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ABSTRACT

The lower jaws of archaeal RNA polymerase and
eukaryotic RNA polymerase II include orthologous
subunits H and Rpb5, respectively. The tertiary
structure of H is very similar to the structure of the
C-terminal domain of Rpb5, and both subunits
are proximal to downstream DNA in pre-initiation
complexes. Analyses of reconstituted euryarchaeal
polymerase lacking subunit H revealed that H is
important for open complex formation and initial
transcription. Eukaryotic Rpb5 rescues activity of
the "H enzyme indicating a strong conservation
of function for this subunit from archaea to
eukaryotes. Photochemical cross-linking in elon-
gation complexes revealed a striking structural
rearrangement of RNA polymerase, bringing
subunit H near the transcribed DNA strand one
helical turn downstream of the active center, in
contrast to the positioning observed in preinitiation
complexes. The rearrangement of subunits H and
A00 suggest a major conformational change in the
archaeal RNAP lower jaw upon formation of the
elongation complex.

INTRODUCTION

The transcriptional machinery of archaea is similar to, but
far simpler than, the eukaryotic RNA polymerase II
(polII) system. The archaeal RNA polymerase (RNAP)
is recruited to the preinitiation complex (PIC) by associa-
tion with promoter bound transcription factors TBP and
TFB (1,2) that interact with the TATA-box and BRE
element of promoter DNA. These archaeal factors
are orthologs of the eukaryotic transcription factors

TBP and TFIIB. Archaeal TFE is a polypeptide with
sequence similarity to the N-terminal part of the a
subunit of eukaryotic TFIIE (3–5). Like TFIIE, archaeal
TFE interacts with the non-transcribed DNA strand
upstream of the transcription start site, but in contrast
to its eukaryotic counterpart, it interacts with and stabi-
lizes the transcription bubble in elongation complexes
(ECs; 6). The large subunits of archaeal RNA polymerases
(B, which is similar in size to its eukaryotic ortholog Rpb2,
and A0 and A00, which correspond to consecutive parts of
Rpb1) display higher sequence similarity with eukaryotic
polII subunits than with the bacterial subunits b0 and b
(7). The archaeal RNAP subunits F (conserved in
eukaryotic RNAP II as Rpb4), H (Rpb5), E0 (Rpb7), N
(Rpb10) and P (Rpb12) are only conserved between
archaeal and eukaryotic RNAPs and have no orthologs
in the multisubunit bacterial enzymes. Comparison of
crystal structures of archaeal RNAP and eukyaryotic
RNAP II revealed striking structural similarity (8,9).
The major differences between archaeal RNAP and
pol II are that in the archaea the homolog of Rpb1 is
split into subunits A0 and A00 and the smaller subunits
F, P and H lack an N-terminal domain that is present in
their eukaryotic counterparts Rpb 4, Rpb 12 and Rpb5,
respectively (10). An Rpb8 ortholog is missing in
euryarchaeota like Pyrococcus furiosus studied here, but
was detected in the genomes of all hyperthermophilic
crenarchaeota (11,12). Rpb8 was not found in crystals
used for the first analysis of the structure of the
Sulfolobus RNAP (9) but co-purified and crystallized
with Sulfolobus RNAP characterized recently (13).
Therefore, it seems to be a subunit that is easily lost
during purification. An Rpb9 ortholog is not contained
in purified archaeal RNAPs but the archaeal elongation
factor TFS is clearly homologous to Rpb9 and to its Pol I
and Pol II paralogs Rpa12 and Rpc11 and shares with
Rpc11 the property to induce transcript cleavage (14,15).
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In spite of the missing N-terminal domain, the archaeal
subunit P complements null mutants of yeast Rpb12 in
vivo (16). This finding suggests a high degree of functional
conservation between the two domains and indicates that
the additional eukaryote-specific N-terminal domain is
not required for basic RNAP functions.

Analyses of the topography of PICs by photochemical
cross-linking and molecular modeling on the basis of
crystal structures revealed a highly conserved geometry
of interaction of bacterial, eukaryotic and archaeal
RNAPs with DNA in the PIC (17), e.g. the archaeal
subunits A0 and A00, the bacterial subunits b0 and
eukaryotic Rpb1 are in close contact with DNA down-
stream of the transcription start site (17,18–21). Cross-
linking studies with the archaeal PIC showed in addition
close proximity of subunit H with downstream DNA from
þ10 to þ20 (17). Eukaryotic Rpb5 has been cross-linked
to DNA in initiation complexes from þ5 to þ15 (18,20),
suggesting that both factors occupy similar locations
in the archaeal and eukaryotic PIC. Eukaryotic Rpb5
shows a bipartite organization with an N-terminal
domain that is unique to eukaryotic RNAPs, and a
C-terminus that is highly conserved in eukaryotes and
archaea (7). The C-terminus of Rpb5 is in close contact
with subunit Rpb1 (8), and this feature is shared with the
archaeal H, which is strongly associated with RNAP
subunit A00 (9,10,13). A superposition of Rpb5 and H
reveals a very high similarity in tertiary structure of the
C-terminal part of Rpb5 with H (Figure 1).

RNAPs from hyperthermophilic archaea can be
reconstituted in vitro from bacterially expressed subunits
(22,23). The reconstitution protocol allows investigation
of functions of single subunits of RNAP by analysis of a
reconstituted RNAP lacking a specific subunit. The small
eukaryotic RNAP subunit Rpb12 can replace subunit P

in archaeal RNAP without significant loss of function in
assays covering most crucial steps of the transcription
cycle (16). In this work, we focus on subunit H corre-
sponding to the conserved C-terminal third of Rpb5.
While the N-terminal domain of Rpb5 is involved in inter-
actions with TFIIF and several regulators (24), the role of
the conserved C-terminal domain in the transcription
process is poorly understood. We show here that subunit
H is required for early steps of initiation and—in striking
contrast to Rpb5 in polII—undergoes an unexpected
structural rearrangement in ECs.

MATERIALS AND METHODS

Purification of RNAPs

RNAP from P. furiosus and polII from yeast were purified
as described (25,26). Wt Pyrococcus RNAP and �H
RNAP were reconstituted from single subunits as
described (24).

Cloning and purification of P. furiosus TFS

The gene encoding TFS was amplified by PCR from
endogenous Pyrococcus DNA, cloned into the NdeI and
EcoRI site of vectors pET-17b and over expressed in
Escherichia coli BL21CP(DE3)-RIL. The crude extract
was incubated for 30min at 95�C and heat-soluble
proteins in the supernatant were purified by gel filtration
(Hi Load 16/60 Superdex 75 prep grade) and anion
exchange chromatography (MonoQ 5/50 GL 1ml). The
ability of TFS to induce the nuclease activity of RNAP
was assayed by addition of TFS to immobilized purified
complexes stalled at þ20, which were incubated in the
absence of NTPs as indicated in Supplementary Figure
S1. Under these conditions, the RNA in EC20 complexes
was shortened in a TFS- and time-dependent manner.

Promoter-directed run-off in vitro transcription assay

In vitro transcription assays were performed as
described (23).

KMnO4 footprinting of initiation complexes

Footprinting experiments were performed essentially as
described (16). Reconstituted wt RNAP or �H RNAP,
respectively, was preincubated for 5min at 70�C with
gdh promoter DNA in reactions containing 500 nM
TFE, 440 nM RpoE0-F complex, 60 nM RNAP, 60 nM
TBP and 50 nM TFB. Subunits H (180 nM) and Rpb5
(520 nM) were added as indicated in Figure 3A.

Abortive transcription assays

The transcription reactions were performed similar to
run-off transcription but with a �C/þ20 cassette of the
gdh promoter according to (27) but a heteroduplex
template (Figure 3) was used to mimic an open complex.
The transcription was dinucleotide primed with GpC
(40mM) and transcription was started by the addition of
radiolabeled GTP (3.3 pmol). The 3-nt and 4-nt RNA
products were analyzed on a 24% (w/v) polyacrylamide
urea gel.

Figure 1. The C-terminal domains of Rpb5 and RpoH are very similar.
Superposition of the tertiary structures of subunits Rpb5 from yeast
based on the RNAP II crystal structure (N-terminal domain coloured
in orange and the C-terminal domain in red; PDB ID: 1I3Q; 8) and of
the archaeal subunit H from S. solfataricus (coloured in blue; PDB ID:
2PMZ; 9) generated using DaliLite (45). The R.M.S. value of this
alignment is 1.1 Å.
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Immobilized in vitro transcription assay of stalled ternary
complexes

Immobilized ternary complexes were stalled at position
þ20 relative to the transcription start site and were
isolated according to (27). To remove unbound RNAP
and TBP/TFB from promoter DNA, complexes were
washed with transcription buffer containing 0.1%
N-lauroylsarcosine (NLS). Then the isolated ternary
complexes were resuspended in transcription buffer and
chased by the addition of 4 NTPs (40 mM each) but no
additional radioactivity in a total volume of 25 ml. Subunit
H was added to the reaction as indicated on top of
Figure 4.

Electrophoretic mobility shift assay

A DNA fragment spanning the gdh promoter region
from �60 to þ37 was used as probe as described earlier
(10). The binding reactions contained 63 nM wt RNAP,
126 nM TBP, 106 nM TFB, 50 nM gdh promoter DNA
and 1 mg of poly(dI–dC) as non-specific competitor
DNA. Protein�DNA complexes were assembled in a
25 ml volume containing 40mM Na-HEPES, pH 7.3,
250mM NaCl, 25mM MgCl2, 0.1mM EDTA, 5mM
b–mercaptoethanol, 5% (v/v) glycerol and 0.1 mg/ml
bovine serum albumin.

Cloning and purification of the yeast RNAP subunit Rpb5

Genomic yeast DNA (Novagen) was used as template for
PCR amplification of the gene encoding Rpb5 with help of
the forward primer (50-ATGGACCAAGAAAATGAA
AG-30) and the reverse primer (50-CTACATACAGATT
CTGTAAC-30). The purified PCR product was cloned
into pETBlue 1 vector (Novagen) and the DNA
sequence was confirmed by sequencing.
Rpb5 was expressed in Tuner cells (Novagen). The

protein was purified from the crude extract by a SP XL
5-ml column (GE Healthcare) and eluted with a linear salt
gradient from 10mM to 1M NaCl in buffer containing
40mM Na-HEPES pH 8, 10% (v/v) glycerol, 1mM
PMSF, 5mM b-mercaptoethanol and complete protease
inhibitor mix (Roche). Rpb5 eluted at 320 nM NaCl and
was further purified by size exclusion chromatography on
a Superdex 75 column.

Photochemical cross-linking of stalled ECs and of
preinitiation complexes

Pyrococcus furiosus ECs were stalled essentially as
described earlier (6): 2 nM of internally a-32P-NTP
labeled gdh C-minus þ20/þ45 cassettes modified with
photoactivatable azidophenacylated phosphorothioate at
specific positions and prepared essentially as described
(21) were incubated with 20 nM TBP, 60 nM TFB,
21 nM RNAP purified from Pyrococcus cells (Figures 6
and 7, lanes 2, 5 and 8) or reconstituted �H RNAP
(Figure 7, lanes 3, 6 and 7), respectively. Rpb5 was
added to 535 nM when indicated (Figure 7, lanes 4
and 7). Protein components and DNA were preincubated
for 3min at 70�C in 12.5ml of transcription buffer contain-
ing 40mM Na-HEPES, pH 7.3, 250mM NaCl, 2.5mM

MgCl2, 0.1mM EDTA, 600 ng of herring sperm DNA
(acting as non-specific competitor DNA) and 40 mM
each of adenosine triphosphate (ATP), guanosine tri-
phosphate (GTP) and uridine triphosphate (UTP).
Subsequently, gdh promoter DNA ranging from position
�164 to þ113 was added as specific competitor to a final
concentration of 400 nM and incubation continued for
2min at 70�C. Complexes were transferred to an ultra-
violet (UV) chamber and UV-irradiated for 7min at
70�C, followed by nuclease treatment (17). Cross-linked
proteins were analyzed on 4–19% gradient PA-SDS gels
and visualized using image plates and image analyzer
(FLA-500, Fuji, Japan).

Transcription of a derivatized template

Stalling of ECs on templates containing the photo-
activateable azidophenacylated phosphorothioate at
position 25 in the template strand (Figure 5A) was
carried out as in photochemical cross-linking experiments,
except few changes: the DNA template did not contain an
internal radioactive label and stalled ECs were obtained
by addition of 40 mM ATP, 40 mM GTP, 2.68mM UTP
and [a-32P]UTP with 0.15MBq (110 tBq/mmol). NTPs
(40 mM each) or 150 nM TFS to chase stalled complexes
were added as indicated on top of the panel. After further
incubation at 70�C for 2min, reactions were stopped by
addition of formamide loading buffer.

Fe2þ-cleavage

ECs at position þ20 (EC20) were stalled on immobilized
templates as described (27), isolated and extensively
washed with transcription buffer lacking MgCl2. Either
immediately after washing or after further incubation
for 15min at 70�C the reaction was split in three parts:
one-third was not further incubated, one-third was
incubated for 20min at 20�C without additives and
one-third was treated with 3mM (NH4)2Fe(SO4)2 and
30mM DTT (Figure 5B). Reactions were analyzed on
a 28% PA/urea gel. Incubation at 70�C after washing
had no effect on Fe2þ cleavage (data not shown).

Kinetics of TFS induced RNA-cleavage. EC20 was stalled
on immobilized templates according to (27). After 3 or
15min, EC20 was isolated, washed three times and
resuspended in transcription buffer without NTPs. TFS
was added to a final concentration of 150 nM immedi-
ately or after 3 or 15min further incubation at 70�C
(Figure S1). Samples were taken 5 s, 45 s, 3min and
15min after TFS addition as indicated on top of each lane.

Cross-linking of PICs (Supplementary Figure S2)
was performed essentially as described earlier, using
a-32P-NTP labeled gdh C-minus þ20 cassettes, derivatized
with APB at various positions as indicated in Figure S1;
21 nM of native Pfu RNAP, 20 nM TBP and 60 nM TFB
were incubated with 2 nM of photoactivatable template
DNA. Buffer conditions resembled the conditions stated
before, but NTPs were omitted from the reactions.
Incubation of PICs, cross-linking, nuclease treatment
and analysis of cross-linked proteins were performed as
described in the previous section.
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Chemical cleavage of cross-linked RNAP subunit H

The bands presumptively containing H were excised from
the gel, eluted and concentrated as described previously
(17). Cleavage by formic acid and cyanogen bromide
(CNBr) was performed essentially as described previously
(17), but the formic acid concentration was raised from
50 to 75% (v/v) and the reaction time was extended to
18 h at 37�C. The 2-nitro-thiocyanobenzoic acid (NTCB)
cleavage reaction was conducted as described (28), with
slight modification: NTCB cleavage at Cys residues was
induced by treatment with 10mM NTCB for 5 h at 37�C.
The efficiency of CNBr and NTCB cleavage was tested by
cleavage of cross-linked RNAP subunit B, which contains
Cys and Met residues (data not shown). Following 4–12%
VG/Mops gel electrophoresis, labeled proteins were
visualized by autoradiography.

Cross-linking of archaeal RNAP and of polII to
elongation scaffolds

The assembly of the elongation scaffolds was performed
essentially as described in (29), but azidophenacylated
phosphorothioate with adjacent internal radiolabel were
introduced at positions þ6 or þ15 of the T-strand, respec-
tively. To anneal RNA with the T strand, hybridization
reactions were started by heating the oligonucleotides
for 3min at 90�C. The tubes were transferred to a
heating block kept at 70�C, which was switched off after
the transfer. After an incubation period of 15min, the
tubes were transferred to a heating block kept at 40�C
which was again immediately switched off after transfer
and cooled down to 20�C. This DNA–RNA hybrid (2 nM)
was incubated with increasing amounts of polII (36 nM,
72 nM or 110 nM) at 20�C in 500mM potassium acetate,
pH 7.6, 100mM HEPES, pH 7.6, 5mM EDTA, 25mM
MgOAc (30), 5 % glycerol (v/v) and heparin 50 ng/ml. The
NT-strand was added after 5min to a final concentration
of 0.5 nM and reactions were further incubated at 20�C.
After 10min, reactions were transferred to a 30�C heating
block and preincubated for 5min and then the open tubes
were UV254 irradiated for 10min at 30�C. Photoacti-
vatable elongation scaffolds for cross-linking analyses
of RNAP purified from Pyrococcus cells contained 2 nM
of the T-strand DNA/RNA hybrid, 46 nM RNAP and
380 nM TFE as indicated in Figure 6b. Hybridization
reactions were incubated for 5min at 20�C prior to the
addition of the NT-strand. Ten minutes after the addition
of the NT-strand, reactions were preincubated for 5min
at 70�C, followed by UV254 irradiation for 10min at 70�C.
After UV irradiation, reactions were nuclease treated
as described (6), denatured and analyzed by 4–19%
SDS-PAGE.

Transcription on assembled elongation scaffolds

Activity of polIIs on the elongation scaffold containing the
cross-linker was tested under essentially the same
conditions as described in the previous section but reac-
tions contained 0.4 mM unlabeled DNA/RNA hybrid and
NT-strand, respectively. Radiolabeled nucleotides were
added prior to incubation for 30min at 30�C.

RESULTS

Eukaryotic Rpb5 can functionally replace H in the
archaeal RNAP

The high structural similarity between H and Rpb5
suggests conserved function for these RNAP subunits in
archaea and eukaryotes. To test this, we compared activity
of reconstituted archaeal RNAP with or without H,
or with Rpb5 replacing H. In electrophoretic mobility
shift assays containing gdh promoter DNA and the
general transcription factors TFB and TBP, RNAP
reconstituted without subunit H (�H RNAP) formed
stable PICs. The efficiency of PIC formation was �75%
when compared to the reconstituted RNAP containing
all subunits (wt RNAP; see lanes 2 and 4 in Figure 2A).
This suggests that subunit H is not essential for PIC
formation.
To analyze the ability of the �HRNAP to initiate RNA

synthesis in vitro, we performed specific run-off assays on
linearized DNA containing the gdh promoter (31). H or its
eukaryotic homolog Rpb5 were added to reconstitution
reactions involving denaturation and renaturation of all
subunits (23), or were added after reconstitution of
�H RNAP as indicated on top of the lanes. As reported
earlier (22,32), the �HRNAP showed a dramatic defect in
transcription activity (Figure 2B, lane 1) when compared
to the reconstituted wild-type RNAP (Figure 2B, lane 5).
An archaeal RNAP reconstituted in the presence of the
eukaryotic RNAP subunit Rpb5 showed the same trans-
criptional activity as the archaeal RNAP reconstituted
with H (Figure 2B, lanes 4 and 5), indicating that the
N-terminal part of Rpb5 does not disturb the proper
folding of the archaeal enzyme during reconstitution.
Furthermore, when recombinant Rpb5 was added to tran-
scription reactions with �H RNAP the activity was �80%
of wt levels (Figure 2B, lane 3). The addition of archaeal
H to transcription reactions also rescued transcription
(Figure 2B, lane 2). These findings suggest that both the
archaeal subunit H and eukaryotic Rpb5 can be easily and
rapidly incorporated into the reconstituted �H enzyme.
Furthermore, these data provide evidence that function of
H and the C-terminal part of Rpb5 are conserved.

Subunit H is required for efficient open complex
formation and initial transcription

Defects in transcription can be caused at several stages
of the transcription process. After formation of the PIC,
the next step is opening of the DNA around the transcrip-
tion start site. To analyze the ability of the �H enzyme to
form open complexes, we performed potassium perman-
ganate footprinting experiments as described previously
(6). No reactivity of T-residues in complexes formed by
the �H RNAP could be detected with the exception of
a weak signal at the T-residue at �6 (Figure 3A, compare
lanes 1 and 2), marking the upstream boundary of the
archaeal open complex (27). Wild-type levels of reactivity
of T-residues were observed when H or Rpb5 were
added to footprinting reactions (Figure 3A, lanes 3–5).
These results indicate that subunit H is required for the
formation of stable and full-length open complexes.
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To investigate initiation from a preformed open complex,
a heteroduplex primed by a dinucleotide was used as
template, as previously described (Figure 3B; 11). The
�H RNAP formed only small amounts of tri-and
tetranucleotide transcript in this assay (Figure 3B, lane
1), but could be rescued by the addition of H or of Rpb
5 to transcription reactions (Figure 3B, lanes 2 and 3).
These findings demonstrate that formation of the stable
open complex is not the only effect of the H subunit.
Transcription on a DNA template containing a preformed
transcription bubble shows that H is also essential for
formation of the first phosphodiester bonds during the
abortive phase of transcription.

A small fraction of "H RNAP is able to synthesize
full-length transcripts

To investigate the ability of the �H enzyme to perform
later steps in transcription, RNAP was stalled at position
þ20 on an immobilized template (6,27) and resumption of
transcription was analyzed in the presence and absence
of H. The �H RNAP formed fewer ternary complexes
stalled at position þ20 compared to complete RNAP
(Figure 4, compare lanes 1a and 3a), but was rescued
when H was added to PICs before initiation (Figure 4,
lane 2a). However, the ternary complexes formed by the
�H enzyme elongated, synthesizing run-off transcripts of
145 nt as efficiently as complete RNAP (Figure 4, lanes1a
and b). The ratio of RNA in stalled ECs to run-off RNA
formed after addition of NTPs to stalled complexes was
the same for �H RNAP and complete RNAP (Figure 4
lanes a and b, and see quantification following the gel).

Furthermore, the addition of H to stalled complexes of the
�H enzyme did not increase resumption of elongation by
the �H enzyme (Figure 4, lane 4). This finding suggests
that subunit H contributes significantly to RNAP activity
during early steps of transcription and probably also
to the transition from initiation to elongation, but once
the EC is formed, it is stable and equally active in the
absence of H.

Characterization of DNA–protein contacts in stalled ECs

ECs stalled at position þ20 of the gdh promoter do not
undergo backtracking. For analysis of protein–DNA
contacts in stalled ECs by photochemical cross-linking,
it is essential that the 30-end of RNA is located in the
polymerase active site. In backtracked complexes, the
active site is relocated to an internal position of RNA
(33–37). Previously published data provide evidence that
complexes stalled on the immobilized Pyrococcus gdh
promoter at position þ20 show exoIII digestion patterns
and resumption after challenge with NTPs (27) that are
typical for active complexes in which the active site of
the RNAP has not moved to an internal position within
the transcript. To provide additional biochemical evidence
that the complexes stalled on the template derivatized with
aryl azide at position þ25 (Figure 5A, lanes 2–5) are not
backtracked, transcription and resumption of complexes
stalled at the template derivatized with the cross-linker at
position þ25 (Figure 5A, lanes 2–5) were compared with
the complexes stalled on an identical but underivatized
DNA template (Figure 5A, lanes 6–9). On both templates,
the 20-nt RNA was the dominant transcript and it was

Figure 2. Characterization of promoter recruitment and of run-off transcripts of �H RNAP. (A) �H RNAP forms stable preinitiation complexes.
EMSAs with a probe containing the Pyrococcus gdh promoter (10) were conducted in the presence and absence of TBP, TFB and reconstituted wt or
�H RNAP as indicated on top of the lanes. The position of the TBP–TFB and TBP–TFB–RNAP complexes are indicated. (B) Eucaryotic Rpb5 can
functionally replace RpoH in an archaeal RNAP. The synthesis of a 145 nt run-off transcript from the Pyrococcus gdh promoter was analyzed in
standard multiple round transcription assays (‘Materials and Methods’ section) and RNA products were analyzed on 6% denaturing PA gels. Lane 4
shows transcription products synthesized by �H RNAP reconstituted with Rpb5. In lanes 2 and 3 subunit H or Rpb 5 were added to transcription
reactions. The diagram below the gel shows the mean value of the transcriptional activity for each lane. The quantification was done with the Aida
image analyzer software version 3.28.
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completely chaseable to a longer run-off transcript
after challenge with a complete set of NTPs (Figure 5A).
The same resumption was observed when stalled ECs were
challenged with NTPs in the presence of TFS (Figure 5A,
lanes 5 and 9), which is known to induce a cleavage
activity in the archaeal (and eukaryotic) RNAP (15).
Since TFS rescues backtracked, RNAP in ECs by
inducing RNA cleavage, the finding that resumption is
essentially 100% in the absence of TFS, and is therefore
not affected by TFS, also argues against backtracking of
stalled RNAP.

Analysis of the kinetics of TFS induced cleavage
activity on these complexes confirmed this conclusion.
When EC20 complexes were incubated with TFS for 5 s
in the absence of NTPs, an 18-nt RNA was observed as
first cleavage product (Supplementary Data Figure S1,
lanes 3, 13, 18 and 22). In backtracked complexes TFIIS
induced cleavage released RNA fragments of 7–14 nt (35).
Therefore, cleavage of two nucleotides in the archaeal
EC20 indicates that the active site is close to the 30-end
of RNA as predicted for an active complex. When stalled
complexes were formed with 3- or 15-min incubation times
and then challenged after removal of NTPs with TFS for
5–15min, the TFS-induced cleavage patterns were almost

identical (Supplementary Figure S1, compare e.g. lanes 4
and 14 or 6 and 16). The patterns still remained the same
when the RNAP was incubated after removal of NTPs for
3 or 15min prior to TFS addition (Supplementary Figure
S1, lanes 17–26). If backtracking were occurring, longer
incubation would be expected to result in increased back-
tracking, causing a different TFS-dependent cleavage
pattern. Since no changes in the pattern occurred, this
indicates that all of the RNA cleavage was TFS-dependent
and independent of backtracking. Taken together, these
findings suggest that significant backtracking does not

Figure 4. Stalled �H RNAPs can efficiently elongate to the run-off.
Ternary complexes were stalled at þ20, washed and the reactions
divided into two aliquots. One aliquot was untreated (lane a of each
panel), the other was chased by the addition of a complete set of
non-labeled NTPs for 3min at 70�C (lane b in each panel), and both
were then analyzed on a 20% polyacrylamide gel. In lanes 1, 2 and 4,
the ability of the �H and wt enzyme to synthesize a 20-nt stalled
transcript in the presence and absence of subunit H was analyzed.
Reactions were chased by the addition of a complete set of NTPs
not containing radioactivity and the synthesis of the 145-nt run-off
product was analyzed. The RNA products of intermediate size are
caused by specific pausing sites for RNAP. The quantification below
shows the mean value of the transcriptional activity of the transcript in
ternary complexes stalled at position þ20 relative to the 145-nt run-off
product.

Figure 3. Subunit H is required for open complex formation and initial
transcription. (A) RpoH and Rpb5 stimulate open complex formation.
Promoter opening at 70�C was analyzed by KMnO4 footprinting as
described (16,23). TBP, TFB, TFE and the RpoE0-F complex were
present in all reactions. Additional components added to the reac-
tions are indicated on top of the gel. (B) Abortive transcription from
a preopened heteroduplex. The ability of �H and of wt RNAP to
synthesize a 3 or 4 nt abortive transcript in the presence of TBP and
TFB was analyzed on a preopened bubble mimicking an open complex
(see figure on top of the gel). The reaction was dinucleotide (GpC)
primed and was analyzed on a 24% PA gel. Subunits H and Rpb5
were added to transcription reactions as indicated.
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occur even after 15min of incubation of EC20 at 70�C,
while the cross-linked complexes in Figure 6 were formed
for 5min prior to UV radiation (‘Materials and Methods’
section).
Fe2þ substituting for Mg2þ in the RNAP active site was

previously shown to cause highly localized cleavage of
RNA (38). In ECs that do not backtrack, the 30-end of
the RNA stays close to the active site and Fe2þ therefore
cleaves close to the 30-end. Repositioning of the active site
in backtracked complexes can be detected as an upstream
shift of Fe2þ-induced cleavage. Therefore, cleavage close
to the active center is characteristic of active complexes
where the 30-end of RNA is still close to the bivalent
cation. When Mg2þ was substituted by Fe2þ in complexes
stalled at þ20 an RNA fragment of �18 nt was formed
(Figure 5b, lane 3) and therefore cleavage occurred close
to the 30-end of the transcript. This finding provides
direct evidence that the complexes used for cross-linking
experiments are not backtracked.

Subunit H cross-links to the DNA of the transcribed strand
immediately downstream of the active center in elongation
complexes. Previous cross-linking experiments provided

evidence that subunit H, located in the lower jaw of
RNAP, guides downstream DNA toward the active site
(9,17). Our finding that H is required for early steps of
transcription suggests a more important role of H during
the transition from initiation to elongation. To investigate
this in more detail the DNA–RNAP contacts were
analyzed in ECs stalled at the gdh gene at position þ20
and þ45. For photochemical cross-linking of stalled
complexes, the RNAP purified from Pyrococcus cells
(nat RNAP) was used.

In the PIC, subunit H cross-links to the non-transcribed
strand from position þ14 to þ20 and to the transcribed
strand from position þ12 to þ20, as previously shown (17)
and confirmed here using the same conditions used for
the cross-linking of ECs (Supplementary Figure S2).
If the geometry of RNAP–DNA interaction of the PIC
is conserved in ECs, H would be predicted to interact
with DNA from þ30 to þ40 in an EC stalled at þ20.
We analyzed cross-linking of stalled RNAP to DNA
derivatized with APB (p-azidophenacyl bromide) on the
transcribed (T) and non-transcribed (NT) DNA strands
at various positions downstream of the transcription halt
site at þ20 (Figure 6A). When cross-links in the EC stalled
at þ20 were analyzed we observed prominent cross-links-
to subunits A0 and A00 and weaker cross-links to subunit B
at positions þ30, þ35 and þ37 on the T strand
(Figure 6A). No cross-link to subunit H was observed at
either of these positions. However, when DNA derivatized
at positions þ21 to þ30 was analyzed, a cross-link to a
protein of �9–10 kDa was observed, most prominently at
position þ25. On the NT strand strong cross-links to B,
A0 and A0 were observed at position þ25, while position
þ37 showed strong cross-links to A00 and weaker cross-
links to B and A0 (Figure 6C). Surprisingly, only very faint
cross-linking to H was observed at position þ25NT
(Figure 6C, lane 1). It is noteworthy that H cross-linking
is most prominent at position þ25 on the T strand as well
(Figure 6B lane 12). At position þ37 (Figure 6C, lane 2)
and at all other positions tested between þ21 and þ35 on
the NT strand, no cross-link of subunit H could be
detected (data not shown). These findings suggest that
H cross-links mainly to the transcribed strand immedi-
ately downstream of the active center in elongation
complexes.

To identify the cross-linked 9–10-kDa protein in ECs
as subunit H we used specific chemical cleavage of this
particular cross-linked RNAP subunit essentially as
described previously (17). RNAP subunit H does not
contain cysteine (Cys) and methionine (Met) residues,
but does contain an aspartic acid-proline motif (9,10).
The 9–10-kDa protein cross-linked at þ25T was excised
from the gel and treated with cyanogen bromide (CNBr;
cleaving at Met residues), 2-nitro-thiocyanobenzoic acid
(NTCB; cleaving at Cys residues) and formic acid
(cleaving at Asp-Pro motifs), respectively. No cleavage
was detectable in the cleavage reactions containing
CNBr or NTCB, indicating that the cross-linked
protein did not contain Cys or Met residues
(Supplementary Figure S3, lanes 1–4), whereas cleavage
of the protein occurred when treated with formic acid
(Supplementary Figure S3, lanes 5 and 6). This finding

Figure 5. Resumption of stalled complexes and Fe2þ cleavage indicate
that EC20 complexes are not backtracked. (A) Complexes stalled at
the gdh promoter at position þ20 on a template with and without
aryl azide derivatization at position þ25 of the template strand
(25T; lanes 2, 3 and 6, 7) were challenged after incubation for 5min
at 70�C with a complete set of NTPs (chase) for 2min in the presence
and absence of TFS as indicated on top of the figure. Lanes 1 and
10 contained RNA size markers. (B) Stalled immobilized EC20 were
extensively washed in the absence of Mg2þ, as indicated in ‘Materials
and Methods’ section, and incubated for 20min at 70�C. Reactions
were then cooled to 20�C, and Fe2þ and DTT were added to initiate
the cleavage reaction. The �18-nt Fe2þ cleavage product contains a
30 phosphate causing as slightly higher electrophoretic mobility (39).
The weak 21-nt RNA band is due to misincorporation at the
G-residue of template DNA.The asteriks indicate non-specific bands.
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provided evidence that the protein cross-linking to DNA
in close proximity of the active center in ECs contains an
Asp-Pro motif, and thus it can be identified as RNAP
subunit H. The cleavage activity of CNBr and NTCB
was successfully tested in reactions with the largest

subunit B, which contains Met and Cys residues (data
not shown).

Subunit H cross-links at identical sites in a late EC. Several
lines of evidence indicate that polII ECs stalled at position

Figure 6. Mapping of RNAP subunits cross-linked to the gdh promoter DNA in stalled elongation complexes. (A) Processivity of ECs stalled at þ20
is not affected by TFS. Increasing amounts of purified TFS were added to stalled ECs (lanes 4–9) and complexes were chased with a complete set of
NTP after incubation in the absence (lane 3) and presence of TFS (lane 8). The amount of non-chaseable RNA in complexes is insignificant in both
reactions and the amount of synthesized run-off transcript � the same indicating that the stalled complexes were not backtracked in the absence of
TFS. As expected, the 21-nt RNA most likely generated by misincorporation of an unpaired nt was removed upon TFS treatment. (B) Photocross-
linking of proteins in a ternary complex stalled at position þ20. The gdh promoter template spans bp �39 to þ66 relative to the transcription start
site (bent arrow). TATA box and the stalling site þ20 are boxed. Locations of photoactivatable labels (4-azidophenacyl bromide coupled to a
phosphorothioate modification in the DNA backbone) are indicated by asterisks. RNAP purified from Pyrococcus cells was used to stall elongation
complexes at þ20 as described earlier (6,27). Cross-linked subunits of the stalled complexes were analyzed via 4–20% SDS-PAGE. The position of
the photoactive cross-linking site in the transcribed strand is indicated above the gels. Proteins present in the individual reactions are specified on top
of the gels. Radiolabeled RNAP subunits were identified by their relative electrophoretic mobility and are indicated at the right-hand side of the gels.
Dots indicate non-specific signals derived from undigested DNA, whereas triangles indicate non-specific TBP cross-links. (C) Cross-linking of RNAP
subunits in stalled elongation complexes to the non-transcribed strand. Positions analyzed are indicated by asterisks above the sequence. No
cross-linking of H was detectable at any of the tested positions except of position þ25, where a very faint band suggests weak cross-linking of
H. To exemplify this, positions þ25 and þ37 are shown. (D) H interacts with DNA close to the active center also in late elongation complexes.
Mature ECs, stalled at position þ45 were cross-linked to position þ50 and þ58 on the T-strand as described in (B). The diamond marks
auto-radiolabeled S7 nuclease. Part of the DNA sequence is shown at the top of the panel.

Nucleic Acids Research, 2010, Vol. 38, No. 6 1957



þ45 are stable and have a low tendency for backtracking
(39,40). To study DNA–RNAP interactions in a highly
processive form of an EC, RNAP was stalled at position
þ45 and cross-linking to DNA derivatized at positions
þ50 and þ58 was analyzed. Subunit H was cross-linked
at position þ50, which is 5 nt downstream of the active
center, consistent with the results seen for the þ20 stalled
complex. At position þ58, no interactions of H with the
DNA were detectable (Figure 6C). Therefore, the location
of H in late elongation complexes matches the position of
H in RNAP complexes stalled at position þ20. This
finding suggests that the conformation of archaeal elon-
gation complexes is the same whether the transcript is 20
or 45 nt long.

Rpb5 cross-links like H in an EC formed by an archaeal
hybrid RNAP containing Rpb5. The high activity of �H
RNAP in a complex with Rpb5 prompted us to investigate
cross-linking of the hybrid enzyme containing the
eukaryotic subunit. Since the �H enzyme is not able to
initiate transcription efficiently in the absence of H or
Rbp5, respectively, no detectable cross-links were
formed by the �H RNAP (Figure 7, lane 6). When the
hybrid enzyme containing the eukaryotic subunit was
analyzed, a prominent cross-link of Rbp5 to position
þ23 was observed (Figure 7, lane 7), analogous to the
cross-links observed to H at the same promoter position
(Figures 6A and 7, lane 5). The appearance of B, A0 and

A00 cross-links in reactions containing the �H enzyme and
Rpb5 give evidence that cross-linked Rpb5 essentially is
incorporated into the stalled hybrid enzyme (Figure 7,
compare lanes 6 and 7). According to this finding, Rbp5
not only rescues the transcriptional activity of the �H
enzyme, but also seems to be positioned similarly to H
in the archaeal elongation complex.

The cross-linking patterns of subunit Rpb5 are similar in an
RNA polymerase II PIC and elongation complex. In the
light of the high similarities between archaeal RNAPs
and polII, along with the unexpected finding that
subunit H or Rpb5 change positions relative to the
template DNA in the archaeal EC compared to the
PIC, we asked whether this structural rearrangement
also happens with polII. To investigate this, the
location of subunit H in the archaeal enzyme and of
Rpb5 in polII was analyzed in a promoter independent
assembly of an EC (29; Figure 8A, scaffold a) assembled
as described in ‘Materials and Methods’ section. This
scaffold is a good template for archaeal RNAP (16)
even if it contains the APB cross-linking labels
(data not shown). To investigate the position of H and
Rpb5, the transcribed strand was derivatized with APB
at positions located 6 and 15 nt downstream of the
active center, respectively. As expected, subunit H was
cross-linked to DNA derivatized at 6 nt downstream
(Figure 8B, lanes 2 and 3) but was not cross-linked
to the derivatized position 15 nt downstream of the
active site (Figure 8B, lanes 4 and 5). At position 6 nt
downstream, cross-linking of A0 and A00 and weak
cross-linking of B occurred. At position 15 nt down-
stream, cross-linking of B, A0 and A00 was detected.
TFE was cross-linked non-specifically to DNA at both
positions (Figure 8B, lanes 1, 3 and 4) as it binds
to single stranded DNA (6). As expected, TFE did
not influence cross-linking of subunits B, A0, A00 and
H since it is not able to functionally interact with
already formed ECs (6; Figure 8B, compare lanes 2
and 3).

In the eukaryotic PIC polII cross-links to positions þ5
to þ15 (20), but cross-linking of RNAP subunits with
DNA in polII ECs have not yet been studied. To investi-
gate the location of Rbp5 in the eukaryotic EC, polII
was cross-linked to the elongation scaffold shown in
Figure 8A. This elongation scaffold was transcribed with
high efficiency by polII (Figure 8D, lanes 2–4; lane 1 is
a run-off transcript synthesized by the archaeal RNAP
shown for comparison) as described (29). When cross-
linking of the complex formed by polII was analyzed
at position 6 nt downstream of the active site, Rpb5 was
clearly cross-linked (Figure 8C, lanes 2–4) and a weak
cross-linking signal for Rpb1 was also detected. When
the derivatized position was located 15 nt downstream of
the active site, a clear cross-linking signal for Rpb5 and
two signals corresponding to Rpb1 and Rpb2 were found
(Figure 8C, lanes 6–8). These findings are consistent with
the idea that the position of Rpb5 in the polII EC resem-
bles the position of Rpb5 in RNAP II pre-initiation
complex.

Figure 7. Rpb5 incorporated into the archaeal RNAP cross-links
at the same position in elongation complexes as H. Archaeal �H
RNAP complemented in transcription reactions with Rpb5 was
cross-linked in ECs stalled at position þ20 (lane 7). Reactions con-
tained transcription factors TFB and TBP (TFs), RNAP purified
from Pyrococcus cells (lanes 2, 5 and 8), reconstituted �H RNAP
and subunit Rpb5 as indicated on top of the lanes. The template
DNA was derivatized with APB at position þ23. Note that the
presence of Rpb5 is essentially required for the formation of cross-
linkable stalled ECs by the �H RNAP (compare lanes 6 and 7).
Subunits of reconstituted �H RNAP run at higher molecular weight
because they are His-tagged.
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DISCUSSION

The position of RNAP subunit H changes during the
transition from initiation to elongation

The cross-linking data of archaeal ECs presented in this
study indicate a novel rearrangement of the RNAP’s lower
jaw, consisting of the subunits A0, A00 and H (Figure 9C).
Cross-links to subunits B and A0, to DNA in the EC, or in
the PIC (17 and Figure 6A) did not change relative to the
active center (Figure 9A and B). However, unexpected

changes in cross-linking patterns were observed
with subunit H. While H marks the downstream
boundary of protein–DNA contacts in the PIC at the T
strand, cross-linking to positions þ12 to þ21 (17 and
Figure 6A), no cross-links of H to the T strand were
detectable 10–17 nt downstream of the active center in
stalled ECs, but instead were observed on the T strand
1–7 nt immediately downstream of the active center
(Figure 6A). The cross-linking pattern of H to the DNA
of the NT strand also revealed dramatic changes of

Figure 8. Mapping of archaeal RNAP and eukaryotic polII subunits cross-linked to an elongation scaffold. The templates for this assay were
assembled essentially as described (29) but contained an azidophenacylated phosphorothioate substitution at positions þ6 or þ15, respectively, with
adjacent internal radiolabel. (A) Sequence of the template in the final assembly. RNA is marked in bold gray letters, position of the cross-linker is
indicated with asterisks, and internal radiolabels are highlighted in bold letters. (B) Cross-linking of archaeal RNAP subunits to positions þ6 (left)
and þ15 (right). ECs were formed as described in ‘Materials and Methods’ section in the presence of heparin as non-specific competitor. Lanes 1, 3
and 4 contained TFE, which cross-linked non-specifically to both templates as described (6). Radiolabeled RNAP subunits and TFE were identified
by their relative electrophoretic mobility and are indicated at the right-hand side of the gels. Note that subunit H cross-links only to position þ6 and
not to position þ15. (C) Cross-linking of polII subunits to positions þ6 (left) and þ15 (right) on an elongation scaffold. Control lanes 1 and 5
contained the template without polII. Triangles above lanes 2–4 and 6–8 indicate an increase of polII from 36 to 110 nM polII in the reaction.
As described in (B), po lII subunits were identified by their mobility by 4–19 % SDS-PAGE. As in (B), diamonds mark auto-radiolabeled S7
nuclease, while dots specify undigested DNA. (D) Eukaryotic polII is active on elongation scaffolds. Lane 1 shows RNA products synthesized in
a standard in vitro transcription assay containing 46 nM archaeal nat RNAP and Pyrococcus gdh promoter DNA. Reactions analyzed in lanes 2–4
contained increasing amounts (36–110 nM) of polII and the elongation scaffold shown in (A) as template (for details see ‘Materials and Methods’
section).
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protein–DNA interactions in the EC compared to the
PIC. While H cross-linked to NT strand DNA 14–20 nt
downstream of the active center in the PIC, no H interac-
tions with the NT strand were observed 17 nt downstream
of the active center in the EC (Figure 6C) and at almost all
other positions tested (data not shown). Only at position
þ25 on the NT strand a very faint signal suggests weak

contacts of H to the DNA of the NT strand (Figure 6B).
These findings indicate rearrangement of subunit H in
ECs. Our lab previously reported cross-linking results
for the þ20 stalled complexes with cross-linkers incorpo-
rated into DNA upstream of the transcription halt site.
We note that the upstream boundary of A00 cross-linking
was dramatically extended by more than one helical turn

Figure 9. Schematic summary of the repositioning of H and A0 0 in elongation complexes. The range of protein/DNA interaction of RNAP subunits
H (magenta), A0 (black), A0 (gray) and B (white) is symbolized by bars. The position of the RNAP’s active center is highlighted and the extension of
the transcription bubble (27) is marked by dashed boxes. (A) Interactions of archaeal RNAP subunits with the transcribed DNA-strand in the PIC.
H marks the far downstream end of the complex (based on the results published by ref. 17). (B) Schematic representation of cross-links of archaeal
RNAP in a ternary complex stalled at þ20. Cross-linking from position þ9 to þ21 was analyzed previously (6), and those derivatized sites are
labeled by black asterisks. Cross-linkers from position þ21 to þ37 from this study are indicated with gray asterisks. Note that H is localized in close
proximity to the active center and that the upstream boundary of A0 0 is extended by �10 nt in stalled ECs. (C) Model for the path of DNA relative to
RNAP in the archaeal elongation complex. The S. shibatae RNAP structure (PDB ID: 2WAQ; 13) was aligned with eukaryotic RNAP II in an EC
(PDB ID: 2E2H; 35) using C-alpha coordinate ‘Iterative Magic Fit’ from Swiss PDBViewer 4.01 (54). R.M.S. deviation of the aligned structures was
1.55 Å for 1786 atoms. The RNAP II EC DNA and RNA coordinates were then merged with the archaeal RNAP structure coordinates and rendered
concurrently using VMD 1.8.6 (54), revealing a good fit with few clashes. RNAP subunit colors are as used in (9), except for subunits G (darker
green, obscured) and Rpo13 (orange trace) that were not part of the structure solved by (9). Subunit B was removed to allow visualization of the
nucleic acids. The DNA transcribed and non-transcribed strands are blue and yellow, respectively, and the RNA is red. The active site is indicated by
a pink sphere, and represents the þ1 position in the EC. þ1 to þ10 of the T strand is bracketed, and the white arrow suggests the conformational
change that subunit H (in magenta) would need to make to be cross-linked by aryl azide derivatizations within this region.
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of DNA in ECs. The 50-end of the A00 cross-linking sites
was 11 nt upstream of the active center in the EC, while it
was 1 nt upstream of the active site in the PIC (6 and
Figure 9). The downstream boundary of A00–DNA
cross-linking sites was not exactly determined in ECs,
but extended at least to 17 nt downstream of the active
site (Figure 6A) which is consistent with the DNA–A00

cross-links observed in the PIC (17 and Supplementary
Figure S2 and Figure 9B). The possibility that the
novel-upstream cross-links to A00 in the EC are caused
by RNAP molecules paused close to the transcrip-
tion start site due to APB derivatization is extremely
unlikely, since all cross-linking sites observed for
subunits B and A0 are located at identical positions
relative to the active center in the PIC and EC. Inhibition
of transcription read through due to APB derivatization
can be excluded a priori for the cross-linking sites of H,
since all APB derivatization sites cross-linked to H are
located downstream of the active center (Figure 6A).

One possible explanation for shifted H and A00 contacts
is that the transcription EC may have backtracked when
deprived of NTPs (39,40). However, several pieces of
data argue against this. First, the exoIII border of Pfu
EC20 is at þ30 and therefore about 10 nt downstream of
the last transcribed DNA base at the RNAP active center
(27), whereas the last transcribed base is close to the
downstream exoIII footprint edge when backtracking
has occurred (35,41). Backtracked complexes show a
low propensity to be elongated after challenge with
NTPs and this ability is restored by TFS/TFIIS induced
cleavage (41,42). The archaeal EC20 complex could be
easily chased to the run-off and TFS did not affect this
property (Figure 5A) indicating again that the 30-end
of the RNA was located close to the active site in the
complex analyzed in cross-linking experiments.
Furthermore, analysis of the kinetics of TFS induced
cleavage did not reveal any evidence that backtracking
occurred during longer incubation times (Supplementary
Figure S1). When Mg2þ in the active center is exchanged
by Fe2þ, cleavage of RNA occurs through a radical mech-
anism. Fe2þ-induced cleavage of RNA was observed in the
internal part of RNA in backtracked complexes formed
by E. coli RNAP but close to the 30-end of RNA in active
complexes (38). RNA cleavage in the archaeal EC20
complex containing Fe2þ led to a �18-nt RNA cleavage
product (Figure 5B), indicating that the RNA 30 terminus
was close to the active site in these complexes. Taken
together, these data provide strong evidence that the
unexpected cross-linking patterns of subunit H reported
here do not correlate with backtracking of RNAP to
an internal position of RNA, and are therefore due to
a conformational change of RNAP in the EC. Further
analyses of a late archaeal EC stalled at position þ45
(Figure 6c), and of EC complexes of the archaeal RNAP
assembled in a quite different manner on an elongation
scaffold (Figure 8) revealed basically the same cross-
linking pattern and thus confirmed this conclusion.

Our findings that both A00 and H interactions with
DNA were considerably shifted in þ20-stalled complexes
suggest a major conformational change of the RNAP
lower jaw in ECs, which is unexpected in the light of EC

structural data (18, 43–45). To visualize the structural
changes that must occur during transition from initiation
to elongation by archaeal RNAP, DNA and RNA from
a polII EC crystal structure (46) was modeled into
the recently solved Sulfolobus shibatae RNAP crystal
structure (13) by alignment of the RNAP subunits
(Figure 9c). The nucleic acids fit in the archaeal RNAP
structure with essentially no clashes, and the proximity of
DNA to RNAP subunits is consistent with cross-links
seen in the initiation complex (17). Downstream DNA is
to the left of the active site (indicated by the pink sphere),
with the RNA/DNA duplex extending out of the plane of
the paper to the right of the active site. To explain the
cross-links observed in the archaeal EC, a rearrangement
in the lower jaw would be needed to bring H in close
proximity to DNA near þ3 relative to the active site
(suggested by the white arrow), and also to bring A00

close to transcribed strand DNA in the RNA/DNA
duplex.

A conformational change in ECs may be a
common property of the archaeal RNAP and
the phylogenetically unrelated T7-RNAP

Darst and co-workers (47) reported a striking conforma-
tional change in the E. coli RNAP compared to the
high-resolution crystal structure of the Taq RNAP and
this conformational change was dominated by a 20�

rotation of a region partially analogous to the lower jaw
domain of the archaeal RNAP (47). This rotation results
in the opening of the downstream RNAP channel
by nearly 25 Å, suggesting a role in the formation of
transcriptional active complexes. The flexibility of the
region comprising structural components of the b and b0

subunits was further confirmed in single-pair fluorescence
resonance energy transfer assays (48).
Structural studies revealed that the N-terminal domain

of the single subunit RNAP from bacteriophage T7
undergoes substantial changes in conformation between
initiation and elongation. A transcription mechanism
involving two stages has been described for the T7
enzyme (49) and seems to operate also in multisubunit
RNAPs (50), including the archaeal polymerase (27).
Synthesis of the first 8 nt does not involve major con-
formational changes, the second stage occurring between
synthesis of 9 and 14 nt includes a major conformational
change of the T7-RNAP observed in processive ECs (51).
Analysis of T7-RNAP bound to promoter DNA contain-
ing an 8-nt RNA revealed rotation of the promoter bound
domain in the N-terminus and the bound promoter
by �45�, allowing the active site to accommodate a
growing heteroduplex as required in processive elongation
complexes (52). It is tempting to speculate that the major
transition involving repositioning of subunit H in the
archaeal enzyme and establishing the processive confor-
mation of the enzyme encountered in ECs occurs also
during the transition from the first to the second stage in
archaea.
Our finding that Rpb5 cross-links to the transcribed

strand in an EC both at þ5 and þ15 suggests that
a rearrangement involving subunit Rpb5 is unlikely in
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polII ECs. All the structural data available indicate that
no significant structural change occurs in the lower jaw
region during the transition from initiation to elongation
in crystal structures of free forms of the eukaryotic
polymerase with various elongation scaffolds (43–45).
The differences in the molecular interactions with RNAP
and DNA between the PIC and ECs reported here
could be a specific property of the archaeal RNAP.
Since the archaeal RNAP does not contain a stably
bound Rpb9-like subunit (10,13), stabilization of the
polII active center region mediated by Rbp9-Rpb1
contacts (53) and the presence of the eukaryotic specific
N-terminal domain in Rpb5 could explain why a
rearrangement of the lower jaw region in ECs might not
be shared by the archaeal enzyme and polII.
The data presented here suggest a large rearrangement

of the archaeal RNAP polymerase lower jaw during the
transcription cycle. Future experiments will be necessary
to determine at which point during early elongation
the rearrangement of the RNAP lower jaw occurs, and
whether subunit H assists or is passive in the rearrange-
ment. In addition, the flexibility of the lower jaw is likely
to be subject to modulation by external factors, and iden-
tification of such factors could identify regulators that
control gene expression by influencing the structure of
the transcription elongation complex. During termination,
there is likely to be a rearrangement of the lower jaw to its
pre-elongation state, and the timing and control of this
rearrangement could also be subject to regulation.
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