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Abstract: Mesenchymal stromal cells (MSCs) are perivascular multipotent stem cells originally
identified in the bone marrow (BM) stroma and subsequently in virtually all vascularized tissues.
Because of their ability to differentiate into various mesodermal lineages, their trophic properties,
homing capacity, and immunomodulatory functions, MSCs have emerged as attractive candidates
in tissue repair and treatment of autoimmune disorders. Accumulating evidence suggests that the
beneficial effects of MSCs may be primarily mediated via a number of paracrine-acting soluble
factors and extracellular vesicles (EVs). EVs are membrane-coated vesicles that are increasingly
being acknowledged as playing a key role in intercellular communication via their capacity to carry
and deliver their cargo, consisting of proteins, nucleic acids, and lipids to recipient cells. MSC-
EVs recapitulate the functions of the cells they originate, including immunoregulatory effects but
do not seem to be associated with the limitations and concerns of cell-based therapies, thereby
emerging as an appealing alternative therapeutic option in immune-mediated disorders. In the
present review, the biology of MSCs will be outlined and an overview of their immunomodulatory
functions will be provided. In addition, current knowledge on the features of MSC-EVs and their
immunoregulatory potential will be summarized. Finally, therapeutic applications of MSCs and
MSC-EVs in autoimmune disorders will be discussed.

Keywords: mesenchymal stromal cells; exosomes; extracellular vesicles; autoimmune disorders; im-
munomodulation

1. Introduction

Knowledge regarding the etiology, pathophysiology, and clinical manifestations of
autoimmune disorders has witnessed considerable progress during the last years and this
has paved the way for the development of sophisticated treatments targeting molecular
pathways and immune deregulations implicated in disease pathogenesis. One such novel
therapeutic modality involves the use of mesenchymal stromal sells (MSCs) [1].

MSCs are multipotent cells deriving from the mesoderm that can be isolated from
various tissues with minimally invasive procedures [2,3]. Because of their potential to
differentiate into several tissues, their extensive in vitro expansion, and their broad im-
munoregulatory properties, involving cells associated with both innate and adaptive
immunity, MSCs have drawn much attention in the field of tissue repair [2–4]. In support
of this, several preclinical and clinical studies evaluating the immunomodulatory role of
MSCs have indeed demonstrated promising results in terms of attenuating inflammatory
and autoimmune disorders [1].

A rapidly growing number of studies suggests that the beneficial therapeutic and im-
munoregulatory functions of MSCs may be primarily mediated via a number of paracrine-
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acting soluble molecules and extracellular vesicles (EVs) and to a lesser extent by cell–cell
contact [5]. EVs are membrane-coated vesicles that have emerged as important players in
intercellular communication via their capacity to carry and deliver their cargo, consisting
of proteins, nucleic acids, and lipids to target cells [5]. Interestingly, MSC-EVs have been
shown to recapitulate the functions of the cells they originate, including immunoregulatory
effects [6–8], whereas, in contrast to bona fide MSCs, they are not associated with the limi-
tations and concerns of cell-based therapies, thereby emerging as an appealing alternative
therapeutic option in immune-mediated disorders

In the present review, we attempt to outline the biology of MSCs and provide an
overview of their immunomodulatory functions. In addition, we summarize the current
knowledge on the features of MSC-derived EVs and their immunoregulatory potential.
Finally, therapeutic applications of MSCs and MSC-EVs in autoimmune disorders will
be discussed.

2. MSC Characteristics and Immunomodulatory Properties

Mesenchymal stromal cells (MSCs) are non-hematopoietic cells that were originally
identified in the bone marrow (BM) by Alexander Friedenstein et al. in the late 1960s to
early 1970s [2,9–11]. Via a series of pioneering experiments, the authors demonstrated that
after seeding BM cells at low density, colonies of plastic-adherent fibroblast-like cells were
formed. Each colony was derived from a single cell that was called colony-forming unit-
fibroblast (CFU-F). Subcutaneous transplantation of the clonal progeny of a single CFU-F
could give rise to fibrous tissue, bone, and bone containing marrow in the host [2,9–11].
Subsequent studies from other groups substantiated these findings and provided evidence
that the cells isolated by Friedenstein and his colleagues were multipotent as they could
differentiate into osteoblasts, adipocytes, and chondrocytes (reviewed in [12]).

In 2006, the International Society for Cellular Therapy (ISCT) established three minimal
criteria for the definition of human MSCs [13]: (a) plastic adherence, (b) expression of the
surface antigens CD73, CD90, CD105 while lacking the expression of the hematopoietic and
endothelial molecules CD34, CD45, CD14, CD19, CD79a, CD11b, and HLA-DR (c) in vitro
differentiation into three mesodermal lineages (osteoblasts, adipocytes, and chondrocytes).
Certain authors have suggested that the differentiation capacity of MSCs may be broader,
including even cells of non-mesodermal origin [14–19]. However, it is generally agreed
that such differentiation potential has not been adequately substantiated [20].

Following the initial isolation of MSCs from the BM, a number of studies suggested
that cells fulfilling the aforementioned criteria and sharing similar, but not identical, prop-
erties can be harvested from a wide variety of human tissues such as adipose tissue, dental
pulp, peripheral blood, menstrual blood, endometrium, as well as fetal tissues including
amniotic fluid, placenta, umbilical cord, Wharton jelly, and umbilical cord blood [21–31].
The detection of MSCs in multiple organs and tissues may reflect their perivascular in vivo
localization. In fact, accumulating evidence suggests that native MSCs may derive from
cells associated with blood vessels, namely pericytes and adventitial cells [32]. Thus, any
vascularized tissue or organ would be expected to contain MSCs.

A crucial property of MSCs is their low immunogenicity [2,3,6,33], as suggested by
the low expression of HLA class I and the lack of expression of HLA class II and co-
stimulatory molecules, including CD40, CD80, CD83, CD86, and CD154. This notion is
further supported by the observation that MSCs do not induce a proliferative response
from allogeneic lymphocytes [2,3,6,33] (Figure 1). Interestingly, inflammatory factors, i.e.,
interleukin-1β (IL-1β), interferon-gamma (IFN-γ), or tumor necrosis factor-α (TNF-α)
result in upregulation of HLA class I and induction of expression of HLA class II antigens
by MSCs [34], thereby potentiating their interactions with T cells [3,35–37]. Yet, as these
factors have no effect on co-stimulatory molecules, T cells are not properly activated and
eventually become anergic, even in the context of inflammation [3,38]. Nevertheless, some
studies have shown that allogeneic MSCs can actually activate T cells [39] and it has also
been demonstrated that infused MSCs into allogeneic major histocompatibility complex
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(MHC)-mismatched mice were rapidly rejected [2,40,41]. These findings suggest that MSCs
may not be immune-privileged as originally thought; rather, in the allogeneic setting, MSCs
should be regarded as hypoimmunogenic as compared to other cell types [2,3,39].
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Figure 1. Interaction of MSCs with cells involved in innate and adaptive immune responses. The immunomodulatory
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MSCs have been found to inhibit T lymphocyte proliferation and activation (Figure 1)
in response to alloantigens, nonspecific mitogens, and specific antigens in vitro [2,36,41,42].
Immunosuppression includes all CD3+, CD4+, and CD8+ T subpopulations, can be exerted
by both allogeneic and autologous MSCs, is not HLA-restricted, and is mediated by both
cell–cell contact and soluble factors [43,44]. The reduction in T cell proliferation has been
attributed, at least in part, to apoptosis [45]; the latter being associated with the expression
of Fas ligand (FasL) in MSCs [46], although this view is not unanimous [47] (Figure 1).

Via interaction with dendritic cells, MSCs can induce the shift of CD4+ T cells with
Th1 phenotype to cells with Th2 phenotype (Figure 1) and this is accompanied by downreg-
ulation of proinflammatory cytokines such as IL-6, IFN-γ, and IL-17 and by concomitant
upregulation of the anti-inflammatory cytokines IL-4 and IL-10 [48,49]. Indoleamine
2,3-dioxygenase (IDO), which is constitutively produced by MSCs and is also induced fol-
lowing IFN-γ stimulation, seems to mediate, at least in part, these effects [49–51] (Figure 1).
Additionally, via prostaglandin E2 (PGE2) secretion, MSCs suppress the differentiation of
CD4+T cells into Th17 cells and inhibit their function in vitro [52] (Figure 1). MSCs may
also impair IL-17 secretion by Th17 cells in a cell–cell-dependent mechanism and induce
their conversion into T-regulatory cells (Tregs) [51,53] (Figure 1). In regard to Tregs, several
studies have shown that MSCs promote their expansion and suppressive function and
induce their generation from conventional T cells [51,54,55]. Implicated molecules in these
processes include PGE2, transforming growth factor-β (TGF-β), hepatic growth factor
(HGF) IL-10, and HLA-G [51,56,57] (Figure 1).

As far as B cells are concerned, MSCs inhibit their proliferation and activation via
division arrest anergy [2,58,59] (Figure 1). Furthermore, MSCs have been shown to im-
pair B cell maturation and antibody secretion, modulate the chemotactic properties of



Int. J. Mol. Sci. 2021, 22, 10132 4 of 26

B cells [2,51,59,60], and induce the formation of B-regulatory cells (Bregs) [59] (Figure 1).
These effects have been shown to involve cell–cell contact and soluble factors including
IDO, PGE2, TGF-β, IL-1 receptor antagonist (IL-1RA), and IL-35 [51,61]. On the other hand,
and despite the numerous studies reporting the suppressive effects of MSCs on B cells,
others argue that MSCs can actually support the survival, proliferation, and differentia-
tion of B cells to antibody-secreting cells [2,51,59,62] (Figure 1). This discrepancy can be
explained by taking into consideration the fact that the effects of MSCs on B cells seem to
be dependent upon the strength of their activation resulting from the inflammatory cues in
the environment. To this end, when MSCs are inadequately inflammation-activated, they
exhibit stimulatory effects but not inhibitory effects on B cells [39,51,63] (Figure 1).

MSCs have also been reported to induce the polarization of monocytes/macrophages
towards an anti-inflammatory (M2) phenotype [39,51,64]. This seems to be associated with
various soluble factors including IDO, HGF, IL-1RA, PGE2, TGF-β, and tumor necrosis
factor-inducible gene 6 protein (TSG6) [51] (Figure 1). Anti-inflammatory monocytes secrete
high levels of IL-10 but decreased levels of TNF-α, IL-12, IL-1β, and IL-17 [39,51,64,65]
(Figure 1). A recent study showed that MSCs can also suppress monocyte functions [66]
(Figure 1). More precisely, when human MSCs derived from the umbilical cord were
cultured with human monocytes, the latter had decreased potential to differentiation into
macrophages, defective phagocytic capacity, and antigen-presenting potential.

The immunoregulatory effects of MSCs also include dendritic cells (DCs) (Figure 1).
More specifically, MSCs have been reported to suppress differentiation of human blood
monocytes and cord blood CD34+ hematopoietic progenitor cells into DCs [2,41,43,51].
Furthermore, MSCs reduce the expression of HLA-DR, CD40, OX40L, CD80, CD83, and
CD86 by DCs thereby decreasing their ability to stimulate T-cell proliferation [67,68]. MSCs
decrease the production of IFN-γ IL-12 and TNF by DCs, whereas they induce IL-10
production, thereby impairing their ability for antigen presentation [2,42,51,63,69]. Collec-
tively, these findings suggest that MSCs direct DCs to acquire a tolerogenic phenotype [2].
Several mechanisms have been implicated herein including interactions between Jagged1
on MSCs and Notch2 on DCs [51,70] as well as soluble factors such as PGE2, IL-6, TSG6,
macrophage-colony-stimulating factor (M-CSF), and HGF [42,51,67,71].

With reference to natural killer (NK) cells (Figure 1), MSCs have been reported to
downregulate their proliferation, cytotoxicity, and cytokine secretion via decreased pro-
duction of IL-2 and IL-15 [2,72–74]. In addition, MSCs have been shown to decrease the
expression of the surface receptors NKp44, NKp30, and NKG2D which are implicated in
NK cell activation and cytotoxicity [74]. These effects are associated with soluble factors
such as PGE2, TGF-β, IDO and soluble HLA-G and nitric oxide (NO) [2,63,72–74]. On the
other hand, it has also been demonstrated that MSCs may be lysed by both autologous and
allogeneic IL-2-stimulated NK cells [2,73] (Figure 1). This has been attributed to the fact that
MSCs exhibit reduced expression of HLA-I molecules as well ligands which are recognized
by activating NK receptors eventually triggering NK-cell mediated cytotoxicity [2,73,74].
Of note, MSC incubation with IFN-γ increased HLA-I expression and thus protected them
from NK cell lysis [73].

3. MSCs’ Mode of Action

Because of their multipotency and immunoregulatory features, MSCs have attracted
much attention in the field of regenerative medicine. It was initially thought that following
adoptive transfer, MSCs would hone to the injured or damaged sites, engraft and subse-
quently restore defects by giving rise to mature functional cells [32]. However, although
numerous studies have shown selective homing of transplanted MSCs to either injured
or inflamed tissues [75,76], the levels of engraftment and differentiation are in most cases
rather low to contribute physically to tissue regeneration to a significant extent [2,77–79].
Instead, many preclinical studies [80–84] suggested that the observed therapeutic impact
of MSCs’ adoptive transfer is not probably related to their engraftment but to a transient
presence of these cells into damaged tissues. Hence, it is now widely accepted that MSCs
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favor tissue repair via the secretion of various soluble factors and the shedding of extracel-
lular vesicles [79]. The former include bioactive molecules, i.e., cytokines, chemokines, and
growth factors with proliferative, anti-inflammatory/immunoregulatory, angiogenic, and
anti-apoptotic properties [85]. The nature of the secreted molecules is determined by the
origin of MSCs, the donor age, and more importantly the surrounding microenvironment.
Table 1 summarizes the key soluble factors produced by MSCs and the biological processes
they are implicated in.

Table 1. Soluble factors secreted by MSCs and their biological functions.

Soluble Factors Biological Functions References
ITGα1, ITGα3, ITGα4 ITGα5, CD44, Galectin,

CXCL12
Cell attachment, spreading, proliferation,

differentiation [86–90]

MT1-MMP, MMP1, MMP9, TIMP1, TIMP2, TIMP4,
PA, TNF-α

Cell–cell adhesion, tissue remodeling, cell
migration, invasion, proliferation, apoptosis,

differentiation, angiogenesis
[91–93]

CCR2, CCR7, CCR10, CXCR4, CXCR5, CXCR6 Migration, angiogenesis immunomodulation [94,95]
HLA-G5, IDO, iNOS, IL-6, IL-10, LIF, PGE2, TGF-β Immunomodulation [35,42,51,96]

ANGs, FGF2, TGF-β, VEGF Angiogenesis [92,97–103]
FGF2, GM-CSF, IGF, SFRP1,SFRP-2,TGF-β Cell survival and proliferation [92,97,104–108]

ANGs: Angiopoietins, CCR: CC chemokine receptor, CXCL12: C-X-C motif chemokine ligand 12, CXCR: C-X-C motif chemokine
receptor, FGF2: Fibroblast growth factor 2, GM-CSF: Granulocyte macrophage colony stimulating factor, HLA-G5: Human leukocyte
antigen G5, IDO: Indoleamine 2,3-dioxygenase, IGF: Insulin-like growth factor, iNOS: inducible nitric oxide synthase, IL: Interleukin,
ITG: Integrin, LIF: Leukemia inhibitory factor, MMP: Matrix metalloproteinase, MT-MMP: Membrane-yype matrix metalloproteinase,
PA: Plasminogen activator, PGE2: Prostaglandin E2, SFRP: Secreted frizzled-related protein, TIMP: Tissue inhibitor of metalloproteinase,
TGF-β: Transforming growth factor beta, TNF-α: Tumor necrosis factor-alpha, VEGF: Vascular endothelial growth factor.

Aside from the aforementioned bioactive molecules, extracellular vesicles are increas-
ingly being recognized as crucial mediators of MSCs’ biological functions. This concept
has been supported by the fact that MSC-derived EVs can mimic the biological properties
of their parental cells [109] and can exert similar anti-inflammatory, antiapoptotic, proan-
giogenic, and immunomodulatory effects in various disease models [110,111]. In the next
section, the biology of EVs will be discussed and the immunomodulatory role of MSC-EVs
will be explored.

4. Characterization of Extracellular Vesicles (EVs) and Immunomodulatory Properties
of MSC-Derived EVs

Extracellular vesicles (EVs) are small membrane vesicles (30 nm to 4 µm in diam-
eter), that are secreted by practically all eukaryotic cells [112,113]. Based on their size,
composition, and biogenesis EVs are traditionally divided into three major subtypes:
exosomes (50–150 nm diameter), microvesicles (100–1000 nm diameter), and apoptotic
bodies (50–4000 nm diameter) [114,115]. In general, exosomes are formed within multi-
vesicular bodies (MVB) and secreted following the fusion of the latter with the plasma
membrane [115]. In contrast, microvesicles are directly formed and released from the
plasma membrane via budding [5,115]. Similarly, apoptotic bodies are directly formed and
released by cell membrane following cellular apoptosis [5,115].

Although EVs were initially considered as cellular debris devoid of any biological
function, rapidly accumulating data has provided evidence that they are actually crucial
effectors of intercellular communication, in both physiological and pathological condi-
tions [116], via the transfer of their cargo. The latter consists of various proteins, lipids, and
nucleic acids, the delivery of which can modulate the properties and functions of target
cells [116,117].

Within this context, MSC-derived EVs have emerged as key mediators of the cells’
paracrine effects. In support of this notion, MSC-derived EVs have been shown to retain
the biological functions of the cells they originate [109] and exert similar biological activity
to the latter, including immunoregulation [110,111]. As far as the immunomodulatory
role of MSCs-EVs is concerned, there is now robust evidence to suggest that they play a
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major part in exerting the effects of MSCs on the components of both innate and adaptive
immunity. This issue will be briefly reviewed herein. For a more detailed discussion, the
interested reader is referred to a recent comprehensive review by Bazzoni et al. [69].

In regards to the innate immune system, MSC-EVs have been demonstrated to inhibit
DC activation eventually resulting in reduced triggering of T-cell responses ([69], and refer-
ences therein). For example, Favaro et al. [118] showed that DCs from patients with type 1
diabetes treated with heterologous MSC-EVs acquired an immature phenotype, associated
with decreased expression of activation markers and higher production of IL-6, IL-10,
TGFβ, and PGE2. MSC-EV inhibition of DC maturation has been associated with upregula-
tion of the microRNA (miRNA) miR-146 [119] and HLA-G [69,120]. Furthermore, it has
recently been shown that MSC-EVs may also downregulate antigen uptake by immature
DCs [69,121,122]. In terms of their role on NK cells, MSC-EVs have been found to inhibit
their proliferation and IL-2 induced activation as well as their degranulation [69,123]. These
effects could be mediated via MSC-EV expression of TGF-β, IL-10, and HLA-G [69,124].

Concerning MSC-EV effects on monocytes, recent data suggests that they inhibit
the activation of the pro-inflammatory M1 macrophages, while concomitantly promote
the activation of the anti-inflammatory M2 macrophages, thereby modifying the M1/M2
balance [6,69,125]. M2 macrophage polarization has been attributed to MSC-EV-induced
up-regulation of S1P/SK1/S1PR1 signaling [69,126], innate immune signal transduction
adaptor (MYD88), toll TLR signaling (TLR) [69,127], and, in the setting of lipopolysaccha-
ride (LPS)-primed MSCs, LPS-dependent nuclear factor kappa B (NF-κB) signaling [69,128].
Furthermore, the potential of MSC-EVs to modulate the expression of chemokines (i.e.,
C-X-C motif chemokine ligand 1(CXCL1), C-C motif chemokine ligand (CCL5), CXCL2
ligand)) has been suggested to be involved in the down-regulation of M1 macrophage
activation and inflammatory response ([69], and references therein). Furthermore, via
the C-C motif chemokine receptor-2 (CCR2) expression, MSC-EVs bind and reduce the
concentration of free CCL2 (CCR2 ligand) and thus inhibit the capacity of the latter to
activate or recruit macrophages [69,129]. Various miRNAs have also been implicated in
MSC-EV mediated M1/M2 imbalance ([69] and references therein), including miR-223,
miR-155, miR-21, miR-146a in the setting of IL-1b primed MSCs, miR150-5p in the setting
of IFN-γ-primed MSCs, and miR-let7. For instance, miR-let7 has been demonstrated to
promote M2 macrophage polarization via the miR-let7/HMGA2/NF-κB pathway as well
as macrophage infiltration via miR-let7/IGF2BP1/PTEN signaling [69,130]. In addition,
LPS primed-MSC-EVs can modulate M1/M2 balance more efficiently than untreated MSCs
and this has been attributed to the upregulation of let-7b expression which downregulates
TLR4/NF-κB/STAT3/AKT regulatory signaling pathway, eventually restraining inflam-
mation and promoting diabetic cutaneous wound healing [69,131]. Moreover, MSC-EVs
inhibit M1-macrophage infiltration in injured/inflamed tissues by diminishing monocyte
chemoattractant protein-1 (MCP-1), CCL5, high mobility group box protein 1 (HMGB1),
and macrophage inflammatory protein 1α (MIP-1α), likely via miR-147 expression [69,132].

MSC-EVs have also been demonstrated to inhibit the proliferation of B cells [133] and
to down-regulate B cell viability, the latter being associated with miR-155-5p [69,134]. The
down-regulation of B cell proliferation is prominent following MSC-EV inflammatory prim-
ing [69,134]. In addition, MSC-EVs can inhibit B cell immunoglobulin production [69,135]
and can also diminish the maturation of CD19+CD27+ memory B cells [69,125].

In an experimental immune encephalitis mouse model [69,136], MSC-EVs were demon-
strated to produce programmed death-ligand 1 (PD-L1), galectin-1, and TGF-β1. Moreover,
they were shown to inhibit auto-reactive T lymphocyte proliferation and induce T-cells
to produce TGF-β1 and IL-10 [69,136]. MSC-EVs have also been found to up-regulate the
generation of Tregs and this has been associated with increased IL-10 levels [137] and the
upregulation of miR155, miR-let-7b, and miR-let7d ([69] and references therein) and to
induce activated T-cell apoptosis [69,136]. Furthermore, MSC-EVs have been reported to
suppress both CD4+ and CD8+ cells and to inhibit differentiation into effector and memory
cells [69,138]. On the other hand, EVs released following cytochalasin B treatment from hu-
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man adipose tissue-derived MSCs, genetically modified to overexpress interleukin-2 (IL2),
were shown to activate and stimulate the proliferation of T-killer cells, which in turn were
able to induce apoptosis in breast cancer cells [139]. In regards to other T-cell subsets, MSC-
EVs have been reported to prevent Th17 cell development and IL-17 production [69,137]
and to induce Th1 to Th2 shift [69,140].

5. The Impact of MSCs’ and MSC-EVs’ as Novel Therapeutic Modalities for
Autoimmune Diseases

Autoimmune disorders represent a major cause of poor quality of life, morbidity, and
increased healthcare costs [141]. Existing conventional therapies often require long-term
administration and can be associated with significant toxicity and side-effects [141], while
they may prove ineffective in a non-negligible proportion of patients [142]. Thus, it is
imperative to develop alternative and more effective therapeutic modalities. Within this
context, because of their multiple immunoregulatory effects, MSCs have emerged as an
attractive novel therapeutic strategy for the treatment of autoimmune disorders.

Nevertheless, there are still some issues that need to be considered before the
widespread application of this cell-based treatment. More precisely, even though human
BMSCs have been shown to expand in vitro with no signs of immortalization [143,144],
it must be borne in mind that the extensive ex vivo expansion, which is often necessary
to produce adequate cell numbers for therapeutic purposes, carries the theoretical risk
for clonal selection and subsequent malignant transformation [2,145]. Another potential
risk associated with MSC-based therapy is their tumor-promoting potential [2] (reviewed
in [146]), which has been demonstrated in several animal tumor models (reviewed in [146]).
However, to the best of our knowledge, no tumor formation has been reported thus far in
human subjects who received MSCs [147], although a more extended follow-up may be
required, to accurately assess their potential tumorigenic capacity.

To this end, MSC-derived EVs may represent a more advantageous approach as
compared to MSC-based treatment [5]. While they retain the properties and functions of
their parental cells [109], MSC-EVs do not seem to be associated with the aforementioned
risks and concerns and are considered safer than MSC treatment [5,8]. More precisely, MSC-
EVs are unable to proliferate and have not been shown to promote tumor growth [5,109,148].
Furthermore, MSV-EVs cannot differentiate and thus can bypass the risk of ectopic bone
formation at the site of injection previously reported for MSCs [149,150]. Moreover, they are
associated with minimal immunogenicity [109,151] and possess the advantage of being able
to cross the blood–brain barrier [152]. These advantages have set the stage for investigating
the therapeutic potential of MSC-EVs in various diseases including immune-mediated
disorders [8].

In the next sections, we will summarize findings from in vitro studies, experimental
animal models, and pioneering clinical trials of MSCs and their EVs (Figure 2) in the setting
of autoimmune diseases.
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6. Diabetes Mellitus

Diabetes mellitus (DM) is a leading cause of morbidity and mortality worldwide with
glycemic dysregulation resulting in a variety of complications in diabetic patients [153].
The two clinically distinct types of DM are characterized by different pathophysiologic
mechanisms. While type 2 diabetes is associated with insufficient production and insulin
resistance as well as chronic low-grade inflammation, type 1 diabetes is merely caused by
autoimmune destruction of insulin-producing pancreatic islet β-cells [154,155].

Insulin replacement represents the standard treatment modality for type 1 DM patients.
However, it is not sufficient to prevent long-term disease complications [155] and thus the
need for the development of alternative therapies seems mandatory. Within this context,
and in view of the autoimmune nature of type 1 DM, MSCs have emerged as an appealing
novel approach thanks to their multiple immunomodulatory and regenerative effects.

Indeed, MSC-based therapy has shown encouraging results in both preclinical and
clinical studies. In regard to the latter, Moreira et al. [156] recently reviewed existing clinical
data on the therapeutic use of MSCs in both type 1 and type 2 DM and concluded that this
approach is well-tolerated and potentially beneficial. Various research groups have actually
observed improvement of glycated hemoglobin (HbA1c), C peptide levels, and insulin
dosage requirement upon treatment with autologous and allogeneic MSCs, suggesting a
possible restoration of islet β-cells in patients with DM [157–160].

As far as MSC-EVs are concerned, various studies (Table 2) have recently provided
evidence for a potential therapeutic role in DM by modulating the immune microenviron-
ment and sustaining β-cell regeneration [161]. In a mouse model of type 1 DM, MSC-EVs
were shown to inhibit T cell proliferation and suppress antigen-presenting cell activation
leading to the delay of disease onset [162]. In another report, co-culturing CD14+ cells
derived from patients with type 1 DM with MSC-EVs in vitro switched their differentiation
to IL-10-secreting DCs [118]. Subsequently, these conditioned DCs led to an inhibition of
Th17 cells and an increase in Tregs [118]. These findings merit further investigation in view
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of a study in type 1 DM mice [163], in which intraperitoneal administration of autologous
adipose tissue-derived MSC-EVs shifted the cytokine profile towards anti-inflammation
and induced upregulation of Tregs, thereby resulting in alleviation of disease-related
pathological, immunological, and clinical parameters. With respect to MSC-EVs’ β-cell
regenerative action, it has recently been demonstrated that intravenous injection of EVs
derived from menstrual blood-MSCs increased β-cell mass and insulin production in a type
1 DM rat model [164]. Immunohistochemistry analysis corroborated the presence of insulin
in the islets of treated animals [164]. It was suggested that MSC-EVs’ regenerative effects
were mediated via the pancreatic and duodenal homeobox 1 pathway. Wen et al. [165]
investigated the role of exosomes in improving the outcome of islet transplantation. As
the destruction of transplanted islets can be attributed to immune rejection in which miR-
375 and FAS are implicated, the authors transfected human BM MSC-derived exosomes
with a plasmid encoding for shFas and anti-miR-375. Administration of these exosomes
induced downregulation of Fas and miR-375 in human islets and improved the survival
and function of islet allograft in diabetic mice [165].

Table 2. In vitro and preclinical studies of MSC-derived EVs in autoimmune diseases.

Disease Experimental
Model EV Source Administration

Route Effects Outcome Reference

DM Mouse model,
in vitro study Human MSCs iv injection

Suppression of Th1
and Th17,

inhibition of APC
activation

Delay of disease
onset [162]

DM In vitro study Human
BM-MSCs

CD14+ cells’
differentiation to
IL-10 secreating

DCs, inhibition of
Th17 and

upregulation of
Tregs

[118]

DM Mouse model Mouse
AD-MSCs ip injection

Increase in Tregs
and

anti-inflammatory
cytokine

Pancreatic islet
regeneration,
blood glucose

levels and body
weight

improvement

[163]

DM Rat model Human
MenSCs iv injection

Pancreatic and
duodenal

homeobox 1
pathway

modulation

Increase in β-islet
mass and insulin

production
[164]

DM Mouse model

Genetically
manipulated

human
BM-MSCs

Human islets
and MSCs
co-culture

Downregulation of
Fas and miR-375

Improvement of
survival and

function of islet
allograft

[165]

Diabeticulcer Mouse model,
in vitro study

Genetically
manipulated

mouse
BM-MSCs

Intracutanous
injection

Enhancement of
fibroblast

proliferation and
migration

Stimulation of
wound healing [166]

Diabetic
retinopathy Rabbit model Rabbit

AD-MSCs

iv,
subconjunctival
and intraocular

injection

Increase in miR-222
expression

Retina
regeneration [167]

Diabeticretinopathy Rat model
Manipulated

human
UC-MSCs

Intravitreal
injection

Inhibition of
HMGB1 signaling

pathway

Alleviation of
retinal

inflammation
[168]
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Table 2. Cont.

Disease Experimental
Model EV Source Administration

Route Effects Outcome Reference

Diabetic
peripheral
neuropathy

Mouse model Mouse
BM-MSCs iv injection

M2 macrophage
phenotype

enhancement

Increase in
myelin thickness
and nerve axonal

diameter

[169]

Cognitive
impairment in

diabetes
Rat model Rat BM-MSCs

iv, intracere-
broventricular

injection

Inhibition of
oxidative stress and
increases synaptic

density

Cognitive
improvement [170]

Diabetic
nephropathy Mouse model Human

BM-MSCs iv injection Inhibition of renal
fibrosis

Improvement of
renal function [120]

RA In vitro study human
UC-MSCs

Increase in
Treg/Th17 ratio,
up-regulation of
IL-17 and TGF-β

[171]

RA Mouse model Mouse
BM-MSCs iv injection

Increase in Tregs,
decrease in CD4+

and CD8+ cells,
suppression of

Bregs and
plasmablasts in

lymph nodes

Decreased clinical
signs of

inflammation
[172]

RA Mouse model

Genetically
manipulated

mouse
BM-MSCs

ip injection 186

Inhibition of
migration of

fibroblast-like
synoviocytes,

down-regulation of
angiogenesis

Amelioration of
joint

inflammation and
clinical arthritis

score

[173]

RA Rat model
Genetically

manipulated rat
BM-MSCs

iv injection
Suppression of

pro-inflammatory
cytokines

Reduction in
clinical arthritic

scores, joint
destruction, and

inflammatory
response

[174]

Sjogren’s
syndrome

Mouse model,
in vitro study

BM-MSCs,
iPSC-MSCs iv injection

Inhibition of Tfh
and Th17

differentiation,
APCs activation

and expression of
costimulatory
mole-cules by
salivary gland
epithelial cells

Delay in
lymphocyte

infiltration into
salivary glands
and decrease in

serum
autoantibody

levels

[175]

Experimental
autoimmune

uveitis

Rat model,
in vitro study UC-MSCs Periocular

injection

Inhibition of
chemoattractive

effects of CCL2 and
CCL21 on

inflammatory cells,
reduction in
infiltration of

inflammatory cells
in the eyes.

Reduced the
intensity of

experimental
auto-immune

uveitis

[176]

Experimental
autoimmune

uveitis

Mouse model,
in vitro study Human MSCs iv injection

Inhibition Th1 and
Th17, decrease in

co-stimulatory
factors and MHCII

in APCs

Decrease in
retinal structural

damage
[162]
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Table 2. Cont.

Disease Experimental
Model EV Source Administration

Route Effects Outcome Reference

Multiple
sclero-

sis/experimental
autoim-

muneencephalomyelitis

mouse model
human

BM-MSCs and
UC-MSCs

iv injection

reduction of
demyelination,

decrease in
neuroinflammation
and upregulation
Tregs within the

spinal cord

amelioration of
neurological
clinical score

[177]

Multiple
sclero-

sis/experimental
autoimmune

en-
cephalomyeli-

tis

Mouse model Human
AD-MSCs iv injection

Reduction in T-cell
proliferation,

leukocyte
infiltration and
demyelination

Improvement in
neurological
clinical score

[178]

Multiple scle-
rosis/Theiler’s

murine en-
cephalomyeli-

tis
virus-induced
demyelinating

disease

Mouse model Human
AD-MSCs iv injection

Modulation of
activation state of

microglia,
reduction in

proinflammatory
cytokine levels in

the plasma

Decreased
inflammatory

infiltrates in the
spinal cord,

reduction in brain
atrophy and

improvement in
motor function

[179]

Multiple
sclero-

sis/experimental
autoimmune

en-
cephalomyeli-

tis

Mouse model Human
P-MSCs iv injection

Reduction in DNA
damage in

oligodendroglia,
induction of

oligodendrocyte
precursors

differentiation
towards mature
myelinating cells

and increase
myelination

improvement in
motor deficit [180]

Multiple
sclero-

sis/experimental
autoimmune

en-
cephalomyeli-

tis

Mouse model,
in vitro study

Mouse
BM-MSCs iv injection

Reduction in the
pro-inflammatory

phenotype of
microglia cells
attributed to
miR-467f and

miR-466q
mediating

downregulating of
the p38 MAPK

signaling pathway

Reduction in
proinflammatory

markers in the
spinal cord of the

animals but no
effect on disease

course

[181]

AD-MSC: Adipose tissue-derived MSCs, BM-MSCs: Bone marrow-derived MSCs, DCs: Dendritic cells, EAE: Experimental autoimmune
encephalomyelitis, HMGB1: High mobility group Box 1, ip: intraperitoneal, iPSCs: Human-induced pluripotent stem cells, iv: intravenous,
MenSCs: Menstrual blood-derived MSCs, miRNA: micro RNA, MSCs: Mesenchymal stromal cells, Th1: T helper 1 cells, Th17: T helper
17 cells, TfH: T follicular helper cells, APCs: antigen-presenting cells, Tregs: T regulatory cells, P-MSCs: placenta-derived MSCs, RAC2:
Ras-related C3 botulinum toxin substrate 2, UC-MSCs: umbilical cord-derived MSCs.

7. Diabetic Complications

Wound-healing impairment and diabetic ulcers are major complications in diabetic
patients that cause significant impairment in the quality of life [182,183]. In a mouse
model of diabetic foot ulcers, stimulation of wound healing was achieved by MSC-EV
treatment [166] (Table 2). More specifically, MSC-EVs overexpressing the long non-coding
RNA H19 (lncRNA H19), which is known to exert beneficial effects on the regulation of
endogenous glucose production in diabetic hyperglycemia, were injected into the surround-
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ing tissues of the wound. This resulted in the induction of proliferation and migration of
fibroblasts with concomitant inhibition of apoptosis. Mechanistically, these effects were
associated with the down-regulation of miR-153-by lncRNA H19, which in turn resulted in
the upregulation of the phosphatase and tensin homolog (PTEN) phosphatase [166].

In a rabbit model of diabetic retinopathy intravenous, intraocular, or subconjunctival
administration of adipose tissue-derived MSC-EVs led to retina protection [167] (Table 2).
This was associated with the transfer of miR-222, and negative regulation of angiogenesis
from EVs to retinal cells. Additionally, intravitreal administration of umbilical cord-derived
MSC-EVs expressing miR-126, previously shown to improve diabetic retinopathy [60],
reduced inflammatory cytokine production in the vitreous humor in diabetic rats via
inhibition of HMGB1 [161,168] (Table 2).

The beneficial effects of MSC-EVs have also been demonstrated in another diabetic
complication, namely neuronal degeneration (Table 2). In this context, administration of
BM-MSC-EVs resulted in a switch of the immune equilibrium towards M2 macrophages
which was associated with increased nerve thickness and concomitant functional recovery
in a diabetic peripheral neuropathy mouse model [169]. In another study [170] (Table 2), in-
travenous or intracerebroventricular injection of BM-MSC-EVs improved diabetes-induced
cognitive impairment via inhibition of oxidative stress and an increase in synaptic density
in a murine model of type 1 DM.

Regarding diabetic nephropathy (Table 2), BM-MSC-EVs have been shown to decrease
renal fibrosis in diabetic mice [120], conserve tight junction between tubular epithelial cells,
and exert antiapoptotic and anti-inflammatory effects thus improving clinical parameters
associated with renal function [184]. Autophagy induction by MSC-EVs was also postulated
as a possible mechanism of renal protection [185]. In a human pioneering clinical trial [186],
20 patients with chronic kidney disease, 10 of whom were diabetic, received intra-arterial
MSC-EVs. The treatment resulted in kidney function improvement with an increase in
estimated glomerular filtration rate (eGFR).

8. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a common autoimmune disease with a complex patho-
physiologic background involving genetic, epigenetic, and environmental components.
The imbalance of innate and adaptive immunity pathways has been implicated in causing
synovial inflammation, thereby leading to characteristic features of chronic polyarthri-
tis [187].

At present, therapies for RA include non-steroidal anti-inflammatory drugs, corticos-
teroids, anti-rheumatic drugs, and biological factors. Despite the effectiveness of these
approaches in the majority of patients, a significant number of them experiences adverse
effects while some RA patients are resistant to these therapies.

MSCs-based treatment has been considered as a promising therapeutic approach in
RA [188]. Administration of human umbilical cord-derived MSCs, BM-MSCs, and MSCs
derived from exfoliated deciduous teeth led to a reduction in bone erosion, examined by
micro-CT imaging, and alleviation of synovitis and articular destruction with concurrent
clinical amelioration in a RA mouse model [189]. Notably, umbilical cord MSCs have
been shown to inhibit joint inflammation and bone erosion, while supporting cartilage
formation in mice, and these immunomodulatory effects have been associated with the
inhibition of inflammatory cytokines (IL-1, IL-6) and the expansion of Tregs [190]. In
line with these findings, the administration of adipose tissue-derived MSCs suppressed
Th17 differentiation and prompted the generation of IL-10-secreting Tregs resulting in
clinical amelioration of RA mice [191]. Polarization of naive macrophages toward an M2
phenotype [192] and inhibiting the activation of DCs and NK cells by MSCs has additionally
been suggested in RA animal models [193].

In line with the experimental RA models, clinical studies have reported encourag-
ing results concerning the safety and efficacy of MSC-based treatment in patients with
RA. To this end, a study conducted by Álvaro-Gracia et aI. [194] showed that the infu-
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sion of allogeneic adipose tissue-derived stem cells in a cohort of patients with refractory
RA was generally well-tolerated with most adverse events ranging from mild to mod-
erate. Likewise, in a smaller phase I trial evaluating the use of umbilical cord-derived
MSCs, Park et al. [195] reported no major adverse events. Moreover, the authors ob-
served an improvement in disease activity scores and a decrease in pro-inflammatory
cytokines 24 h post infusion [195]. In a triple-blind, placebo-controlled phase 1/2 clinical
trial, Shadmanfar et al. [196] randomized RA patients with knee involvement to receive
either intra-articular injection of autologous bone marrow-derived MSCs or normal saline
(placebo). MSC administration had no adverse events and was associated with better
clinical outcomes, which, however, could not be maintained beyond 12 months, with the
exception of improved standing time [196]. Additionally, a reduction in methotrexate
and prednisolone intake was observed in the MSC group for the first 6 months of follow-
up [196]. In another study, Ghoryani et al. [171] provided evidence for the amelioration of
clinical findings in RA patients treated with autologous BM-MSCs, and this was associated
with Th17 downregulation and Treg upregulation.

Due to their immunoregulatory and anti-inflammatory properties, MSC-EVs have also
been explored as a novel therapeutic option in RA treatment in both in vitro and preclinical
studies (Table 2). More specifically, incubation of umbilical cord-derived MSC-EVs with
peripheral blood mononuclear cells from RA patients led to a decrease in the proportion
of Th17 cells and in the production of IL-17 along with a concomitant upregulation in the
proportion of Treg cells and TGF-β expression [197]. These immunomodulatory effects
of umbilical cord-derived MSC-EVs provided the theoretical background for their poten-
tial application in RA treatment. Another study demonstrated that mouse BM-derived
MSC-EVs increased Tregs and decreased CD4+ and CD8+ cells as well as plasmablast dif-
ferentiation [172]. In RA mice, these BM-derived MSC-EVs were further shown to reduce
clinical features of inflammation and this effect could be attributed to fewer plasmablasts
and more Breg-like cells in the animals’ lymph nodes [172]. Chen et al. [173] investigated
the effect of exosomes derived from BM-MSC previously transfected with miR-150-5p. This
miRNA is implicated in T cell maturation and angiogenesis and is expressed at lower levels
in RA patients as compared to controls [198–200]. The aforementioned exosomes inhibited
migration and invasion of fibroblast-like synoviocytes (FLS) from RA patients. Moreover,
they reduced angiogenesis, joint inflammation, and clinical arthritic scores in vivo in a
murine RA model [173]. These effects were associated with the downregulation of matrix
metalloproteinase-14 (MMP14) and vascular endothelial growth factor (VEGF) expression.
These molecules, which are increased in RA, are involved in disease development, joint
damage, and synovial inflammation [172]. Following a similar experimental approach,
Zheng et al. [174] transfected EVs derived from rat BM-MSCs with miR 192-5p which
suppresses the growth of RA-FLSs. Injection of the MSC-EVs in RA rats resulted in a re-
duction in synovial hyperplasia and joint destruction via suppression of pro-inflammatory
cytokines. This was attributed to the downregulation of Ras-related C3 botulinum toxin
substrate 2 (RAC2) by the EV miR 192-5p [174].

9. Sjogren’s Syndrome-Autoimmune Sialadenitis

Sjogren’s syndrome (SjS) is a systemic autoimmune disease, which mainly affects sali-
vary and lacrimal glands and results in mucosal dryness [201,202]. B and T cell infiltration,
as well as autoantibody production against Ro/SSA and La/SSB antigens, are the main
features of the immune dysregulation that mediate epithelial destruction of the exocrine
glands [201,202].

The role of MSCs in SjS has been investigated in both animal and human studies.
Hence, in an SjS-like mouse model, Xu et al. [202] showed that administration of mouse BM-
MSCs improved salivary gland secretory function by inducing CD4+ T cells to differentiate
towards Treg and Th2 cells and by downregulating Th17 and T follicular helper (Tfh)
inflammatory responses. Based on these results, the authors further evaluated the safety
and efficacy of allogenic umbilical cord-MSC treatment in 24 SjS patients. Interestingly, all
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patients showed clinical improvements as well as a significant reduction in serum levels of
anti-Ro/SSA and anti-La/SSB, while no adverse events were observed during or after the
infusion of umbilical cord-MSCs [202].

Another study [175] comparatively addressed the role of induced pluripotent stem
cells (iPSC)-derived MSCs and their EVs, as well as BM-MSCs in a sialadenitis preclinical
murine model (Table 2). iPSC-MSCs, administered before or at the very beginning of
sialadenitis, did not differ from BM-MSCs in their capacity to reduce lymphocyte infil-
tration into mouse salivary glands and eventually delayed SjS progression. Furthermore,
iPSC-MSC-derived EVs suppressed inflammatory cells and inhibited the expression of
proinflammatory factors in vitro with the same efficacy as EVs derived from BM-MSCs. In
addition, infusion of EVs derived from iPSC-MSCs led to decreased lymphocyte infiltration
in salivary glands and reduced serum autoantibodies, albeit to a lesser extent as compared
to iPSC-MSCs and BM-MSCs [175]. These results support the emerging role of EVs in
preventing SjS before the onset of sialadenitis.

10. Autoimmune Uveitis

Autoimmune uveitis is an inflammatory disease involving the vascular layer of the
eye leading to visual impairment and even blindness. Autoimmune uveal inflamma-
tion may occur as an isolated entity or it may be associated with systemic autoimmune
syndromes [203]. Current treatments include the use of corticosteroids and other immuno-
suppressants as well as biologic agents. However, these therapeutic modalities may be
associated with significant local and systemic side effects when applied for a prolonged
period of time [203]

MSC-based treatment has shown promising results in experimental autoimmune
uveitis (EAU), a T cell-mediated autoimmune disease characterized by ocular inflammation,
destruction of the retinal architecture, and photoreceptor cell layer that represents a well-
established animal model of human uveitis [204–207]. More specifically, Zhang et al. [205]
demonstrated that intravenous administration of BM-MSCs in EAU rats resulted in delayed
disease onset and reduced disease severity. These effects were associated with a decreased
Th17/Treg ratio and reduced proinflammatory cytokine production (IL-2, IFN-γ, IL-6,
and IL-17), with a concomitant increase in anti-inflammatory cytokine (IL-10, TGF-β)
levels [205,207]. In another study, Ko et al. [208] reported the mitigation of inflammatory
infiltration and clinical findings in mice with EAU after intravenous injection of human
MSCs. These effects are mediated by an increased monocyte/macrophage population
(MHCII+, B220+, CD11b+) in peripheral blood, spleen, and draining lymph nodes exhibiting
suppressive effects on T cell proliferation and Th1/Th17 differentiation [208]. Similar
results have been obtained with intraperitoneal injection of MSCs in EAU mice. Indeed,
Tasso et al. [206] observed disease improvement, which was associated with systemic Treg
expansion in EAU mice receiving syngeneic MSCs. Furthermore, Oh et al. [209] reported
that intraperitoneal administration of human MSCs suppressed Th1 and Th17 cells and
increased B220+CD19+ cells expressing IL-10 in draining lymph nodes with a concomitant
decrease in proinflammatory cytokines in the eyes in EAU mice.

MSC-EVs have also shown beneficial results in the treatment of EAU treatment
(Table 2). To this end, periocular injection of EVs derived from human umbilical cord
MSCs reduced leukocyte infiltration, protected retinal structure, and rescued retinal func-
tion in a rat model of autoimmune uveitis [176]. The attenuation of ocular inflammation by
EVs was associated with the downregulation of CD4+INFγ+ and CD4+IL17+ cells in the
retina. Furthermore, inhibition of chemotactic effects of CCL2 and CCL21 on inflammatory
cells was demonstrated in an in vitro assay and was proposed as an additional mechanism
mediating the immunosuppressive action of MSC-EVs [176]. Likewise, intravenous in-
jection of human MSC-EVs reduced CD3+ cell infiltration, suppressed proinflammatory
cytokines in the eyes, and decreased IFN-γ+CD4+ and IL-17+CD4+ cells in cervical draining
lymph nodes in a mouse model of EAU [162]. Moreover, in an in vitro mixed lymphocyte
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reaction, MSC-EVs exhibited inhibitory effects on Th1 and Th17 cells and also suppressed
co-stimulatory factors and HLA-II expression of antigen-presenting cells [162].

11. Multiple Sclerosis—Experimental Autoimmune Encephalitis

A large body of evidence has accumulated during the last years regarding the use
of MSCs and their EVs in the treatment of neurodegenerative diseases with autoimmune
features such as multiple sclerosis (MS) [210]. MS is a chronic inflammatory demyelinating
disease of the central nervous system (CNS) with a wide range of symptoms that represents
one of the main causes of neurological deficits in young adults [211,212].

Various studies have been reported on the beneficial role of MSCs in MS experi-
mental models such as Experimental Autoimmune Encephalomyelitis (EAE) [213]. Thus,
MSCs have been shown to alleviate EAE manifestations primarily by regulation of T cell-
mediated immune mechanisms [214], suppression of Th1 and Th17 cells, and induction
of macrophage polarization from M1 to M2 phenotype, eventually resulting in a decrease
in lymphocyte infiltration and nerve demyelination [213]. With regards to clinical trials,
studies published thus far have reported the use of autologous BM-MSCs and conditioned
media, adipose tissue-MSCs, umbilical cord-MSCs, and neural progenitors derived from
autologous BM-MSCs in MS patients (reviewed in [213]). Because of the small number
of included patients, many of these trials mainly provided evidence only for the feasibil-
ity and safety of MSC treatment, globally reporting favorable results (reviewed in [213]).
There have also been a few studies suggesting that administration of MSCs may have
beneficial effects in MS patients [215–217], however, these data require further confirmation
(reviewed in [213]).

EVs from human bone marrow-MSC have also been shown to ameliorate clinical out-
comes in EAE murine studies (Table 2). Hence, a significant reduction in demyelination and
inflammation was observed in mice treated with MSC-EVs [177]. These findings were asso-
ciated with an increase in CD4+CD25+FOXP3+ Tregs in the spinal cord and the suppression
of pro-inflammatory cytokines. These effects were even more pronounced in IFN-γ-primed
MSC exosomes, suggesting their potential role in the treatment of autoimmune neurode-
generative diseases [177]. Another study [178] demonstrated that administration of EVs
derived from human adipose tissue-MSCs in EAE mice reduced the clinical score and
myelin oligodendrocyte glycoprotein-induced proliferation of splenocytes. In addition,
demyelination areas and inflammatory infiltrates decreased significantly in EV-treated
animals [178]. Using a Theiler’s murine encephalomyelitis virus (TMEV)-induced de-
myelinating disease as a model of progressive MS, Laso-García et al. [179] reported that
administration of EVs derived from adipose tissue-MSCs improved motor status, brain
atrophy, proliferation in the subventricular zone cells, and decreased inflammatory infil-
trates in the mice spinal cord of mice. In addition, treatment with EVs was also able to
decrease plasma cytokine levels, mainly in the Th1 and Th17 phenotypes. [179]. In another
study [180], EVs derived from placental MSCs were shown to protect oligodendrocytes
from damage and to increase myelination in the spinal cord. In vitro evidence suggested
that the beneficial effects of EVs in myelination were associated with the induction of
differentiation of endogenous oligodendrocyte precursors to mature myelinating cells [180].
Finally, a recent report [181] has shown that MSCs primed with INF-γ produce EVs that are
able to dampen the pro-inflammatory phenotype of microglia cells. This could be mediated
via EVs’ miRNA cargo. More specifically, miR-467f and miR-466q have been demonstrated
to exert an immunomodulatory effect on microglia by inhibiting the expression of Map3k8
and Mk2 and thus downregulating the p38 MAPK signaling pathway [181]. Of note, intra-
venous or intraperitoneal administration in EAE mice of EVs derived from MSCs primed
with INF-γ decreased proinflammatory markers in the spinal cord of the animals. Overall,
these data suggest that MSC-derived exosomes may also affect neuroinflammation through
specific immunomodulatory miRNAs acting on microglia [181].

Additionally, the immunomodulatory effect of MSC-EVs in the brain has been directed
in different inflammatory scenarios, such as neonatal brain injury, with similar effects. As
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it has been recently reviewed by Matei et al. [218], MSC-EVs from different sources have
been found to restore blood–brain barrier integrity, modulate microglia activation, reduce
apoptosis, and reduce white matted loss in a variety of experimental settings of hypoxic-
ischemic encephalopathy caused by perinatal oxygen deprivation [218].

12. Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) remains probably one of the most complex
autoimmune diseases with a wide spectrum of clinical manifestations and complex patho-
physiology [219]. Current treatment of SLE includes antimalarials, glucocorticoids, nons-
teroidal anti-inflammatory drugs, immunosuppressants, cyclophosphamide, and biologic
agents [219]. However, a subset of patients is refractory to these agents, while their pro-
longed use may be associated with various side effects. During the past years, MSCs have
emerged as potential candidates for the treatment of SLE because of their anti-inflammatory
and immunomodulatory properties [220]. Their beneficial role in SLE has indeed been
corroborated in both preclinical and clinical studies [220,221].

More specifically, in murine SLE models, human BM-MSC administration restored
bone marrow microenvironment (osteoblastic niche) and reduced anti-nuclear and anti-
double strand DNA antibody blood levels. Furthermore, MSC administration improved
glomerular morphology/structure and diminished renal complex deposition of both com-
plement component 3 (C3) and IgG [220,222]. These effects have been associated with
the potential of BM-MSCs to induce B-cell suppression [223,224] and to inhibit Th17 and
follicular T helper cell development with a concomitant restoration of Treg levels [37,225].

With regard to the therapeutic potential of MSCs in refractory SLE patients, clinical
studies (reviewed in [188,220,226]) have collectively demonstrated an acceptable safety
profile with disease activity improvement and beneficial—-yet variable—effects on clinical
remission (reviewed in [188,220,226].

The use of MSC-EVs is also being suggested in SLE as an alternative to MSCs, with
which they share comparable immunomodulatory effects [227]. In a mouse model of acute
kidney injury, MSC-EVs reduced kidney inflammation and preserved kidney function [228]
providing the theoretical background for their potential application in lupus nephritis.
However, to our knowledge, no data has been published thus far addressing the role of
MSC-EVs in SLE animal models and patients.

13. Conclusions

During the last decades, the immunomodulatory properties of MSCs have been ex-
tensively investigated and a rapidly growing number of studies has provided substantial
evidence for the safety, tolerability, and efficacy of MSCs in an autoimmune disorders
setting. Although MSC-based therapies hold great promise for the treatment of immune-
mediated diseases, variability regarding the origin of MSCs, the age and sex of the donor,
isolation and expansion protocols, cell dose, mode, and schedule of administration have
resulted in inconsistent results, thereby hindering translation into daily practice. Fur-
thermore, despite the well-established safety profile of MSC treatment, there have been
several concerns affecting its widespread clinical application such as the theoretical risk of
tumorigenicity, genomic instability, and unwanted differentiation [2].

On the other hand, it is now widely acknowledged that MSC-EVs are key mediators
of the immunoregulatory effects of MSCs affecting both innate as well as adaptive immune
responses. While they exert similar immunomodulatory functions as their parental cells,
MSC-EVs cannot proliferate nor differentiate and do not, therefore, raise many of the
concerns associated with stem cell therapy. Hence, MSC-EVs have drawn much attention
over the last years as an alternative, cell-free therapy, for the treatment of autoimmune
disorders. Accumulating data, mostly preclinical, has supported this notion and has
provided the rationale for exploring the therapeutic efficacy of MSC-EVs more deeply. To
this end, unraveling the underlying molecular and cellular mechanisms mediating the
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beneficial effects of MSC-EVs is eagerly anticipated along with the design of clinical trials
assessing long-term safety and outcomes.

However, to properly assess the effects of MSC-EVs in the clinical setting, while
minimizing controversies, general consensus should be reached regarding the optimal
protocols for isolation, purification and characterization, quantification, and storage of
MSC-EVs. Furthermore, the yield of generated MSC-EVs needs to be increased for their
use in clinical trials, and this is currently being pursued by testing various modifications of
culture conditions and manipulations of MSCs to increase EV production [8]. One such
promising approach includes MSC treatment with Cytochalasin B, which results in the
production of membrane vesicles (CIMVs) [229] that contain the cytoplasmic content of
MSCs and retain their immunophenotype, biological activity, and immunosuppressive
properties of the latter. Finally, the optimal dosage and therapeutic schedule of MSC-
EVSs’ administration should be determined as well as assays to accurately assess their
efficacy [5,8,230].

Addressing these issues will greatly contribute to our understanding of the potential
of MSC-EVs in immune-mediated diseases and other disorders and provide a robust
theoretical background for translating this therapeutic modality into the clinical setting.
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