglutamylated metabolites
(MTXPGg_7) were performed as previously described [30,31].
These MTXPG measurements were available for 230 patients.
All results were expressed as picomoles of MTX or MTXPG
per 10° cells.

Statistical Analysis and Bioinformatics

MTX responses as measured by WBCp,y3, WBCpgrg, and
MTXPG values were logarithmically transformed to normal-
ize their respective distributions. The Pearson correlation
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test was applied in order to determine the association
between WBCp,ys and ALL subtype, MTXPG, and WBCpgg.
The difference between WBCprg and WBCpays, WBCapays
(the WBC residual based on the linear regression of
log[WBCpre] change to log[WBCp,ys] ) was determined by
taking the residuals of the linear regression model of
WBCp,ys versus WBCprg, which was available for 293 patients.
Specifically, MTX response is defined as:

WBCA])ay?, = 0492 X log(WBCpRE) - lOg(WBCl)ayg) + 0.0229

We indicated “MTX poor response” and “MTX good
response” in Figures 2 and 3 according to the cutoff for good
responders (WBCapays <—0.14) and poor responders (WBCapays
> (0.14), based on the bottom and top quartile of 293 patients.

Data were available for 161 patients on both WBCapay3 and
gene expression in diagnostic bone marrow leukemia cells
(Figure S1). The association between each individual probe
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Figure 2. Scatterplot of WBCp,y3 versus WBCpge

This plot illustrates the leukemia cell count on day 3 (WBCp,ys) after
initial HDMTX treatment versus the pretreatment leukemia cell count
(WBCpge) at diagnosis in 293 patients. The solid line indicates the linear
regression, and the dotted line the 95% confidence interval with p <
0.0001, r = 0.76, Spearman rank correlation, and p < 0.0001, r = 0.79,
Pearson correlation.

doi:10.1371/journal.pmed.0050083.9002

set and WBCap.ys was determined using the Pearson
correlation test. Gene probe sets were rank-ordered by their
p-values. Final gene probe sets were selected based on a false
discovery rate (FDR) cutoff of 1.5%.

For each patient, we computed a gene expression profile
using the weighted average of the expression signals of top
selected genes. The Pearson correlation coefficient between
each gene’s expression and WBCapays was used as the weight.
This weighted average of expression signals was used as the
summary of the top gene expression profile for each patient.
Specifically, the gene expression profile was computed

Antileukemic MTX Genomics and Outcome

according to the following formula:
50
Gene Expression Score = Z weight; X gene expression;
=1

Where j=1 ... 50 top selected gene probe sets as listed in
Table S3, and weights were determined as the correlation
coefficients as listed in the same table.

We compared the top 50 gene profile with the top 100 gene
profile; the correlation coefficient was 0.989 (p < 0.001,
Pearson correlation test). These tests were performed using
standard statistical functions in R software.

We tested 37 GenMAPP pathways and 319 Gene Ontology-
biological process (GO-BP) gene groupings for association
with WBCapays using the “globaltest” method [32] imple-
mented in the R Bioconductor package [33]. This test was
used to infer over-representation of specific biological
pathways, and the “geneplot” function was applied to plot
the importance of selected genes with default parameters.
Multiple testing was adjusted using the Bonferroni method
and the FDR according to Storey and Tibshirani [34].

Cell Cycle Distribution

The percentage of ALL cells in S-phase was determined in
diagnostic bone marrow aspirates from patients for whom an
adequate number of cells were available (n = 154). Propidium
iodide-stained DNA content was measured by flow cytometry
using the Coulter EPICS V flow cytometer (Coulter Elec-
tronics, Hialeah, Florida, United States), and the computer
program ModFit (Verity Software House, Verity, Topsham,
Maine, United States) was used to calculate the percentages of
cells in Gy/G;, S, and Go/M phase.

Treatment Outcome Analysis
The duration of disease-free survival (DFS) was defined as
the time from diagnosis until the date of leukemia relapse

(event), or the last follow-up (censored). Second malignancies
and death due to other reasons were censored at the time of

@ MTX poor response -2
. MTX good response

Standard deviations from the mean

Figure 3. Hierarchical Clustering of Genes Discriminating MTX Response (WBCapays3)

Hierarchical clustering using the top 50 most discriminant gene probe sets (Table S3) discriminating MTX response in 161 patients. Each column
represents an ALL sample labeled with red circles for MTX poor responders (n = 40, top quartile of WBCxpay3) and with green circles for MTX good
responders (n = 40, bottom quartile of WBCxpay3). Unlabeled patients are intermediate MTX responders. Each row represents a probe set labeled with
the gene symbol. The “heat map” indicates high (red) or low (green) level of expression according to the scale shown.
doi:10.1371/journal.pmed.0050083.g003
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Table 1. Patient Characteristics Were Not Different among the HDMTX Treatment Groups

Category Variable n HDMTX24H HDMTX24H-+MP HDMTX4H p-Value®
Race — — — — — 0.30
White? 205 90 39 76 —
African American 55 19 15 21 —
Other 33 16 6 11 —
Sex — — — — — 0.87
Female 130 56 28 46 —
Male 163 69 32 62 —
Age — — — — — 0.26
<10y 228 99 42 87 —
>10y 65 26 18 21 —
WBCpge = = = = = 0.88
<10/nl® 181 80 35 66 —
10-49/nl 67 24 15 28 —
50-100/nl 21 8 7 6 —
>100/nl 24 13 3 8 —
ALL subtype — — — — — 0.50
B-other” 103 42 25 36 —
BCR-ABL 6 3 1 2 —
Hyperdiploid 81 38 14 29 —
MLL-AF4 4 0 3 1 —
T-lineage 34 16 6 16 =
TEL-AML1 65 26 11 28 —

2Chi-square test.
bReference group.
doi:10.1371/journal.pmed.0050083.t001

occurrence. Treatment outcome was available in 136 patients
of the 293 patients treated with HDMTX with WBCpgrg and
WBCp,y3 measured. Of note, patients treated on protocol T15
were excluded because of short follow-up. Time was also
censored at the last follow-up date if no failure was observed.
Single-variable analysis using Cox proportional hazards
regression, as modified by Fine and Gray [35] was used to
estimate the relative risk of an event. Significant associations
from the single variable analyses were further evaluated in a
multiple variable analysis, which included risk classification,
age, lineage, and ALL subtype in addition to WBCapays and
the top 50 gene expression profile. DFS curves were
calculated by reversing the cumulative incidence curve,
where MTX poor responders represent the top quartile,
intermediate responders the middle two quartiles, and good
responders the bottom quartile.

Results

Relation among WBCp,y3, WBCpge, Treatment, ALL
Subtype, and MTX Metabolism

Patient characteristics (race, sex, age, WBCprg, ALL
subtype) were similar among patients randomly assigned to
receive HDMTX4H, HDMTX24H, or HDMTX24H+MP (p >
0.13, Figure S2). Furthermore, there was no difference in
WBCp,ys among the three randomized treatment groups
(Table 1). The lack of differences among treatment groups
coupled with our previous findings of minimal de novo
purine synthesis (DNPS) inhibition and antileukemic effects
of a single dose of intravenous MP [36], allowed us to analyze
patients treated with HDMTX4H, HDMTX24H, and
HDMTX24H+MP as a single group, to enhance the statistical
power of our analyses.

WBCp,ys was significantly lower than WBCpgrg (=293, p <
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0.0001) and was highly correlated with WBCpgg, (p < 0.0001, r
= 0.79, Figure 2). Therefore, to remove the effect of the
pretreatment leukemia burden (WBCpgrg) we used the
WBCapays corresponding to the residuals from the linear
regression model of WBCp,3 versus WBCpgg (Figure 2). As
indicated in Figure S3, the histogram of the residuals
approximates a normal distribution, in contrast to the
skewed distribution of percentage drop in WBC count from
diagnosis to day 3 (WBCqarop; p = 0.1 versus p < 0.001,
Kolmogorov-Smirnov test). There was a statistically signifi-
cant association between WBCjp.,s and polyglutamylated
MTX levels (MTXPGg_7) in ALL cells (n = 230, p = 0.0001, r =
—0.25, Figure 4), with higher MTXPGs_7 associated with
greater antileukemic effect. There was not a significant
relation between WBCap.ys and ALL subtype (n = 293, p =
0.07).

Relation among WBCpays, Gene Expression, and Pathway
Analysis

Our analyses of antileukemic effects after in vivo MTX
treatment and gene expression in pretreatment ALL cells
identified the 50 most significant gene probe sets that were
associated with antileukemic effect of MTX (WBCapays,
Figure 3). The FDR was less than 1.5% for these gene probe
sets, and each gene had a Pearson correlation coefficient
higher than 0.3 or lower than —0.3 and a p-value less than
0.001. Among these genes, the expression patterns for 21
were positively and 29 were negatively related to MTX
response. Genes significantly associated with MTX response
included those involved in nucleotide metabolism (thymidylate
synthetase [TYMS] and CTP synthase [CTPS]), cell proliferation
and apoptosis (B-cell CLLAymphoma 3 [BCL3], centromere protein
F [CENPF], cell division cycle 20 [CDC20], abnormal spindle-like
[ASPM], transforming, acidic coiled-coil containing protein I
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Figure 4. Scatterplot of WBCpay3 Versus Level of Total MTXPGs

There is a significant correlation of WBCxpay3 With the total MTXPG level
in ALL cells from 230 patients (i.e., a higher total MTXPG concentration is
associated with a better in vivo MTX response) (p = 0.0001, r = —0.25,
Pearson correlation).

doi:10.1371/journal.pmed.0050083.g004

[TACCI], and Fas apoptotic inhibitory molecule 3 [FAIM3]), and
several genes implicated in DNA replication and repair (DNA
polymerase delta, subunit 3 [POLD3], replication protein A3 [RPA3],
ribonuclease H2, subunit A [RNASEHZ2A], GINS complex subunit 2
[GINSZ2], ribonucleotide reductase M1 [RRMI], H2A histone family,
member X [H2AFX], and flap structure-specific endonuclease 1
[FENI)).

To gain more insight into the molecular and cellular
pathways related to MTX response, the global test analysis
was used to determine whether the gene expression profile of
different pathways retrieved from the GO-BP or GenMAPP
database, were significantly associated with the antileukemic
effect of MTX. As listed in Table S1, a significant association
was found between WBCap,.ys and various biological path-
ways including those involved in cell cycle regulation, DNA
repair and replication, or nucleotide metabolism. To further
illustrate the influence of individual genes on the antileuke-
mic effects of MTX within the nucleotide biosynthesis
pathway, the “gene plot” output was used. As depicted in
Figure S4, three (TYMS, DHFR, and CTPS) of the ten genes
belonging to the nucleotide biosynthesis pathway were most
strongly negatively associated with the MTX antileukemic
effect (WBCapays)-

Cellular Proliferation and MTX In Vivo Response

We were able to determine both the percentage of cells in
S-phase of the cell cycle and gene expression in 154 patients
(these are by ALL subtype: B-lineage hyperdiploid, n = 40; B-
lineage other, n = 47; E2A-PBX1, n = 14; T-ALL, n = 21; TEL-
AMLI, n=32; BCR-ABL, n=4; MLL-AF4, n=2). There were no
significant differences in the percentage of cells in S-phase
among different ALL subtypes (p = 0.10, Kruskal-Wallis test).
The percentage of cells in S-phase of the cell cycle was
positively correlated with expression of genes involved in
nucleotide biosynthesis TYMS (r=0.59, p < 0.001), DHFR (r =
0.39, p < 0.001), and CTPS (r = 0.21, p = 0.009) (Figure SHA,
Table 2), with expression of TYMS being the best marker of
cell proliferation. The percentage of cells in S-phase was
significantly correlated with MTX response measured as
WBCapays, with the higher percentage in S-phase associated
with a better response (WBCapays, ¥ =—0.20, p = 0.013; Figure
S5B, Table 2). The association with percentage S-phase was
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similar to the top 50 gene expression profile (r =—0.57 p <
0.001; Figure S5C, Table 2). In contrast, the percent drop in
WBC count was not significantly related to percentage of cells
in S-phase (WBCy,arop, 7 = 0.034, p = 0.67; Table 2).

Relation between Disease-Free Survival and Expression of
CTPS, TYMS, DHFR, MTX Response (WBCoqrop and
WBCapay3), and Top 50 Gene Expression Profile

The median follow-up of patients for this analysis was 9.1y
from diagnosis, comprising patients enrolled in St. Jude Total
Therapy XIII protocol (n = 136). WBCapays, and TYMS and
DHFR expression, were related to DFS according to Cox
proportional hazards regression analyses that compared
patients who remained in continuous complete remission
with those who relapsed during the follow-up period. The
univariable analysis of variables potentially related to DFS
revealed significance for expression of TYMS (hazard ratio
[HR] = 0.6; p = 0.008), expression of DHFR (HR = 0.41; p =
0.015); MTX response (WBCapays, HR = 21.5; p < 0.001), and
the top 50 gene expression profile (HR = 1.09; p = 0.02; Table
3), but not for the expression of CTPS or the WBCq qyop-

Patients with the best MTX response (i.e., bottom quartile
of the residual WBCapays) had significantly better 5-y DFS
compared to patients with the worst response (top quartile)
(DFS ®= SE 96.9% =* 3.1% versus 81.4% * 7%, p = 0.033 for
quartiles compared; Figure 5A). Likewise, patients with a gene
expression profile indicative of a good MTX response
(bottom quartile of the gene expression profile) had
significantly better 5-y DFS compared to patients with a
gene expression profile indicative of poor MTX response (top
quartile of the gene expression profile) (5-y DFS * variance:
87.5% * 6.9% versus 72% * 9.2%, p = 0.019 for quartiles
compared; Figure 5B). Patients with higher TYMS or DHFR
expression (i.e., top quartile of the expression level) had
significantly better 5-y DFS compared to patients with lower
TYMS or DHFR expression (i.e., bottom quartile of the
expression level) (5-y DFS * variance: 87.9% * 5.8% versus
727% * 7.9%, p=0.024 for TYMS and 93.5% * 4.5% versus
69% = 8.1%, p = 0.041 for DHFR for quartiles compared;
Figure 5C).

Furthermore, multivariable Cox regression analysis (Tables
3 and S2) that also included the conventional National
Cancer Institute ALL risk criteria (i.e., ALL subtype, age, and
WBC at diagnosis) revealed significance for MTX response
(WBCapays, HR = 22.6; p = 0.0046), and the expression of
TYMS (HR = 0.58; p = 0.044) and DHFR (HR=0.31; p =0.019).
The top 50 gene expression profile did not reach statistical
significance in predicting relapse in the overall population
when other known risk factors were included, although the
trend remained evident (p = 0.08, Tables 3 and S2).

Discrimination of MTX Response Using the Top 50 Gene
Expression Profile and Assessment in an Independent
Validation Cohort

In an independent test set of 18 additional patients who
received initial HDMTX according to the St. Jude Total
Therapy XV protocol, we performed gene expression analysis
at diagnosis and determined WBC (ALL cell) count at
diagnosis and on day 3. The gene expression profile of the
top 50 genes was significantly related to the residual
WBCapays in this patient cohort (top 50 gene profile, p =
0.0065, r = 0.62, Pearson correlation; Figure 6A), thus
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Table 2. Pearson Correlation of Selected Biological and
Response Parameters with Percentage of Cells in S-Phase

Parameter r p-Value
TYMS 0.59 <0.001
DHFR 0.39 <0.001
CTPS 0.21 0.009
WBCapays —0.20 0.013
Top 50 gene profile —0.57 <0.001
WBCydrop 0.034 0.67

doi:10.1371/journal.pmed.0050083.t002

validating the gene expression profile as predictive of the
MTX response in an independent cohort of patients.

Additionally, we predicted the WBCp,ys after initial MTX
treatment based on the known WBCpgrg in these 18 newly
enrolled patients. For that, we used either the WBCapays
linear regression function or the median WBCg, 4,0, devel-
oped in the original test cohort of 293 patients. The sum of
the differences between the observed and the predicted
WBCp,ys squared was 1.042 using the WBCap.ys linear
regression model and 3.35 using the median WBC, gy0p- The
observed WBCp,ys values are significantly closer to the
predicted values using WBCap.ys (Figure 6B) than those
based on WBCgqarop (Figure 6C; p = 0.0025, paired t-test),
thereby further indicating that WBCap,ys is @ more accurate
measure of in vivo MTX response than WBCg, qrop-

Discussion

The current studies have identified genes that are ex-
pressed at a significantly different level in acute lympho-
blastic leukemia cells of patients who exhibit a poor in vivo
response to HDMTX. High-throughput genomic approaches
to assess the expression levels of RNA transcripts in cancer
cells are providing new insights into pathogenesis, classifica-
tion, diagnosis, stratification, and prognosis of many human
cancers [23,37-39]. The drug resistance and gene expression
profiles of leukemia cells have also been used to identify
genes related to the sensitivity of ALL cells to several
antileukemic agents and to forecast differences in treatment
response [5,20,21]. These findings have also revealed novel
targets for the discovery of new agents to reverse drug
resistance, such as our prior discovery of MCLI over-
expression in glucocorticoid-resistant ALL [5], and the
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subsequent discovery that rapamycin can down-regulate
MCLI expression and increase sensitivity of leukemia cells
to dexamethasone [37,40]. However, prior to the current
study, there has not been a comprehensive analysis of genes
related to the antileukemic effects of MTX in primary
leukemia cells.

We therefore evaluated MTX response in vivo after initial
therapy, because this is the only possible time to assess the
antileukemic effects of MTX as a single agent in patients and
because there are no reliable in vitro methods. Thus, our
study focused on treatment-naive ALL, and assessed de novo
resistance. This revealed that WBCapays is a superior measure
of in vivo MTX response when compared to the percentage
drop in leukemia cells (i.e., WBCq qrop), and that WBCapays
was predictive of long-term DFS. Furthermore, the difference
in survival cannot simply be explained by differences in MTX
systemic exposure (Figure S6).

To better understand the biological basis underlying MTX
response in ALL cells, we used an unbiased genome-wide
approach to identify genes whose expression in primary
leukemia cells in vivo was significantly related to WBCapays.
This process revealed 48 genes and two cDNA clones that are
highly related to the in vivo MTX response (WBCap.ys), even
after adjusting for MTXPG accumulation (n = 230) (Table S3).
Among those genes significantly associated with MTX
response were genes involved in nucleotide metabolism
(TYMS and CTPS), cell proliferation and apoptosis (BCL3,
CDC20, CENPF, and FAIM3), and DNA replication or repair
(POLD3, RPA3, RNASEH2A, RPMI, and H2AFX). The anti-
leukemic effects of MTX involve inhibition of purine and
pyrimidine synthesis, and the current findings indicate that
interindividual differences in nucleotide synthesis influence
the in vivo antileukemic effects of MTX. This finding was
confirmed by a global test analysis that identified the
nucleotide biosynthesis pathway as one of the most discrim-
inating biological pathways related to MTX response.
Significance of the global test was largely explained by three
key genes (TYMS, DHFR, and CTPS) belonging to the
nucleotide biosynthesis pathway.

Our analysis also showed that low expression of DHFR,
TYMS, and CTPS was significantly correlated with poor in
vivo MTX response [6,41,42]. It has been shown that DHFR,
TYMS, and CTPS expression is associated with critical
biological processes such as DNA synthesis and cell prolifer-
ation [43,44], a finding consistent with low expression of these
genes reflecting a decrease in the number of ALL cells in S-
phase. As MTX selectively affects cells in the S-phase of the

Table 3. Univariable Hazard Analysis of the Risk of Relapse with V
Proportional Hazard Analyses Each Including Known Prognostic

ariables Related to Initial In Vivo MTX Response and Multivariable Cox
Factors (i.e.,, ALL Subtype, Age at Diagnosis, Risk Group)

Parameter Univariable Hazard Analysis Multivariable Cox Proportional Hazard Analyses
Hazard Ratio p-Value Hazard Ratio p-Value
WBCapays 215 <0.001 226 0.0046
TYMS 0.60 0.008 0.58 0.044
DHFR 0.41 0.015 0.31 0.019
Top 50 gene profile 1.09 0.02 1.05 0.08
doi:10.1371/journal.pmed.0050083.t003
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Figure 5. Kaplan-Meier Plots of Disease Relapse Categorized by
WBCapays, TYMS, and Top 50 Gene Profile

(A) MTX response is categorized by WBCapays MTX good responders (i.e.,
bottom quartile, n = 28), intermediate (n = 67), and poor (i.e., top
quartile, n = 41) among 293 patients.

(B) Top 50 gene expression profile is categorized by top 25% (gene
profile for good responder, n = 20), intermediate (n = 53), and bottom
25% (gene profile for poor responder, n = 19).

(C) Proliferation index is categorized by TYMS expression top 25% (high
proliferation index, n = 27), intermediate (n = 47) and bottom 25% (low
proliferation index, n = 18). For TYMS and top 50 gene profile,
categorization was done among the 161 patients who had ALL cell
gene expression data available.

doi:10.1371/journal.pmed.0050083.g005

cell cycle [7,44,45], it is likely that low expression of these
genes explains the observed association with MTX response.
To support this hypothesis, we showed that the percentage of
leukemia cells in the S-phase was strongly correlated with
DHFR, TYMS, and CTPS expression and with the MTX in vivo

@ PLoS Medicine | www.plosmedicine.org
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response (Figure S5, Table 2). This finding does not preclude
the possibility that genetically determined high TYMS
expression in ALL cells is associated with a worse prognosis
in ALL, as we have previously reported [46]. High TYMS
expression in the current study was related to higher cell
proliferation, whereas higher constitutive TYMS expression is
due to a genetic polymorphism in the TYMS promoter region.
After remission is achieved, higher TYMS expression due to
the promoter polymorphism would connote a worse prog-
nosis due to higher levels of the MTX target, thymidylate
synthase, independent of cellular proliferation rates.

Our current data showed that low cell proliferation levels,
in addition to our measure of in vivo MTX response, is an
important ALL cell characteristic related to worse outcome.
This result is in agreement with those of a previous study that
found treatment-naive blasts with a low proliferation rate are
more resistant to several anticancer drugs in vitro [47]. In the
current study, the gene expression profile predicting MTX
response was not associated with overall disease outcome
after adjusting for other known prognostic variables in the
entire study population (p = 0.08), but was significantly
related to DFS within high-risk patients (p = 0.014). Leukemia
cells of patients with high-risk ALL may intrinsically have a
higher potential for poor MTX response (e.g., because of
oncogenic gene fusions), in contrast to lower-risk patients
whose ALL cells may acquire resistance mechanisms during
the 2-3 y of therapy. Further, it is possible that patients with
high-risk leukemia may be more prone to acquire resistance
during therapy for various reasons (e.g., greater genetic
instability in their ALL cells).

Interestingly, other known folate metabolism genes were
not among the top genes, suggesting that expression of the
known folate metabolism genes in pretreatment ALL cells is
less important in causing de novo MTX resistance than
previously thought. It may well be that these folate pathway
genes are important for the acquired drug resistance that
emerges during MTX treatment. It is also plausible that
expression or function of these proteins is not reflected by
the level of their mRNA expression in ALL cells. These
possibilities merit further investigation, which is beyond the
scope of the current work.

Defining the genomic determinants of ALL resistance to
individual antileukemic agents is essential if the pharmaco-
genomics of drug resistance are to be elucidated, because the
current and prior studies have shown that genes discriminat-
ing drug resistance in ALL are drug specific [5,48]. To assess
whether the genes we identified as related to de novo MTX
resistance reflect a global resistance phenotype versus a MTX-
specific effect, we compared the previously reported gene
expression profiles for ALL resistance to PVAD (prednisone,
vincristine, asparaginase, and daunorubicin), with the top 50
genes discriminating MTX response in the current study. This
comparison revealed no overlap in the genes related to MTX
resistance and the 124 genes related to prednisone, vincris-
tine, asparaginase or daunorubicin PVAD resistance [5]. This
result indicates that genes identified in the current study are
not a marker of general drug resistance or a global predictor
of survival, rather they are specific to MTX (or perhaps other
antifolates, but not all ALL chemotherapy). Furthermore, we
applied our MTX gene expression profile to the publicly
available German/Dutch dataset [5], and documented that the
MTX gene expression profile is not related to prednisolone
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Relation between the in vivo MTX response (WBCxpay3) and top 50 gene expression profile (p = 0.0065, r = 0.62, Pearson correlation) for the
independent validation cohort (n = 18). Relation between (B) the predicted log(WBCp,y3) using either the linear model function or (C) the median
percentage drop determined in 293 patients (mean difference = 0.1812946. p = 0.0025, paired t-test). The regression lines in graphs (B) and (C) are

based on intercept equal to zero and slope equal to one.
doi:10.1371/journal.pmed.0050083.g006

sensitivity in this independent patient cohort (unpublished
data).

Among the 50 genes that were expressed at a significantly
different level in leukemia cells of MTX good responders
versus poor responders, 29 were overexpressed in the MTX
poor- responders. It is plausible that these overexpressed
genes would be candidate targets for small molecules or other
strategies to down-regulate their function, as a means to
modify MTX response. Such a strategy has already proven
successful in finding agents to modify the sensitivity of ALL
cells to steroids [40], and it is plausible that specific inhibitors
of genes overexpressed in leukemia cells resistant to MTX
could be viable targets for modulating the antileukemic
effects of MTX. Likewise, strategies to invoke the expression
of genes that are underexpressed in MTX poor responders
could be tested for their ability to modulate MTX sensitivity.

The current study is the first, to our knowledge, to identify
genes whose expression is related to in vivo MTX response in
patients with newly diagnosed ALL. Our data provide new
insights into the genomic basis of interpatient differences in
MTX response and point to new strategies for overcoming de
novo MTX resistance in childhood ALL. In addition, our data
indicate that early treatment response to MTX is a significant
prognostic indicator for long term DFS in children with ALL.

Supporting Information
Figure S1. Flow Diagram of Data and Methods Used

Gray boxes indicate data used for the analyses, white boxes
intermediate data, shaded boxes data analysis method used, and n
the number of patients.

Found at doi:10.1371/journal.pmed.0050083.sg001 (657 KB PDF).

Figure S2. Box Plot of WBCDay3 Versus MTX Treatment Group
The three initial treatment groups with HDMTX were not different
in their WBCDay3 (HDMTX24H, n = 125; HDMTX24H+MP, n = 60;
HDMTX4H, n = 108, Welch two-sample ¢-test).

Found at doi:10.1371/journal.pmed.0050083.sg002 (16 KB PDF).

Figure S3. Histogram of WBC Change and WBC Residuals

Shown are the distributions of 293 patients for (A) WBCp gchange that
is defined as log(WBCprg) minus log(WBCp,ys), p = 0.04, ie., is
significantly different from a normal distribution; and (B) WBCapays
that is the residuals of the (log[WBCp,y3] with 1og[WBCpgg]) linear
regression, p = 0.10, i.e., is not significantly different from a normal
distribution.

Found at doi:10.1371/journal. pmed.0050083.sg003 (653 KB PDF).
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Figure S4. Gene Plot of the Gene Ontology Nucleotide Biosynthesis
Pathway

The gene plot gives a bar and a reference line for each gene probe set
categorized for this pathway. The bar indicates the influence of each
probe set on the correlation with MTX response (WBCapays). If the
height of the bar exceeds the reference line the probe set is
significantly related to MTX response. Marks indicate the standard
deviations by which the bar exceeds the reference line. Red indicates
gene probe sets with a positive correlation and green indicates gene
probe sets with a negative correlation with MTX response.

Found at doi:10.1371/journal.pmed.0050083.sg004 (340 KB PDF).

Figure S5. Scatterplot of TYMS and DHFR Expression, WBCy,qrop,
WBCapays, and Top 50 Gene Profile Versus Percentage of Leukemia
Cells in S-Phase

Shown are the scatterplots for 154 patients correlating percentage of
leukemia cells in S-phase with (A) the expression of TYMS and DHFR
(respectively, r = 0.59; p < 0.001; r = 0.39, p < 0.001, Pearson
correlation); and (B) for WBCyg, qrop and the residual WBCapays of the
WBC change (respectively, r = 0.034, p = 0.67; r = —0.20, p = 0.013,
Pearson correlation); and (C) the top 50 gene expression profile (r =
—0.57, p < 0.001, Pearson correlation).

Found at doi:10.1371/journal.pmed.0050083.sg005 (163 KB PDF).

Figure S6. MTX Systemic Exposure Was Not Different among
Responder Groups

There was no difference (p = 0.82) in MTX,y¢ (methotrexate area
under the curve, representing MTX systemic exposure) in the groups
(MTX good responder [GR] versus MTX intermediate [IR] versus
MTX poor responder [PR]). We used the same cutoff for MTX
response (WBCapays) as in Figure 3. Therefore, the difference in
survival cannot be explained by the difference in MTXyc.

Found at doi:10.1371/journal.pmed.0050083.sg006 (59 KB PDF).
Table S1. The Top Ten GenMAPP (of 37) (A) and GO-BP (of 319) (B)
Pathways Associated with WBCapays

The column titled “probe-set correlations with WBCap,ys~ indicates
whether most probe sets in the pathway have a positive correlation, a
negative correlation or a mixture of positive and negative correla-
tions with WBCap.ys.

Found at doi:10.1371/journal.pmed.0050083.st001 (56 KB DOC).
Table S2. Multivariable Cox Proportional Hazard Analysis of the Risk
of Relapse

Individual factors related to MTX response are highlighted in gray
(i-e., WBCapays, TYMS, DHFR, top 50 gene profile), each including
known prognostic factors (i.e., ALL subtype, age at diagnosis, risk
group).

Found at doi:10.1371/journal.pmed.0050083.st002 (57 KB DOC).
Table S3. The Top 50 Probe Sets Associated with WBCapays

Found at doi:10.1371/journal.pmed.0050083.st003 (105 KB DOC).

Text S1. CONSORT Checklist
Found at doi:10.1371/journal.pmed.0050083.sd001 (64 KB DOC).
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MIAME-compliant primary microarray data are available through the
Gene Expression Omnibus (NCBI) at http://www.ncbi.nlm.nih.govi/geo/
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Editors’ Summary

Background. Every year about 10,000 children develop cancer in the US.
Acute lymphoblastic leukemia (ALL), a rapidly progressing blood cancer,
accounts for a quarter of these childhood cancers. Normally, cells in the
bone marrow (the spongy material inside bones) develop into
lymphocytes (white blood cells that fight infections), red blood cells
(which carry oxygen round the body), platelets (which prevent excessive
bleeding), and granulocytes (another type of white blood cell). However,
in ALL, genetic changes in immature lymphocytes (lymphoblasts) mean
that these cells divide uncontrollably and fail to mature. Eventually, the
bone marrow fills up with these abnormal cells and can no longer make
healthy blood cells. As a result, children with ALL cannot fight infections.
They also bruise and bleed easily and, because they do not have enough
red blood cells, they often complain of tiredness and weakness. With
modern chemotherapy protocols (combinations of drugs that kill the
fast-dividing cancer cells but leave the normal, nondividing cells in the
body largely unscathed), more than 80% of children with ALL live for at
least 5 years.

Why Was This Study Done? Although this survival rate is good, some
patients still die because their cancer cells are resistant to one or more
chemotherapy drugs. For some drugs, the genetic characteristics of the
ALL cells that make them resistant are known. Unfortunately, little is
known about why some ALL cells are resistant to methotrexate, a
component of most treatment protocols for newly diagnosed ALL.
Methotrexate kills dividing cells by interfering with DNA synthesis and
repair. Cancer cells can be resistant to methotrexate for many reasons—
they may have acquired genetic changes that stop the drug from
entering them, for example. These resistance mechanisms need to be
understood better before new strategies can be developed for the
treatment of methotrexate-resistant ALL. In this study, the researchers
have determined the response of newly diagnosed patients to
methotrexate and have investigated the gene expression patterns in
ALL cells that correlate with good and bad responses to methotrexate.

What Did the Researchers Do and Find? The researchers measured the
reduction in circulating leukemia cells that followed the first treatment
with methotrexate of nearly 300 patients with newly diagnosed ALL.
They also used “microarray” analysis to investigate the gene expression
patterns in lymphoblast samples taken from the bone marrow of 161
patients before treatment. They found that the expression of 50 genes
was significantly related to the reduction in circulating leukemia cells
after methotrexate treatment (a result confirmed in an independent
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group of patients). Of these genes, the expression of 29 was higher in
patients who responded poorly to methotrexate than in patients who
responded well. A “global analysis test,”” which examined the gene
expression profile of different cellular pathways in relation to the
methotrexate response, found a significant association between the
nucleotide biosynthesis pathway (which is needed for DNA synthesis and
cellular proliferation) and the methotrexate response. Finally, patients
with the best methotrexate response and the 50-gene expression profile
indicative of a good response were more likely to be alive after 5 years
than patients with the worst methotrexate response and the poor-
response gene expression profile.

What Do These Findings Mean? These findings provide important new
insights into the genetic basis of methotrexate resistance in newly
diagnosed childhood ALL and begin to explain why some patients fail to
respond to this drug. They also show that the reduction in circulating
leukemic cells shortly after the first methotrexate dose and a specific
gene expression profile both predict the long-term survival of patients.
These findings also suggest new ways to modulate sensitivity to
methotrexate. Down-regulation of the expression of the genes that are
expressed more highly in poor responders than in good responders
might improve patient responses to methotrexate. Alternatively, it might
be possible to find ways to increase the expression of the genes that are
underexpressed in methotrexate poor responders and so improve the
outlook for at least some of the children with ALL who fail to respond to
current chemotherapy protocols.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0050083.

e The US National Cancer Institute provides a fact sheet for patients and
caregivers about ALL in children and information about its
treatment(in English and Spanish)

The UK charity Cancerbackup provides information for patients and
caregivers on ALL in children and on methotrexate

The US Leukemia and Lymphoma Society also provides information for
patients and caregivers about ALL

The Children’s Cancer and Leukaemia Group (a UK charity) provides
information for children with cancer and their families

MedlinePlus provides additional information about methotrexate (in
English and Spanish)
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