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The Wnt/β-catenin signalling pathway is pivotal for stem cell function and the control of cellular differentiation, both during
embryonic development and tissue homeostasis in adults. Its activity is carefully controlled through the concerted interactions of
concentration-limited pathway components and a wide range of post-translational modifications, including phosphorylation,
ubiquitylation, sumoylation, poly(ADP-ribosyl)ation (PARylation) and acetylation. Regulation of Wnt/β-catenin signalling by
PARylation was discovered relatively recently. The PARP tankyrase PARylates AXIN1/2, an essential central scaffolding protein in
the β-catenin destruction complex, and targets it for degradation, thereby fine-tuning the responsiveness of cells to the Wnt
signal. The past few years have not only seen much progress in our understanding of the molecular mechanisms by which
PARylation controls the pathway but also witnessed the successful development of tankyrase inhibitors as tool compounds and
promising agents for the therapy of Wnt-dependent dysfunctions, including colorectal cancer. Recent work has hinted at more
complex roles of tankyrase in Wnt/β-catenin signalling as well as challenges and opportunities in the development of tankyrase
inhibitors. Here we review some of the latest advances in our understanding of tankyrase function in the pathway and efforts to
modulate tankyrase activity to re-tune Wnt/β-catenin signalling in colorectal cancer cells.
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Regulation of Wnt/β-catenin signalling
by tankyrase-dependent AXIN
poly(ADP-ribosyl)ation – an overview

The Wnt/β-catenin signalling pathway plays key roles during
embryonic development, tissue homeostasis and regenera-
tion (see Clevers and Nusse, 2012; and Clevers et al., 2014).
Central to the pathway is the β-catenin destruction complex,
which tightly controls the levels of nuclear, transcriptionally
active β-catenin (see Stamos andWeis, 2013). Dysregulation
of β-catenin destruction complex function underlies the vast
majority of colorectal cancers (CRCs) and other conditions
such as fibrosis, neurodegeneration and osteoporosis (see
Clevers and Nusse, 2012; and Kahn, 2014). AXIN (AXIN1/
AXIN2), the central scaffold of the destruction complex, di-
rectly binds all its core components: the scaffolding protein
adenomatous polyposis coli (APC), the kinases glycogen syn-
thase kinase 3 (GSK3) and casein kinase 1 and β-catenin
(see Stamos and Weis, 2013) (Figure 1A). (AXIN1 and AXIN2
will be referred to collectively as AXINwhere the discussed as-
pects apply to both.) The complex enables the phosphoryla-
tion of β-catenin at a phosphodegron to prime it for
ubiquitylation and subsequent degradation by the protea-
some (see Stamos and Weis, 2013). AXIN is thought to be
the concentration-limiting component of the complex (Salic
et al., 2000; Lee et al., 2003). Therefore, controlling its abun-
dance is an effective way to regulate β-catenin destruction.
Wnt/β-catenin signalling is regulated by a wide range of

post-translational modifications (see Gao et al., 2014). The
discovery of a regulatory role of tankyrase in Wnt/β-catenin
signalling sparked much excitement given the limited num-
ber of known targetable enzymes in the pathway (Huang
et al., 2009). Tankyrase, with two human paralogues (TNKS
and TNKS2; Tnks and Tnks2 in other species discussed; from
here on simply referred to as ‘tankyrase’where concepts apply
to both tankyrases), is a PARP, and as such catalyses the at-
tachment of PAR chains onto its substrates (see Gibson and
Kraus, 2012; and Haikarainen et al., 2014a). In addition to its
auto-PARylation activity, tankyrase binds and PARylates
AXIN. In turn, PARylation activates the PAR-dependent E3
ubiquitin ligase really interesting new gene (RING) finger
(RNF)146/Iduna, which then ubiquitylates AXIN, tankyrase
and itself, targeting the entire complex for proteasomal degra-
dation (Callow et al., 2011; Zhang et al., 2011) (Figure 1A). This
process, known as PAR-dependent ubiquitylation (PARdU)
(DaRosa et al., 2015), is thought to occur constitutively and
tune the receptiveness of cells to Wnt stimuli by limiting de-
struction complex formation (Wang et al., 2016b). A
tankyrase-associated ubiquitin-specific protease (USP25) can
de-ubiquitylate tankyrase, thereby stabilizing it and
supporting PARdU of AXIN (Xu et al., 2017a). Recent studies
point toward another role of tankyrase, namely in promoting
the formation of active, membrane-localized Wnt
signalosomes uponWnt stimulation (Yang et al., 2016;Wang
et al., 2016a) (Figure 1B). Furthermore, additional tankyrase
interactors in the Wnt/β-catenin pathway, other than AXIN,
are emerging (Croy et al., 2016). Structure–function studies

Figure 1
Roles of tankyrase-dependent poly(ADP-ribosyl)ation (PARylation) in Wnt/β-catenin signalling. (A) Under basal Wnt/β-catenin signalling condi-
tions, PARylation by tankyrase limits the levels of AXIN. Following PARylation, AXIN is ubiquitylated by RNF146 and targeted for proteasomal deg-
radation. (B) Upon Wnt stimulation, PARylated AXIN is stabilized. PARylation facilitates AXIN interaction with LRP5/6 in Wnt signalosomes. Note
that AXIN, Dishevelled and tankyrase polymerize and APC dimerizes, and that this is a mechanistically important aspect of the dynamic signalling
complexes (Fiedler et al., 2011; Kunttas-Tatli et al., 2014; Mariotti et al., 2016). For simplicity, proteins are shown as monomers; higher-order stoi-
chiometry and multivalency are not reflected in the diagrams and nomenclature does not consider multiple paralogues of pathway components.
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are providing a detailed picture of the molecular mechanisms
bywhich tankyrase controlsWnt/β-catenin signalling and are
revealing non-catalytic scaffolding roles of tankyrase
(Guettler et al., 2011; Morrone et al., 2012; DaRosa et al., 2015,
2016; Eisemann et al., 2016; Mariotti et al., 2016; Riccio et al.,
2016; Xu et al., 2017a). Conserved functions of tankyrase in
theWnt/β-catenin pathway are being increasingly appreciated
from studies inDrosophila and human CRC cell lines (Lau et al.,
2013; de la Roche et al., 2014; Yang et al., 2016; Wang et al.,
2016b, 2016c). Recently developed tankyrase-specific catalytic
inhibitors are serving as tool compounds and promising pre-
clinical leads for the treatment of CRC and other Wnt-
dependent conditions (Lau et al., 2013; see Haikarainen et al.,
2014a). Here, we discuss a selection of recent insights into the
roles of tankyrase in the Wnt/β-catenin signalling pathway. In
terms of potential therapeutic applications, we will focus on
CRC, given its high incidence and the importance of the
Wnt/β-catenin pathway in its emergence.

Tankyrase as a scaffold inWnt/β-catenin
signalling – a structural perspective
TNKS and TNKS2 share a highly similar multi-domain organi-
zation: five N-terminal ankyrin repeat clusters (ARCs) for sub-
strate binding are followed by a polymerizing sterile α motif
(SAM) domain and a C-terminal PARP catalytic domain
(Figure 2A). With the exception of ARC3, the ARCs act as
discrete substrate recognition domains for degenerate 8-
amino-acid peptides of the consensus R-[any]-[any]-[small hy-
drophobic or G]-[D/E]-G-[no P]-[D/E], termed the tankyrase-
binding motif (TBM) (Seimiya, 2002; Seimiya et al., 2004;
Guettler et al., 2011). Briefly, an arginine at position 1 and gly-
cine at position 6 of the TBM are essential. A small, hydropho-
bic residue or glycine is preferred at position 4, and acidic
residues are optimal at positions 5 and 8, while proline is
disallowed at position 7. Crystal structures of human TNKS2
ARC4 with various TBM peptides (Guettler et al., 2011), of mu-
rine Tnks ARC2–3 in complex with Axin1 (Morrone et al.,
2012), of human TNKS ARC1–3 bound to TBM peptides de-
rived from leucyl-cystinyl aminopeptidase (LNPEP), combined
with in-solution structural studies (Eisemann et al., 2016), and
of human TNKS ARC5 bound to the TBM of USP25 (Xu et al.,
2017a), revealed the architecture of the ARCs and the princi-
ples of their substrate recognition. AXIN contains two TBMs
in its N-terminus (Morrone et al., 2012), with the secondmotif
bearing an unusual insertion (Figure 2B–E). The Tnks ARC2–3:
Axin1 crystal structure shows a dimeric arrangement of
ARC2–3 with each TBM peptide bound to one copy of ARC2
(Morrone et al., 2012). AXIN is also able to contact two
ARCs in the same Tnks molecule (Eisemann et al., 2016). TNKS
ARCs 1–3 adopt a relatively rigid asymmetric U-shape, whereas
ARCs 4–5 are more dynamic and flexibly linked to ARC1–3
(Eisemann et al., 2016). Multiple AXIN binding sites in the
ARCs and two TBMs in AXIN enable their cooperative interac-
tion, but distance and conformational restraints create a prefer-
ence for bivalent AXIN to either simultaneously bind ARCs 1
and 2, 4 and 5 or 2 and 5, with a preference for combinations
involving ARC2, the strongest AXIN binder (Eisemann et al.,
2016). When binding to ARCs 2 and 5, AXIN induces a more
compact conformation of the ARCs, which might place the

PARP domain into closer proximity to ARC-bound AXIN, in
turn promoting AXIN PARylation (Eisemann et al., 2016).
Further studies are needed to explore this hypothesis. In the
context of polymeric tankyrase, it appears equally likely that
AXIN binds separate tankyrase molecules in the same
tankyrase filament, with different implications for tankyrase
conformation and potentially a further augmentation of
cooperativity (Mariotti et al., 2016; Riccio et al., 2016).

Both TNKS and TNKS2 polymerize through their SAM do-
mains (De Rycker and Price, 2004; Mariotti et al., 2016; Riccio
et al., 2016). Recent crystallographic studies of the SAM do-
mains revealed the primarily electrostatic nature of the
head-to-tail SAM–SAM interfaces within the helical filament
(Mariotti et al., 2016; Riccio et al., 2016) (Figure 2F), in agree-
ment with a polymer model guided by NMR studies to iden-
tify the residues perturbed upon polymerization (DaRosa
et al., 2016). Compatible with the outward-facing N- and C-
termini in the filament (DaRosa et al., 2016; Mariotti et al.,
2016; Riccio et al., 2016), full-length tankyrase indeed poly-
merizes (De Rycker and Price, 2004; Mariotti et al., 2016;
Riccio et al., 2016). TNKS and TNKS2 form cytoplasmic puncta
rather than microscopically visible filaments, which may re-
flect the dynamic nature of the polymers (Mariotti et al.,
2016; Riccio et al., 2016). This is consistent with observa-
tions made for other proteins containing polymerizing
SAM domains (Isono et al., 2013) and for polymerizing
AXIN and Dishevelled (DVL)/DVL2 (Schwarz-Romond
et al., 2007; Fiedler et al., 2011; see Bienz, 2014). Supporting
this view, polymerization-deficient TNKS and TNKS2 mu-
tants localize diffusely (Mariotti et al., 2016; Riccio et al.,
2016). Luciferase reporter assays revealed that scaffolding
through the ARCs and SAM domain is essential for tankyrase
function in Wnt/β-catenin signalling (Mariotti et al., 2016;
Riccio et al., 2016). Surprisingly, tankyrase can substantially
drive Wnt/β-catenin activity even in the absence of its cata-
lytic PARP activity, entirely through scaffolding (Huang
et al., 2009; Mariotti et al., 2016). Tankyrase polymerization
enables productive interactions with the limited pool of
AXIN, through avidity effects arising from multivalency and
polymerization in both tankyrase and AXIN (Fiedler et al.,
2011; Mariotti et al., 2016) (Figure 2G), a requirement that ap-
pears overridden by AXIN overexpression (Riccio et al., 2016,
and our unpublished observations). The SAM domain and
SAM domain-dependent polymerization are also required for
full tankyrase PARP activity (De Rycker and Price, 2004; Levaot
et al., 2011; Mariotti et al., 2016; Riccio et al., 2016). Interest-
ingly, while PARP activity is dispensable for tankyrase-driven
Wnt/β-catenin signalling under basal conditions (Mariotti
et al., 2016), it is necessary for tankyrase to potentiate Wnt-
induced β-catenin activity (Riccio et al., 2016). This may well
reflect the recently discovered requirement of AXINPARylation
in the formation of Wnt-induced signalosomes (see below)
(Yang et al., 2016; Wang et al., 2016a) (Figure 1B).

A potential role of tankyrase in the
formation of β-catenin degradasomes
When AXIN is overexpressed or stabilized in APC-mutant
cells by tankyrase inhibition (using the inhibitors JW67,
JW74, JW55, XAV939 or G007-LK; see Table 1 and below for
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Figure 2
Scaffolding functions of tankyrase. (A) Domain organization of human TNKS and TNKS2. HPS, N-terminal extension containing homopolymeric
stretches of His, Pro and Ser; ARCs, ankyrin repeat clusters; SAM, sterile αmotif domain; PARP, catalytic domain. The percentage identity of amino
acids between TNKS and TNKS2 is specified for the indicated functional domains. (B) Domain organization of AXIN1. TBM, tankyrase-bindingmo-
tif; RGS, regulator of G-protein signalling domain; DIX, polymerizing domain present in Dishevelled and AXIN (sometimes referred to as DAX do-
main in AXIN). Binding sites for other β-catenin destruction complex components are indicated. (C) Multiple sequence alignment of AXIN
orthologues/paralogues from the indicated species, coloured by percentage identity. The TBMs are indicated. Note that Drosophila Axin lacks
the second TBM. The red asterisk denotes a V26D mutation identified in murine Axin2 (Qian et al., 2011). (D) Structural (surface and cartoon)
representation of murine Tnks ARC2–3, bound to the murine Axin1 N-terminus with two TBMs, shown in stick representation [protein data bank
(PDB) code 3UTM] (Morrone et al., 2012). In the crystal, ARC2–3 forms a dimer in which both copies of ARC2 are bound by one of the two TBMs of
Axin1, respectively. (E) Detailed structural representation of the Axin1 TBMs (with indicated amino acid positions) on Tnks ARC2. The figure was
generated by superimposing both ARC2–3 copies onto each other and displaying ARC2 bound to TBM1. Despite the N-terminal insertion in
TBM2, the arginine (typically at position 1) occupies the same sub-pocket on the ARC, resulting in a looping out of the intervening residues.
(F) Structural (transparent surface and cartoon) representation of a TNKS SAM polymer observed by X-ray crystallography (PDB code 5JU5)
(Mariotti et al., 2016). (G) Avidity model for the interaction of AXIN and tankyrase, modified from Mariotti et al. (2016). Multivalency and poly-
merization of both tankyrase and AXIN enable avidity contributions in the interaction between both proteins. Note that tankyrase polymerization
also promotes its PARP activity (Mariotti et al., 2016; Riccio et al., 2016).
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a discussion of inhibitors), it accumulates in cytoplasmic
puncta, together with other β-catenin destruction complex
components, including GSK3β, APC, β-catenin, β-transducin
repeats-containing protein (β-TRCP) and tankyrase (Waaler
et al., 2011, 2012; de la Roche et al., 2014; Thorvaldsen et al.,
2015; Martino-Echarri et al., 2016) (Figure 3). The puncta grad-
ually disappear upon removal of the tankyrase inhibitor
(TNKSi) and re-establish with subsequent inhibitor treatment
(Thorvaldsen et al., 2015). The puncta, referred to as β-catenin
degradasomes, are understood to be ‘morphological correlates’
of β-catenin destruction complexes, which without tankyrase
inhibition are not visible by light microscopy due to the nor-
mally low AXIN levels (de la Roche et al., 2014; Thorvaldsen
et al., 2015; Pedersen et al., 2016). Several features illustrate
functionality of these degradasomes. Firstly, they contain phos-
phorylated β-catenin and also colocalize with ubiquitin and β-
TRCP, a component of the E3 ubiquitin ligase responsible for
β-catenin ubiquitylation (Thorvaldsen et al., 2015). Secondly,
live-cell imaging by fluorescence recovery after photobleaching
(FRAP) in SW480 cells showed that β-catenin is rapidly turned
over in degradasomes (Thorvaldsen et al., 2015), demonstrat-
ing their capacity to degrade β-catenin.

Two recent studies suggest that tankyrase plays a struc-
tural role in degradasome formation (Thorvaldsen et al.,
2015; Martino-Echarri et al., 2016). Correlative light and elec-
tron microscopy suggests that TNKS-GFP-containing
degradasomes in TNKSi-treated SW480 cells correspond to
electron-dense and possibly filamentous substructures
(Thorvaldsen et al., 2015), perhaps reflecting the polymeric
nature of both AXIN and tankyrase. Simultaneous silencing
of both tankyrases abolishes degradasome formation
(Martino-Echarri et al., 2016). Other studies have shown that,
like tankyrase inhibition, TNKS/TNKS2 RNAi increases the
levels of AXIN1/2 (Huang et al., 2009). Strikingly, despite in-
creased AXIN levels, degradasomes are absent under
TNKS/TNKS2-depleted conditions (Martino-Echarri et al.,
2016), supporting a direct, structural role for tankyrase in
degradasome formation. FRAP studies have shown that TNKS
stably resides in degradasomes, similarly to AXIN (Schwarz-
Romond et al., 2005; Thorvaldsen et al., 2015), although
tankyrase and AXIN dynamics have not yet been studied in
the same cell. The multivalent interactions of AXIN with
tankyrase and the avidity-enhancing polymerization of both
proteins may underlie a scaffolding function of tankyrase in
degradasome formation (Mariotti et al., 2016) (Figure 2G).
Tankyrase polymerization may be promoted by its catalytic
inhibition (De Rycker and Price, 2004), which might offer a
potential explanation for the TNKSi-induced stabilization of
degradasomes. APC2, which was recently reported to bind
tankyrase (Croy et al., 2016), may also contribute to the
avidity-dependent degradasome assembly, given its numer-
ous AXIN and β-catenin binding sites.

AXIN2 protein levels rapidly increase upon tankyrase in-
hibition in SW480 cells, whereas AXIN1 levels do not change
until much later (Pedersen et al., 2016; Thorvaldsen et al.,
2017). Knockdown of AXIN2 but not AXIN1 prevents
degradasome formation (Thorvaldsen et al., 2017), indicating
that AXIN2 is the predominant AXIN scaffold in these cells.
The TNKSi-induced accumulation of AXIN2 is dependent on
new protein synthesis (Thorvaldsen et al., 2017) and active
transcription of the AXIN2 gene (Pedersen et al., 2016).Ta
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Proteasome inhibition leads to increased levels of phos-
phorylated β-catenin in degradasomes (Thorvaldsen et al.,
2015), but prolonged proteasome inhibition impairs
degradasome formation (Martino-Echarri et al., 2016; Peder-
sen et al., 2016). Pedersen et al. (2016) proposed that the
transcription factor Forkhead box protein M1 (FoxM1),
whose activating phosphorylation is suppressed by protea-
some inhibition, controls the AXIN2 gene. AXIN2 is also a
Wnt/β-catenin target gene as part of a negative feedback
loop and is highly expressed in APC-mutated CRC cells
(Yan et al., 2001; Jho et al., 2002; Lustig et al., 2002). It is
not known why TNKSi induces β-catenin degradasomes in
many CRC cells but far less so in cells with an intact
Wnt/β-catenin pathway (de la Roche et al., 2014). It is pos-
sible that tankyrase inhibition strongly represses the AXIN2
gene in Wnt/β-catenin wild-type cells. Conversely, APC-
mutant cells might still display residual AXIN2 transcrip-
tion with AXIN2 protein accumulation arising from contin-
ued AXIN2 synthesis and blocked PARdU, leading to the
formation of large degradasomes. Degradasome assembly
depends on the concentrations of their components (Bienz,
2014), and it is likely that fully functional degradasomes also
form in Wnt/β-catenin wild-type cells, but these structures re-
main small.

The structural basis of PARdU
Once PARylated, AXIN is engaged by the PAR-binding E3
ubiquitin ligase RNF146/Iduna (Callow et al., 2011; Kang

et al., 2011; Zhang et al., 2011). RNF146 consists of an RING
domain followed by a PAR-binding WWE domain and an ex-
tended C-terminus, which is predicted to be largely unstruc-
tured (Figure 4B). The PAR-dependency of the enzyme
suggested an allosteric activation mechanism; in addition,
PAR may serve as a scaffold to enable increased local concen-
trations of the enzyme (Callow et al., 2011; Kang et al., 2011;
Zhang et al., 2011). A crystal structure of RNF146 (RING-
WWE) bound to iso-ADP-ribose, an internal unit of PAR
(Figure 4A), and an E2 conjugating enzyme is compatible
with the allosteric activation of RNF146 (DaRosa et al., 2015)
(Figure 4C). Iso-ADP-ribose not only binds the WWE but also
the RING domain (Wang et al., 2012; DaRosa et al., 2015) and
appears to induce restructuring of a loop, which in the apo
form of the RING domain extends into the E2-E3 enzyme con-
tact region, thereby precluding the interaction (Figure 4C).
The restructured loop residues become part of an extended
central helix in the RING domain, which no longer obstructs
E2 binding (Figure 4C), a model supported by NMR spectros-
copy and mutagenesis (DaRosa et al., 2015). The extended
C-terminus of RNF146 directly binds tankyrase via five pro-
posed TBMs (DaRosa et al., 2015) (Figure 4B). It is noteworthy
that all of these TBMs are atypical in their length or sequence,
suggesting that they might be of relatively low individual
affinity and may need to act collectively to recruit tankyrase.
A model in which the tankyrase:RNF146 complex can still
bind other TBM-containing proteins via the multivalent
ARCs implies that the substrate specificity of tankyrase deter-
mines RNF146 substrate specificity (DaRosa et al., 2015). Like
many PARPs, tankyrase modifies itself, and not all tankyrase

Figure 3
β-catenin degradasomes induced by TNKSi. SW480 CRC cells were treated with the TNKSi XAV939 and immunostained for AXIN2 (red) and tran-
siently expressed epitope-tagged wild-type TNKS2 (TNKS2 WT) or a TNKS2 mutant variant deficient in substrate binding (through site-directed
mutation of ARCs 1, 2, 4 and 5) and polymerization (TNKS2 xx3xx VY903/920WA) (green). Yellow arrowheads indicate colocalization of TNKS2
and AXIN2 in β-catenin degradasomes; red arrowheads indicate absence of colocalization for the scaffolding-defective mutant variant of TNKS2.
The figure was modified from Mariotti et al. (2016).
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binders are also PARylated (Bae, 2002; Guettler et al., 2011;
Bisht et al., 2012). This raises the interesting possibility that
non-PARylated tankyrase binders may still be ubiquitylated
by RNF146 present in the complex, with RNF146 getting acti-
vated by tankyrase auto-PARylation or PAR attachment to dif-
ferent, simultaneously bound substrates.

While tankyrase RNAi stabilizes AXIN and reduces β-
catenin-dependent transcription in certain CRC cell lines
(Huang et al., 2009; Callow et al., 2011), silencing of RNF146
fails to increase AXIN levels in HCT-15 or SW480 CRC cells,
both of which bear APC truncations, and does not inhibit
Wnt/β-catenin signalling in HCT-15 cells (Callow et al.,
2011). This suggests that there are alternative pathways for

the degradation of PARylated AXIN in these cells (Callow
et al., 2011). The existence of numerous RING-type E3 ubiqui-
tin ligases with PAR-binding WWE domains suggests that
functional redundancies may exist (Wang et al., 2012).

Tankyrase and APC set a threshold for
Wnt responsiveness by limiting AXIN
abundance
To assess the maximum AXIN level still allowing productive
Wnt/β-catenin signalling, Wang et al. (2016b) engineered

Figure 4
Allosteric regulation of RNF146/Iduna by PAR binding. (A) Structure of a linear PAR chain, here attached to Asp/Glu. The O-glycosidic bonds
linking ADP-ribose units are highlighted. The green box indicates iso-ADP-ribose. Tankyrase is thought to generate linear PAR chains (Rippmann
et al., 2002); PAR branches are therefore omitted. (B) Domain organization of human RNF146. Potential TBMs are indicated (DaRosa et al., 2015).
The boxed area, which includes the isolated RING domain, corresponds to (C). (C) Structural representation of RNF146 bound to iso-ADP-ribose
[protein data bank (PDB) code 4QPL] and the E2 enzyme UbcH5a (DaRosa et al., 2015). The isolated RING domain of RNF146 (PDB code 2D8T,
one representative of the solution structure ensemble) is superimposed (DaRosa et al., 2015). Domains and corresponding Zn2+ ions are colour-
coded as in (B). Key residues involved in PAR coordination and the allosteric switch are shown in stick representation. Note the clash occurring
between the RING domain (yellow) and the E2 enzyme (blue) in the absence of the PAR ligand, and the conformational change upon PAR binding,
resulting in a reorientation of Trp65.
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flies overexpressing C-terminally V5 epitope-tagged Axin
(Axin-V5). (Note that Drosophila has a single Axin paralogue;
see Figure 2C.) Despite an up to fourfold Axin-V5 overexpres-
sion, flies develop normally with only a mild defect attribut-
able to inhibited Wg signalling (Wang et al., 2016b), in
agreement with previous studies (Peterson-Nedry et al.,
2008). This suggested that Axin-V5 is still subject to physio-
logical regulation at this level. Likewise, loss of tankyrase (of
which there is also only a single paralogue in Drosophila) re-
sults in a mild (two- to threefold) increase in endogenous
Axin abundance in larvae, without measurable developmen-
tal effects (Feng et al., 2014; Wang et al., 2016b, 2016c). How-
ever, developmental defects and loss of Wg/Armadillo target
gene expression are observed when Axin-V5 is expressed in
wing imaginal discs in a tankyrase null background, which re-
sults in a further threefold increase of Axin-V5 levels, posi-
tioning the inhibitory threshold for Axin three- to ninefold
above endogenous-regulated levels (Wang et al., 2016b). This
illustrates tankyrase’s strong capacity to buffer negative regu-
lation of Wg signalling by Axin, a phenomenon also seen in
mammalian cells (Mariotti et al., 2016). These observations
are compatible with the previous finding that knockdown
of tankyrase in the developing wing only leads to a Wg phe-
notype if Axin is simultaneously overexpressed (Feng et al.,
2014).

Besides their role in promoting β-catenin/Armadillo deg-
radation, Apc/Apc2 also play a positive role in regulating
Wg/Armadillo signalling by post-transcriptionally limiting
Axin levels (Takacs et al., 2008; Wang et al., 2016b). Accord-
ingly, Axin-V5 accumulates in imaginal discs lacking Apc1
and Apc2 (Wang et al., 2016b). The regulation of Axin levels
by Apc is strictly dependent on the Apc-binding regulator of
G-protein signalling (RGS) domain of Axin, suggesting that
a physical interaction between the two proteins is required
(Wang et al., 2016b). Surprisingly, while the ability of
tankyrase to destabilize Axin is independent of Apc, the
TBM of Axin is necessary for Axin destabilization by Apc, sug-
gesting that tankyrase binding is required (Wang et al.,
2016b). Alternatively, the Axin N-terminus may play a
tankyrase-independent role in Axin regulation by Apc. The
mechanism by which Apc destabilizes Axin remains unclear,
and it will be interesting to decipher whether PARdU is in-
volved. A recent report suggests the existence of a TBM in
Apc2 (Croy et al., 2016). Tankyrase may bind to both Apc2
and Axin, thereby providing an additional scaffolding role.
The existence of partially separable degradation pathways
for Axin, through tankyrase and Apc/Apc2, may explain the
mild Tnks null phenotype in flies (Wang et al., 2016b). By
analogy, Wang et al. (2016b) propose that if AXIN regulation
by APC is lost in APC-mutant CRC cells, then these cells
might be particularly susceptible to tankyrase inhibition, in
contrast to APC wild-type cells, opening the possibility for se-
lectively targeting APC-mutant cells. This is an interesting
idea for further exploration.

Tankyrase mouse models
The physiological role of tankyrase in Wnt/β-catenin signal-
ling is still far from being fully understood. In mice, loss of
both tankyrases gives rise to embryonic lethality, without

indication that lethality is attributable to defective Wnt/β-
catenin signalling (Chiang et al., 2008). Individual knockout
of either Tnks or Tnks2 results in non-pathogenic pheno-
types, but again, there is no sign of a dysregulated Wnt path-
way at the phenotypic level (Chiang et al., 2006; Hsiao et al.,
2006; Chiang et al., 2008). Onemay speculate that embryonic
lethality in the double knockout arises from another essential
role of tankyrase in development or pleiotropy due to the
complex involvement of tankyrase in many biological pro-
cesses, masking a function in Wnt/β-catenin signalling.
Moreover, these observations point toward a substantial
functional redundancy between the two tankyrases. In the
absence of conditional Tnks/Tnks2 knockout mice, the role
of tankyrase in Wnt-dependent physiology is difficult to as-
sess. However, an Axin2 V26D mutation, which maps to the
stronger N-terminal TBM of murine Axin2 (Figure 2C), also
results in embryonic lethality but with an identifiable Wnt
phenotype (Qian et al., 2011). The mutation is expected to
abolish tankyrase binding (Guettler et al., 2011), compatible
with increased Axin2 levels and reduced Wnt/β-catenin sig-
nalling in most tissues (Qian et al., 2011). Surprisingly, in-
creased rather than decreased Wnt/β-catenin signalling is
seen in the late primitive streak, a structure that marks the be-
ginning of gastrulation and the definition of body axes, and
consequential formation of ectopic tails (Qian et al., 2011).
This observation points to complex functions of the
tankyrase-Axin interaction. The Axin2 mutation likely ex-
poses a physiological role of tankyrase in Wnt/β-catenin sig-
nalling that may have been masked in the Tnks/Tnks2
double-knockout mice, although alternative functions of
the Axin N-terminus cannot be excluded. A study otherwise
focussing on the role of tankyrase in glucose metabolism cor-
roborates the tankyrase-Axin-β-catenin link in vivo: adipo-
cyte-specific loss of the Tnks catalytic domain stabilizes
Axin1 and reduces the levels of active β-catenin in adipose tis-
sue (Zhong et al., 2016a).

Tankyrase controls adult intestinal stem
cell homeostasis in Drosophila
Amore detailed analysis of Tnks mutant flies revealed a sharp
drop in viability upon nutrient limitation, paralleled by an
accumulation of Axin and hyperproliferation of intestinal
stem cells (ISCs) in the midgut (Wang et al., 2016c). The
Drosophilamidgut can be subdivided into several morpholog-
ically and physiologically distinct domains. It displays high
levels of Wg target gene transcription close to the inter-
domain boundaries, which may represent source areas for
the Wg ligand (Buchon et al., 2013; Tian et al., 2016). Loss
of tankyrase distant from the midgut-hindgut boundary,
where β-catenin/Armadillo activity is low, abolishes the acti-
vation of Wg reporters in this region (Wang et al., 2016c).
This is not the case in areas close to the midgut-hindgut
boundary, where Wg signalling is high. The authors
suggested that by counteracting Axin, tankyrase amplifies
β-catenin/Armadillo activity in compartments of otherwise
low pathway activity. They hypothesized that context-
specific roles of tankyrase may explain seemingly contradic-
ting in vivo functions of tankyrase in flies and zebrafish
(Huang et al., 2009; Feng et al., 2014) and that similar
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mechanisms may be in place where Wnt gradients are ob-
served in vertebrates, for example, in the gut (Wang et al.,
2016c). (See below for a further discussion of tankyrase’s roles
in the gastrointestinal tract.) Interestingly, hyperproliferation
of ISCs is non-cell-autonomous: it does not result from
tankyrase loss or inhibited Wg/Armadillo signalling in ISCs
but in enterocytes (Tian et al., 2016; Wang et al., 2016c). The
authors suggested that decreasedWg signalling in enterocytes
upon loss of tankyrase promotes JAK/STAT signalling in ISCs,
which in turn drives their proliferation during homeostasis.

A role of AXIN PARylation in Wnt
signalosome assembly
While tankyrase’s role in PARdU of AXIN is well established,
two recent studies point to a novel function in Wnt
signalosome assembly (Yang et al., 2016; Wang et al., 2016a)
(Figure 1B). During Drosophila embryonic development, the
abundance of weakly expressed Axin-V5 changes in a bi-
phasic manner (Yang et al., 2016). Initially distributed uni-
formly in the ectoderm, Axin-V5 first accumulates in
segmental stripes marked by Wg induction. Secondly, with
progressing development, Axin levels drop specifically in
theWg stripes, an observation analogous to delayed AXIN de-
stabilization in mammalian cells (Li et al., 2012 and refer-
ences therein). In embryos expressing an Axin-V5 mutant
variant lacking the TBM or in embryos lacking tankyrase,
Axin-V5 levels are uniformly high. Early Axin-V5 stripes fail
to form, with a concomitant loss of normal Wg target gene
expression. Importantly, this is not merely due to increased
Axin-V5 levels under these circumstances since strong Axin-
V5 overexpression does not copy this phenotype (Yang
et al., 2016). The authors hence proposed a role of tankyrase
in regulating Axin function rather than levels (Figure 1B).
Studies in Drosophila and work with Drosophila cells and
HEK293T cells showed that Wg/Wnt stimulation results in
accumulation of PARylated Axin-V5/AXIN1 with an en-
hanced formation of AXIN- and LDL receptor-related protein
6 (LRP6)/Arrow-containing Wnt/Wg signalosomes (Yang
et al., 2016). Capitalizing on the ability to detect endogenous
Drosophila Axin, a second study suggests that Axin is present
in both the cytoplasm and at the membrane, even under
basal conditions. Wg stimulation results in Axin accumula-
tion in both compartments, with an enrichment of
PARylated Axin at the membrane (Wang et al., 2016a). Forc-
ing Axin to the membrane under basal conditions increases
its PARylation and destabilization, presumably by PARdU,
suggesting that tankyrase acts at the membrane or Axin’s sus-
ceptibility to PARylation is augmented upon membrane re-
cruitment (Wang et al., 2016a). Phosphorylation by GSK3
(Kim et al., 2013) or binding of the small molecule HLY78
(Wang et al., 2013) was reported to induce an open AXIN con-
formation for productive interaction with LRP6. AXIN
PARylation may control the assembly of the Wnt
signalosome complex in a similar manner. Alternatively,
PAR itself may act as a molecular glue to recruit AXIN to
Wnt signalosomes. While the intact LRP5 C-terminus is re-
quired for AXIN binding (Mao et al., 2001), it is presently
not clear whether AXIN and LRP5/6 interact directly (Mao
et al., 2001; Kim et al., 2013; Wang et al., 2013), but there

are indications that this may be the case (MacDonald et al.,
2011). Future studies will unravel the mechanisms behind
the Wnt/Wg-induced accumulation of PARylated Axin and
the role of PARylation in signalosome assembly. Yang et al.
(2016) propose that the PAR-assisted signalosome formation
enables a rapid response to Wnt signals while the subsequent
down-regulation of AXIN limits the re-assembly of β-catenin
destruction complexes, thereby conferring both responsive-
ness and robustness to the pathway.

Tankyrase inhibitors

In this section, we provide an overview of TNKSi; for more
comprehensive discussions, we refer the reader to other re-
cent reviews (Lehtiö et al., 2013; Steffen et al., 2013;
Haikarainen et al., 2014a). All low MW TNKSi developed to
date are mimetics of β-nicotinamide adenine dinucleotide
(NAD+) or its adenosine or nicotinamide portions. The first
potent toolbox TNKSi, XAV939 (Huang et al., 2009), IWR-1
and IWR-2 (Chen et al., 2009; Gunaydin et al., 2012), were
discovered in phenotypic screens designed to identify antag-
onists of the Wnt/β-catenin pathway, as were the inhibitors
JW74 (Waaler et al., 2011), JW55 (Waaler et al., 2012), WIKI4
(James et al., 2012) and K-756 (Okada-Iwasaki et al., 2016).
Numerous additional inhibitors were established through di-
verse approaches (see Zhan et al., 2014), including screening
for compounds that rescue tankyrase-induced lethality of
yeast cells (Yashiroda et al., 2010) or induce a mitotic spindle
defect (Johannes et al., 2015b), fragment screening (Larsson
et al., 2013; de Vicente et al., 2015), proteomics (Thomson
et al., 2017), in silico screening or substructure searching,
followed by compound optimization (Bregman et al., 2013b;
Elliott et al., 2015), screening of a DNA-encoded library
(Samain et al., 2015) and extensive structure–activity rela-
tionship studies, assisted by the structural analysis of
tankyrase/PARP:inhibitor complexes (Hua et al., 2013; Shultz
et al., 2013; Voronkov et al., 2013; Narwal et al., 2013a; Liscio
et al., 2014; Qiu et al., 2014; Haikarainen et al., 2014b;
Kumpan et al., 2015; Nkizinkiko et al., 2015; Paine et al.,
2015; Haikarainen et al., 2016; Thomson et al., 2017). Numer-
ous more drug-like molecules, with optimized pharmacologi-
cal properties, are now available, for example, G007-LK (Lau
et al., 2013; Voronkov et al., 2013) and NVP-TNKS656 (Shultz
et al., 2013). Table 1 gives examples of published TNKSi.

Inhibitor binding sites on the tankyrase PARP
domain
The tankyrase PARP domain shares strong homology with the
catalytic domains of the 17 human Diphtheria-toxin-like
ADP-ribosyltransferases (ARTDs) (see Hottiger et al., 2010).
Among all ARTDs known to synthesize PAR (Vyas et al.,
2014), the TNKS/TNKS2 PARP domains are unique in that
they coordinate zinc, lack an N-terminal helical regulatory
subdomain and also lack a loop distal to the active site
(Lehtiö et al., 2008). In all other respects, they share the
typical structural elements with other ARTD catalytic
domains (Figure 5A). A so-called donor site coordinates
the co-substrate NAD+ while the acceptor site accommo-
dates either the peptide for the priming modification or
the growing PAR chain poised for extension (Figure 5A).
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The donor site is lined by three loops: the donor site or
D-loop, a glycine-rich G-loop and a phenylalanine-
containing F-loop (Figure 5A). Tankyrase contains a cata-
lytic H-Y-E triad required for PAR synthesis (Figure 5A).
All TNKSi developed to date target the NAD+-binding do-
nor site but can broadly be classified by three binding
modes, according to our structural understanding of
NAD+ binding to Diphtheria toxin (Bell and Eisenberg,
1996). Inhibitors either primarily engage the nicotinamide
subsite (e.g. XAV939) (Karlberg et al., 2010), the adenosine
subsite (e.g. IWR-1 and G007-LK) (Narwal et al., 2012;
Voronkov et al., 2013) or both sites in the case of the more
recently developed dual-site inhibitors (Bregman et al.,
2013b) (Figure 5A; Table 1). In some instances, a phos-
phate site between the two subsites is specified as well

(see Steffen et al., 2013). Crystal structures of tankyrase
catalytic domains without inhibitor show closed D-loop
conformations, albeit different ones in apo-TNKS and apo-
TNKS2 with indications of flexibility (Lehtiö et al., 2008;
Karlberg et al., 2010). Adenosine site binders appear to in-
duce their own pocket, conferring disorder or conforma-
tional changes to the D-loop (Lehtiö et al., 2008;
Gunaydin et al., 2012; Shultz et al., 2012). Hence, the aden-
osine subsite appears highly adaptable and is sometimes re-
ferred to as the ‘induced pocket’.

Achieving selectivity
PARP inhibitor profiling against ARTDs revealed a remarkable
promiscuity for a number of PARP inhibitors (Wahlberg et al.,
2012; Thorsell et al., 2017). For example, XAV939 inhibits

Figure 5
Binding modes of catalytic TNKSi and alternative inhibition strategy. (A) Structural representation of TNKS/TNKS2 PARP domain:inhibitor com-
plexes. Residues of the catalytic H-Y-E triad are indicated. Adenosine and nicotinamide sites are highlighted with blue and orange dashed circles,
respectively, in the left and central panels, respectively. Left, structure of the TNKS2 PARP domain with the adenosine site binder G007-LK (shown
in blue) [protein data bank (PDB) code 4HYF] (Voronkov et al., 2013). Loops lining the inhibitor binding site are indicated. Centre, structure of the
TNKS PARP domain with the nicotinamide site binder XAV939 (shown in orange) (PDB code 3UH4) (Kirby et al., 2012). Right, structure of the
TNKS PARP domain with a dual site binder (shown in green) (PDB code 4I9I) (Bregman et al., 2013b). The donor and acceptor sites are highlighted
in magenta. (B) Structural representation of TNKS2 ARC4 (in surface representation) bound to two macrocyclized TBM peptides shown in super-
position (PDB codes 5BXO and 5BXU) (Xu et al., 2017b). The peptide sequence is shown on the right with the position of the two different peptide
staples, whose structures are shown. Amino acid positions of the TBM are indicated.
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TNKS, TNKS2, PARP1 and PARP2 with comparable potency
(e.g. IC50 values of 95, 5, 74 and 27 nM in a direct comparison
using the catalytic domains of TNKS and TNKS2 and full-
length PARP1 and 2, respectively), while IWR-1 is more spe-
cific for the tankyrases (no measurable IC50 for full-length
PARPs 1 and 2) (Thorsell et al., 2017). High-resolution PARP
domain:TNKSi co-crystal structures have (i) rationalized
TNKSi selectivity and (ii) enabled structure-based drug design
of more selective and potent tankyrase binders (see Lehtiö
et al., 2013; Steffen et al., 2013; Haikarainen et al., 2014a).
Specific examples for the former include G007-LK, which
was optimized from JW74 (Lau et al., 2013; Voronkov et al.,
2013), and WIKI4 (James et al., 2012; Haikarainen et al.,
2013). Examples for the latter include NVP-TNKS656, devel-
oped from XAV939 (Shultz et al., 2013), and dual-site inhibi-
tors (Hua et al., 2013) (Table 1). These studies demonstrated
that the unique structural features of the tankyrase catalytic
domain can be exploited to gain selectivity. For example,
WIKI4 in the adenosine subsite would sterically clash with
the helical subdomain in PARPs 1–3 (Haikarainen et al.,
2013). More subtle differences can also be harnessed. Com-
pared to other PARPs, the D-loop of tankyrases is three amino
acids shorter, more flexible and often disordered in crystal
structures of the domain with inhibitors, due to the absence
of three proline residues, and characterized by large hydro-
phobic amino acids, which confer a narrower, more hydro-
phobic donor site pocket (Lehtiö et al., 2008; Wahlberg
et al., 2012). Selectivity and potency can be gained by ‘grow-
ing’ compounds toward this narrow pocket, as seen in the op-
timization of quinazolinones (Nathubhai et al., 2013),
tetrahydro-1,6-naphtyridin-5-ones (Kumpan et al., 2015)
and the XAV939 core to NVP-TNKS656 (Shultz et al., 2013)
(Table 1). Of note, although selectivity over other ARTDs can
be achieved, many other enzymes also use NAD+ as a co-
substrate, and so inhibitors designed to target the NAD+ donor
site may have unknown off-target effects at high concentra-
tions. However, the example of sirtuins shows that this poten-
tial challenge can be overcome (Ekblad and Schüler, 2016).

Future developments
While further optimization of catalytic TNKSi is progressing,
non-catalytic scaffolding roles of tankyrase in Wnt/β-catenin
signalling are emerging (Mariotti et al., 2016), and these may
be augmented when prolonged TNKSi treatment results in
tankyrase stabilization by blocked PARdU (Huang et al.,
2009). Furthermore, overexpression of tankyrase in several
tumour types has been reported (Matsutani et al., 2001;
Gelmini et al., 2004, 2006, 2007; Shervington et al., 2007;
Shebzukhov et al., 2008; Zhao et al., 2009; Gao et al., 2011;
Tang et al., 2012; Busch et al., 2013) and may accentuate
tankyrase’s concentration-dependent scaffolding functions,
contributing to TNKSi resistance (Mariotti et al., 2016). There-
fore, blocking tankyrase’s ARC- and SAM-dependent scaffold-
ing functions holds considerable potential. Importantly, the
ARCs and SAM domain are highly conserved between the
two tankyrases (Figure 2A) but unique among the ARTD fam-
ily, therefore offering the opportunity for target selectivity of
potential compounds over other ARTDs, in addition to the
potential benefits of inhibiting non-catalytic scaffolding
functions. Moreover, potential interference with other
NAD+-dependent enzymes could be circumvented by this

approach. Whereas blocking SAM-domain-dependent poly-
merization appears challenging due to the relatively shallow
polymerization interface, targeting the deeper TBM-binding
pocket on the ARCs is more promising (Guettler et al., 2011;
Morrone et al., 2012). This binding pocket is not conserved
across ankyrin repeat proteins in general and appears to be
unique to tankyrase. Given the presence of four substrate-
binding ARCs, blockage of each of these substrate/ligand
binding sites is likely to be required, in both TNKS and
TNKS2. However, this appears feasible given the conservation
of the TBM-binding pocket across the TNKS and TNKS2 ARCs
(Guettler et al., 2011). Xu et al. (2017b) have recently shown
that a stapled TBM peptide, based on a previously reported
optimized TBM sequence (Guettler et al., 2011) and fused to
a cell-permeability conferring peptide, can compete with
AXIN and block Wnt/β-catenin signalling (Figure 5B). This
proof-of-concept study will encourage further development
of tankyrase substrate binding antagonists. While a recent
tankyrase interactome study is in agreement with the notion
that TNKS and TNKS2 are largely functionally redundant (Li
et al., 2017), there may be benefit to selectively targeting ei-
ther TNKS or TNKS2, should unique functions emerge in the
future, which may be TNKS/TNKS2-intrinsic or result from
other sources such as differential expression or regulation.
One inhibitor study (see Table 1, compound 3) suggests that,
in principle, a certain degree of such selectivity can be
achieved (Larsson et al., 2013).

Functional and preclinical studies of
tankyrase inhibitors in CRC

Differential sensitivity of CRC cell lines to
tankyrase inhibition
Most CRC tumours (≈80%) are hemizygous for C-terminal
truncations of APC (see Bodmer, 2006), focussed at a hotspot
area known as the mutation cluster region (Miyoshi et al.,
1992; Kohler et al., 2008; see Minde et al., 2011) (Figure 6A).
Following the N-terminal Armadillo repeat domain, APC con-
tains four 15-amino-acid β-catenin-binding repeats, seven 20-
amino-acid β-catenin-binding repeats and three interspersed
AXIN-binding SAMP repeats, among other elements not re-
quired for APC’s function in Wnt/β-catenin signalling (see
Stamos and Weis, 2013). Dependent on the position of the
truncating mutation, a variable number of these motifs is lost
(Figure 6A). In APC-truncated CRC cells, an inability to as-
semble a functional β-catenin destruction complex
underlies the accumulation of transcriptionally active
β-catenin. A range of studies has investigated the responsive-
ness of model CRC cell lines to tankyrase inhibition (Lau
et al., 2013; de la Roche et al., 2014; Tanaka et al., 2017).
While it would have been conceivable that the assembly
and function of the β-catenin destruction complex cannot
be sufficiently rescued by tankyrase inhibition in the absence
of fully functional APC, there clearly are cases in which dys-
regulated Wnt/β-catenin signalling can be curbed. In SW403
and COLO-320DM cells, both of which bear extensive
C-terminal APC truncations (Figure 6A), tankyrase inhibition
(by G007-LK, IWR-1 or XAV939) gives rise to AXIN2
stabilization, the formation of β-catenin degradasomes (in
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Figure 6
Potential determinants of TNKSi responses: APC mutation status and telomeric roles of tankyrase. (A) Schematic representation of APC with do-
mains and motifs drawn to scale (see Stamos and Weis, 2013). So-called 15- and 20-amino-acid-repeats (15R and 20R) bind β-catenin (except for
20R2), with the affinity of the 20Rs for β-catenin being enhanced by their phosphorylation (Eklof Spink et al., 2001; Ha et al., 2004; Xing et al.,
2004). SAMP repeats bind to AXIN1/2 (Spink et al., 2000). 20R2 and the catenin interaction domain (CID) / region B are required for β-catenin
ubiquitylation but do not bind β-catenin; instead, they regulate AXIN1/2 binding to APC, and CID / region B is proposed to bind α-catenin (Liu
et al., 2006; Kohler et al., 2008; Choi et al., 2013; Pronobis et al., 2015). The mutation cluster region (MCR), a mutation hotspot in CRC (Kohler
et al., 2008), is indicated in magenta. APC truncations observed in commonly used CRC cell lines are indicated by the arrows (Rowan et al., 2000;
Ikediobi et al., 2006); labels are colour-coded according to the indicated effects of TNKSi on AXIN and non-phospho (active) β-catenin levels and
β-catenin-dependent transcription. *Note that the classification of DLD-1 and HCT-15 cells as TNKSi-sensitive or -resistant varies between studies,
given an ‘intermediate’ response (Huang et al., 2009; Lau et al., 2013; de la Roche et al., 2014; Tanaka et al., 2017). Very low AXIN1/2 levels in
KM12 cells (Tanaka et al., 2017) may be responsible for non-detectable AXIN accumulation upon tankyrase inhibition. (B) Multiple sequence
alignment of the N-termini of TERF1/TRF1 (telomeric repeat binding factor 1) orthologues from the indicated species, coloured by percentage
identity. The amino acid numbering refers to human TERF1. The 8-amino-acid TBM is boxed in red. The murine Terf1 orthologue sequence is
boxed in yellow and shows no conservation of the TBM.
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COLO-320DM cells), a robust reduction in active (non-phos-
phorylated) β-catenin and prominently attenuated β-catenin-
dependent transcription, both in reporter assays and at the
level of endogenous Wnt/β-catenin target genes (Lau et al.,
2013; de la Roche et al., 2014; Tanaka et al., 2017). Impor-
tantly, tankyrase inhibition limits the proliferation of these
cells in cell culture (for G007-LK and IWR-1) and xenograft
(for G007-LK) models (Lau et al., 2013; Tanaka et al., 2017).
A similar cell response to tankyrase inhibition is observed in
DLD-1 and HCT-15 cells, although the levels of active β-
catenin are reduced less robustly and the transcriptional ef-
fect is more subtle (Lau et al., 2013; de la Roche et al., 2014;
Tanaka et al., 2017). Conversely, in SW480 and SW620 cells,
although tankyrase inhibition results in the stabilization of
AXIN2, degradasome formation and a strong decrease in ac-
tive β-catenin levels, it fails to block Wnt/β-catenin target
genes or the TOPFlash reporter (Lau et al., 2013; de la Roche
et al., 2014). In yet another group of CRC cells (COLO-205,
HT-29, HCC2998 and LS-411 N), tankyrase inhibition increases
AXIN1/2 levels but with only a modest or no decrease in active
β-catenin levels (Lau et al., 2013; Tanaka et al., 2017). For KM12
cells, no effect on the levels of AXIN1/2 or active β-catenin levels
and β-catenin-dependent transcription was observed upon
tankyrase inhibition (Tanaka et al., 2017). As expected, Wnt/β-
catenin signalling in CRC cells with oncogenic mutations in
β-catenin (LS174T, HCT116) or β-catenin-independent CRC
cells (RKO) are not sensitive to tankyrase inhibition (Lau et al.,
2013; Tanaka et al., 2017).

Tankyrase inhibition can therefore restore, at least partly,
β-catenin destruction complex function in a subset of APC-
mutant CRC cells (Figure 6A). Why another subset of CRC
cell lines is TNKSi-resistant is being investigated. It has been
proposed that high levels of β-catenin in SW480 cells account
for TNKSi resistance (Lau et al., 2013), but β-catenin levels in
the TNKSi-sensitive COLO-320DM cells appear comparable
(de la Roche et al., 2014). Compared to SW480, COLO-
320DM cells appear to have higher levels of AXIN1, TNKS
and phospho-β-catenin after tankyrase inhibition (de la
Roche et al., 2014), suggesting that β-catenin may be seques-
tered in stalled destruction complexes, thereby limiting the
availability of active β-catenin.

A potential correlation between the site of APC truncation
and TNKSi sensitivity has been explored, both in CRC cell
lines and tumour-derived cells from patients (Tanaka et al.,
2017). APC truncations removing all β-catenin-binding 20-
amino-acid repeats (as in COLO-320DM and SW403 cells;
Figure 6A) were proposed to render cells TNKSi-responsive
at the level of cell proliferation andmight serve as a predictive
biomarker (Tanaka et al., 2017). Another distinguishing fea-
ture of these cells is their particularly strong Wnt/β-catenin
pathway activity (Tanaka et al., 2017). The authors suggest
that the longer APC variants of other cell lines act as
hypomorphs maintaining a higher residual level of β-catenin
regulation: their silencing further stabilizes β-catenin. TNKSi
(G007-LK, IWR-1) can reverse this accumulation but not
reduce β-catenin abundance below its cell-characteristic
elevated levels (Tanaka et al., 2017). In turn, cell proliferation
remains unresponsive to tankyrase inhibition (Tanaka et al.,
2017). The genetic background of additional cell lines and
tumour samples will need to be explored to confirm the
suitability of APC truncations as predictive biomarkers for

TNKSi sensitivity. In line with a requirement of AXIN2 for
degradasome formation (see above), TNKSi depend on AXIN2
to reduce active β-catenin levels (Tanaka et al., 2017). Large
APC truncations, eliciting high β-catenin activity and thus
AXIN2 gene transcription, may be required for the
TNKSi-induced accumulation of sufficient amounts of
AXIN2. Indeed, absolute AXIN2 mRNA levels are high in
COLO-320DM cells and, upon tankyrase inhibition, remain
higher than in many other CRC cell lines (Tanaka et al., 2017).

Upon prolonged Wnt stimulation, sequestration of
β-catenin in nuclear transcriptional complexes may shield
β-catenin from the β-catenin destruction complex and ac-
count for TNKSi (XAV939) resistance (de la Roche et al.,
2014). High expression levels of lymphoid enhancer-binding
factor 1 (LEF1) and B9L and a CRC environment providing
sustained Wnt levels are potential predictors of TNKSi resis-
tance (de la Roche et al., 2014). Moreover, the acquisition of
APC mutations is considered an early event in the emergence
of CRC, and secondary mutations in genes such as KRAS, P53
and SMAD4 contribute to driving carcinogenesis (Drost et al.,
2015); such mutations may modulate the TNKSi response, al-
though this remains speculative. Of note, DLD-1 colony for-
mation can be inhibited with XAV939 under low- but not
high-serum conditions (Huang et al., 2009; Bao et al., 2012;
Lau et al., 2013), and similarly, DLD-1 and HCT-15 colony for-
mation does not respond to G007-LK at high serum, while
that of COLO-320DM and SW403 cells does (Lau et al.,
2013). This points to additional sensitivity determinants out-
side the APC and β-catenin mutational landscape, although
simple compound sequestration by serum components may
in some cases also contribute. In support of a more complex
determination of sensitivity, Mashima et al. (2017) generated
a TNKSi-resistant COLO-320DM line, showing decreased
Wnt/β-catenin signalling and up-regulated mTOR signalling.
These cells were generated to tolerate IWR-1 but also
displayed considerable resistance to G007-LK. The authors
showed that the mTOR pathway determines TNKSi resistance
in these cells. In conclusion, we need to better understand
how the genetic and signalling profile of CRC cells and tu-
mours affects TNKSi responsiveness. Furthermore, a much
deeper analysis of the β-catenin destruction complex and
the Wnt signalosome is required to appreciate the mecha-
nisms by which tankyrase inhibition affects the molecular
events underlyingWnt/β-catenin signalling, both in the con-
text of wild-type and mutant APC.

Tankyrase inhibitors in murine models
In vivo preclinical studies have demonstrated the anti-tumour
activity of various TNKSi (Waaler et al., 2011, 2012; Lau et al.,
2013). JW74 was studied in both xenograft and the ApcMin

mouse models and reported to be well tolerated while reducing
both the total tumour load in the small intestine and the tu-
mour number in the colon (Waaler et al., 2011). Similar obser-
vations were made for JW55 in mice with a conditional Apc
truncation in the ISC compartment (Waaler et al., 2012). An
improved derivative of JW74, G007-LK, which inhibits
tankyrase with double-digit nanomolar IC50 values and good
specificity (Table 1) (Voronkov et al., 2013), decreases the tu-
mour area in the small intestine of these mice by approxi-
mately two thirds and shows significant inhibition of tumour
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growth in various xenograft models with APC-mutant human
cell lines (SW480, COLO-320DMand SW403) (Lau et al., 2013).

Intestinal toxicity remains a major challenge for many
Wnt/β-catenin pathway inhibitors (see Kahn, 2014). A more
careful analysis of the effects of G007-LK at dose-limiting
levels revealed reduced cell proliferation in crypt bases of
the small intestine, inflammation, necrosis, disrupted
epithelial architecture, with ensuing weight loss and mori-
bundity (Lau et al., 2013).Whether the observed toxicity is re-
versible has not been explored. Conversely, in a study
investigating the role of tankyrase in glucose metabolism,
the long-term (6 months) treatment of mice with G007-LK
at a lower dose delivered orally, as opposed to intraperitone-
ally, did not result in detectable toxicity despite the observed
stabilization of Axin1 and reduction in active β-catenin levels
(Zhong et al., 2016a). As the expression of the Wnt pathway
antagonist Dickkopf-related protein 1 (Dkk1) in the gut epi-
thelium gives rise to similar toxicity as highly dosed G007-LK
(Pinto et al., 2003; Kuhnert et al., 2004; Lau et al., 2013), it is
likely that TNKSi toxicity is an on-target, Wnt/β-catenin
pathway-specific effect. A mouse xenograft study evaluating
the TNKSi G-631 (patent by Feng et al., 2013) also revealed
considerable intestinal toxicity, even at sub-therapeutic doses
(Zhong et al., 2016b). Importantly, ablation of Wnt signalling
by either adenoviral Dkk1 expression or treatment with G-
631 is reversible (Kuhnert et al., 2004; Zhong et al., 2016b).

While toxicity poses challenges in continued efforts to ex-
plore the therapeutic potential of TNKSi, it is no reason to be
discouraged. Does TNKSi toxicity indeed reflect on-target or
off-target action of the inhibitors? What is the tissue distribu-
tion of the compounds? For example, do they accumulate in
the gastrointestinal tract, aggravating toxicity? Do chemi-
cally distinct TNKSi display similar signs of toxicity? The fact
that SW480 cell xenograft growth can be contained by
tankyrase inhibition despite the incomplete penetrance on
β-catenin dependent transcription (see above) suggests that
full inhibition of signalling might not be required for a thera-
peutic effect; so what degree of β-catenin inhibition translates
into a biological effect? Moreover, different dosage and
timing regimes could be implemented to manage known tox-
icities (see Meric-Bernstam and Mills, 2012). Encouragingly,
inhibitors of the acyl transferase Porcupine, which
palimitoylates Wnt during its biogenesis, show limited intes-
tinal toxicity at effective doses, suggesting that substantial
therapeutic windows can be achieved by targeting the
Wnt/β-catenin pathway (Liu et al., 2013; Proffitt et al., 2013;
see alsoMadan and Virshup, 2015). The point of intervention
in the pathway, drug specificity, potency and method of de-
livery, pharmacokinetics, functional redundancy of targeted
pathway components and the genetic background of the tu-
mour cells may all define the therapeutic window. Combina-
tion with inhibitors targeting additional cancer dependencies
(e.g. EGFR and PI3K-AKT) provides another possible strat-
egy for increasing the effectiveness of TNKSi while ensuring
their safety (Casas-Selves et al., 2012; Tenbaum et al., 2012;
Arques et al., 2016).

A deeper knowledge of the responses and toxicities elicited
by Wnt/β-catenin pathway modulators in different species is
muchneeded to exploit β-catenin dependencies in cancer.With
the vast range of knownandputative tankyrase targets (Guettler
et al., 2011; Li et al., 2017), it would be surprising if TNKSi effects

and toxicities were entirely due toWnt/β-catenin pathway inhi-
bition. Another prominent system highly relevant to the
human stem cell compartment is telomere length homeostasis,
which is also regulated by tankyrase, as is sister telomere resolu-
tion in mitosis (Smith et al., 1998; Smith and de Lange, 2000;
Canudas et al., 2007; Kulak et al., 2015). Telomeric functions
require tankyrase to bind telomeric repeat-binding factor 1
(TRF1/TERF1). Importantly, telomere regulation by tankyrase
is not conserved in mice since murine Trf1/Terf1 lacks the TBM
(Figure 6B) and does not bind tankyrase (Muramatsu et al.,
2007; see Hsiao and Smith, 2008). Consistent with the absence
of a role for telomeric tankyrase functions in mice, Tnks and
Tnks2 knockout mice do not display any telomere phenotype
(Hsiao et al., 2006; Chiang et al., 2008), but a definitive answer
will be obtained from comparing murine and human cells defi-
cient in both tankyrases. Therefore, preclinical studies of TNKSi
in mice and other species lacking the Terf1 TBM (e.g. zebrafish;
Figure 6B) are unlikely to predict the full extent of biological ef-
fects and toxicity in humans. Conversely, rabbits or Chinese
hamsters, for example, both display a functional TBM in Terf1
andmight bemore suitable models for studying the in vivo con-
sequences of tankyrase inhibition, at least with regards to
Wnt/β-catenin signalling and telomere maintenance. In rats,
the somewhat stronger deviation of the TBMwill require a prior
validation of a telomeric role for tankyrase (Muramatsu et al.,
2007). Telomere maintenance in Drosophila occurs via a
transposon-mediated mechanism rather than telomerase
(Villasante et al., 2008), and a telomeric tankyrase link in flies
is therefore unlikely. While Wg/Armadillo pathway regulation
by tankyrase is clearly evident in Drosophila, some mechanistic
aspectsmay be different, for example given thatDrosophilaAxin
only bears a single TBM (Figure 2C).

Outstanding questions
The past few years have seen a rapid progress in our under-
standing of how Wnt/β-catenin signalling is regulated by
PARylation and tankyrase. Tankyrase is now an established
core component of the Wnt/β-catenin network. Nonetheless,
we are still far from a full understanding of the complex roles
that tankyrase plays in the pathway. How does tankyrase pro-
mote Wnt/β-catenin signalling non-catalytically, and do
these mechanisms contribute to TNKSi resistance? Does scaf-
folding through tankyrase directly control β-catenin
degradasome assembly, and how is this process regulated?
How does AXIN PARylation promote the function of the
Wnt signalosome? It will be interesting to explore the conse-
quences of AXIN PARylation on both its conformation and
interactions with components of both the signalosome and
degradasome complexes. Given early indications of a role
for tankyrase in APC-regulated destabilization of AXIN, addi-
tional work is needed to decipher how APC limits AXIN abun-
dance. TNKSi have now reached a remarkable specificity. The
continued exploration of their pharmacodynamics, the iden-
tification of potential biomarkers for their therapeutic imple-
mentation and the in-depth analysis of emerging resistance
and toxicity mechanisms are important avenues of further re-
search. The latter will require a careful choice of model sys-
tems. The development of alternative tankyrase inhibition
strategies through interfering with the non-catalytic,
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scaffolding functions of tankyrase, in particular substrate
binding, will undoubtedly offer new and exciting opportuni-
ties to understand tankyrase function and explore alternative
therapeutic strategies.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are hyperlinked to
corresponding entries in http://www.guidetopharmacology.
org, the common portal for data from the IUPHAR/BPS Guide
to PHARMACOLOGY (Southan et al., 2016), and are perma-
nently archived in the Concise Guide to PHARMACOLOGY
2015/16 (Alexander et al., 2015a, 2015b).
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