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Background: The prognosis of patients with pancreatic neuroendocrine tumors
(PanNET), the second most common type of pancreatic cancer, varies significantly, and
up to 15% of patients develop metastasis. Although certain morphological characteristics
of PanNETs have been associated with patient outcome, there are no available
morphology-based prognostic markers. Given that current clinical histopathology
markers are unable to identify high-risk PanNET patients, the development of accurate
prognostic biomarkers is needed. Here, we describe a novel machine learning,
multiclassification pipeline to predict the risk of metastasis using morphological
information from whole tissue slides.

Methods: Digital images from surgically resected tissues from 89 PanNET patients were
used. Pathologist-annotated regions were extracted to train a convolutional neural
network (CNN) to identify tiles consisting of PanNET, stroma, normal pancreas
parenchyma, and fat. Computationally annotated cancer or stroma tiles and patient
metastasis status were used to train CNN to calculate a region based metastatic risk
score. Aggregation of the metastatic probability scores across the slide was performed to
predict the risk of metastasis.

Results: The ability of CNN to discriminate different tissues was high (per-tile accuracy
>95%; whole slide cancer regions Jaccard index = 79%). Cancer and stromal tiles with
high evaluated probability provided F1 scores of 0.82 and 0.69, respectively, when we
compared tissues from patients who developed metastasis and those who did not. The
final model identified low-risk (n = 76) and high-risk (n = 13) patients, as well as predicted
metastasis-free survival (hazard ratio: 4.71) after adjusting for common clinicopathological
variables, especially in grade I/II patients.
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Conclusion: Using sl ides from surgical ly resected PanNETs, our novel,
multiclassification, deep learning pipeline was able to predict the risk of metastasis in
PanNET patients. Our results suggest the presence of prognostic morphological patterns
in PanNET tissues, and that these patterns may help guide clinical decision making.
Keywords: metastasis risk assessment, deep learning, histological image analysis, pancreatic neuroendocrine
tumors, computational pathology
INTRODUCTION

Pancreatic neuroendocrine tumors (PanNETs) represent a
subset of pancreatic neoplasms. Though traditionally
considered a rare subset, recent studies suggest that PanNETs
comprise approximately 10% of all pancreatic malignancies (1).
PanNETs originate from neuroendocrine epithelial cells, often
resembling the cells of the islets of Langerhans. Notably,
PanNETs can also secrete hormones (e.g., insulin) into the
bloodstream; these hormones producing PanNETs are known
as functional PanNETs. According to the WHO classification
system, PanNETs are classified as well-differentiated (WDNETs
or “ordinary”) or poorly differentiated (PDNEC) subtypes.
Recent evidence suggests that these tumors are not in a
continuum and should, thus, be regarded separately (2, 3).
PDNEC risk stratification is less ambiguous, and PDNEC
patients often have poor outcomes (median survival typically
under 2 years) (4). In contrast, the overall survival of patients
with WDNET (hereinafter referred to as PanNET) is relatively
high (10-year survival rate of 60%–70%); nevertheless the risk of
metastasis is high (up to 15%), even for small lesions (4).

The lack of robust biomarkers remains the most significant
clinical hurdle for accurate prognosis prediction in PanNET
patients. The mitotic count and the Ki-67 index are currently
the only prognostic biomarkers routinely used clinically (5, 6).
Nonetheless, these two indexes are prone to quantification
errors. For instance, cells expressing mitotic mimics (such as
cells undergoing pyknosis) compromise mitotic count accuracy,
and depending on the counting methodology used Ki-67 can
show poor concordance (7). In addition to technical issues in
these scoring systems, the lack of consensus in scoring cutoffs
further limits their ability to provide accurate patient
stratification (8). Recently developed models based on Ki-67
scoring (5) or linear pathological combinative approaches (6)
failed to improve metastasis risk prediction in PanNET patients
(5, 6). Thus, robust and accurate models to predict the risk of
metastasis are unmet clinical needs.

Histologic alterations, such as necrosis, variations in nuclear
shape (atypia), chromatin clumping, and reduction in the tumor
stroma, are high-risk components in PanNETs (9). Despite
significant variation in the morphological characteristics of
PanNETs and recent reports suggesting a link between
morphological features of PanNETs and aggressive behavior (9–
11), there are no morphology-based tools for outcome prediction.

Herein, we present a novel convolutional neural network
(CNN)-based multiclassification pipeline for morphological
analysis of whole-slide images (WSIs) ultimately tailored
2

toward predicting outcome. CNNs have emerged as a powerful
tool to identify morphologically distinct areas on digitized slides
(12) and correlate image patterns, even subtle ones, to patient
prognosis (13). The models presented here provide a machine
learning-based approach to identify relevant tissue regions
within whole tissue slides and predict the risk of metastasis
based on the morphological features of PanNET and the
surrounding stroma (Figure 1).
METHODS

Study Population
Tissue samples were obtained from surgical resections of
PanNET patients treated at Emory University hospital between
2002 and 2017 (Table 1). Patients presenting with metastasis
during surgery and those lost to follow-up within a year after
surgery were omitted from the analysis. In total, we analyzed
samples from 89 cases in the study, 20% of which developed
metastasis (detected by biopsy or imaging). Patient records were
reviewed to obtain follow-up, demographic, and clinicopathological
data. Grade was computed through the Ki-67 index, when available,
based on the WHO criteria thresholds (14). Most patients (77.5%)
were categorized as Grade I/II (Ki-67<20) and considered “low
grade.” Metastasis-free survival was measured from the time of
surgery to the time of metastasis or last follow-up.

Tumor Slide Selection
Representative (based on tumor tissue and morphological
variability) H&E-stained whole slides were selected from archived
formalin-fixed paraffin-embedded tumors. Our analyses included
an average of 1.17 slides per patient, with review and scanning of a
single representative slide in the majority (n = 75) of patients. The
slides were digitized using Aperio AT Turbo scanner (Leica
Biosystems, Vista, CA) with high-resolution image settings (40×,
magnification 0.24 µm/pixel size). Images of low quality were re-
scanned or omitted from further analysis.

Automated Full Slide Annotation
We used the pre-trained GoogLeNet (Inception V1) CNNmodel
(15) with a modified terminal softmax layer and classified tissues
into cancer (stromal poor/clearly delineated), cancer (stroma-
rich), stroma without cancer, normal parenchymal, and fat.
Pathologist-annotated ground-truth regions from 11 partially
annotated slides for each class were extracted using the
MATLAB Image Labeler (Supplementary Figure 1) (16).
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Aside from the cancer/stroma class determined by any cancer
cluster within a stromal rich region (fibrous stroma,
fibrovascular stroma, fibrous septa, or loose or hyalinized
stroma), training tiles came almost exclusively from non-mixed
ground-truth regions. The intersection of annotations (edges)
was labeled with the predominant class in the image tile.

WSIs were down-sampled four times for tissue classification,
allowing for computational feasibility while providing clear
visual discrimination of the gross scaled annotation regions.
Each tile (for both training and classification) was color-
normalized (17) to ensure H&E staining consistency and
improve machine learning performance (18). Additionally, a
thorough augmentation of training tiles (12) was performed to
improve the robustness of the CNN classifier and reduce the risk
of overfitting, without compromising the image quality (19). For
CNN training data, tiles were adjusted for image orientation and
hue/blur/noise/contrast as previously described (12), to expand
the training set of tiles by a factor of 46. This process resulted in a
final training set of 466,072 tiles. CNN training was optimized
using the stochastic gradient descent (SGD) algorithm with a
momentum of 0.9, batch size of 35 tiles, and learning rate of 1e-4.
Frontiers in Oncology | www.frontiersin.org 3
The training tiles were reshuffled after each epoch, and model
accuracy was measured at the end of each epoch. Model training
was continued until the multiclass accuracy for each label was
over 99%. The trained model was then tested using tiles from
four external slides. Overlapping tiles (50%) from the validation
slides were extracted (without augmentation) to produce a
validation cohort of 42,976 tiles.

WSI annotation was performed by fully partitioning slides
into non-overlapping 150 × 150 tiles, with background “non-
tissue” regions omitted from classification. These segmented tiles
were independently classified with the trained CNN to produce a
five-dimensional output, with each dimension representing the
probability of the tiles belonging to one of the five classes. To
assess the WSI classification performance, we overlaid CNN-
annotated cancer areas onto pathologist-annotated areas and
calculated the Jaccard index.
Metastasis Association Classifier
After WSI annotation, two GoogLeNet (Inception V1) classifiers
were trained to predict metastasis for tiles classified as cancer or
A

B

C

FIGURE 1 | Diagram representing the whole-slide image (WSI) processing pipeline used to stratify PanNET patients into high- and low-risk metastasis groups.
(A) H&E-stained tissues from surgical resections are split into image tiles using a sliding window approach and are classified into different tissue types: cancer
(stromal poor/clearly delineated), cancer (stroma-rich), stroma without cancer, normal parenchymal, and fat. (B) Image tiles classified as cancer and adjacent stromal
regions are further classified into “metastasis” or “non-metastasis” groups depending on the presence of metastatic lesions in the patient. (C) The tile-based
metastasis association scores from a WSI are used to determine a set of WSI features fitted to a collection of machine learning algorithms (“zoo”) to determine the
overall risk of metastasis (high vs. low).
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stroma. For classifier training, we selected only tiles classified
with a high probability (95%) as either cancer or stroma.
Through this tile filtering step, we excluded 20% of all stromal
and cancer tiles. Subsequently, WSIs (89 patients/104 slides)
were subjected to a five-fold cross-validation. WSIs from
different tumor blocks of the same patient (n = 14) were kept
together in the same training or validation fold to ensure that
each validation contained tiles from WSIs that the classifier was
not trained with. During training, the patient’s distant metastasis
status was used as the ground-truth label for all tiles selected
from the respective WSIs. Each metastasis association classifier
was trained for 15 epochs (using SGD with a momentum of 0.9
and an initial learning rate of 0.0001 decreased by a factor of 0.1
after five epochs) and subsequently used for the respective
validation fold. The risk of overfitting to the training data was
reduced by applying an L2 regularization of 0.0001. The
predicted metastasis association labels (and softmax class
probability scores) for tiles within each validation fold were
used for further analysis. Confusion matrices (comparing true
vs. predicted labels of tiles labeled with metastasis vs. no
metastasis) were obtained at different CNN output probability
scores (starting at the classification default of >50% to restricting
analysis to > 99.99% class probability) to assess the classification
performance of the tile probability score. Moreover, we
performed uniform manifold approximation and projection
(UMAP) for dimension reduction (20, 21) using pooling layer
features before the final CNN layer to further validate the
discriminatory ability of these classifiers. This reduction step
reduced the vector of activations from 1024 to 2. Bivariate kernel
density estimators were fitted with a Gaussian kernel to visually
determine UMAP cluster densities.
Frontiers in Oncology | www.frontiersin.org 4
WSI Feature Extraction and Metastasis
Prediction
Metastasis probabilities for cancer and stromal tiles were
combined to obtain a WSI risk score. Tiles without sufficient,
directly adjacent, similarly annotated neighbors (tissues) were
considered artifacts and filtered out (n = 8 for cancer; n = 3 for
stroma). The distribution of the metastasis association score (0–
100%) for the remaining tiles within each slide was the basis for
the extraction of 150 “full slide” features (75 from cancer and 75
from stromal; Supplementary Table 1). These features were
derived from histogram metrics of both individual image tiles
within the WSI and after aggregation within a 10 × 10 tile area.
Metrics were derived from the metastasis risk score histogram
and included the statistical moments (mean, standard deviation,
skewness, and kurtosis) and the tile counts/proportions. These
metrics were obtained for each WSI within a) all metastasis
probability tile distributions and b) within only the high (>90%)
and low (<10%) probability tails of the tile distribution. The
features derived from 10 × 10 tile areas were bin counts of
“spatially clustered” metastasis-associated groups assuming that
clusters of high-risk areas possess potential prognostic value
beyond single regions. Missing values were imputed using
Multivariate Imputation by Chained Equations (mice) with 10
iterations (22).

The 150 whole-slide features extracted from WSIs were
grouped into three subsets: 1) cancer-only features 2) stromal-
only features and 3) stromal and cancer features. These feature
subsets were used as input variables for 18 different machine
learning models (Supplementary Table 2) alongside the
patient’s metastatic status (n = 18 metastasis, n = 71 no
metastasis) as the labels. The models were trained through
leave-one-out cross-validation (LOOCV), wherein each left-out
set composed of all the slides from a single patient. Patients with
multiple slides (n = 14) were given a “high-risk” prediction if any
of their slides were predicted to metastasize. An ensembling
approach was also tested by combining the outputs of the models
trained with stromal features to those trained with cancer
features; patients were considered at high-risk if either
approach predicted metastasis.

To improve accuracy (23) and reduce data dimensionality, we
performed a filtering-based feature selection. For each training
fold within the leave-one-out cross-validation, a two-sample
(Welch) t-test was performed comparing all features of
patients who developed metastasis to those who did not. Each
t-test provided the feature with a t-score which signified the
magnitude of the mean difference between that feature with
patients who metastasized versus those which did not. Multiple
filtering thresholds were tested to optimize the feature set by
removing features which did not have large enough t-scores, or
significance. This model was further analyzed univariately using
Kaplan-Meier survival analysis and multivariately (alongside
tumor size, patient age, and sex) using Cox Regression on all
patients and low (I/II) grade patients only. SHAP (Shapley
additive explanation) values were used to interpret the output
of the selected models (24, 25) and assess feature importance
(26). Calculation of SHAP values was performed for each left-out
TABLE 1 | Clinicopathological characteristics of the PanNET cohort.

Patient Clinicopathological Characteristics

Baseline characteristic Total (N = 89)

Patient age
Median Age (range), years 56 (19–82)
Age <50, n (%) 25 (28.1)
Age> = 50, n (%) 53 (59.6)
Missing 11 (12.3)

Tumor size
Median Size (range), cm 3 (0.6–11)
Size <2.0, n (%) 34 (37.1)
Size>=2.0, n (%) 43 (48.3)
Missing 13 (14.6)

Sex, n (%)
Male 35 (39.3)
Female 44 (48.3)
Missing 11 (12.4)

Metastasis status, n (%)
Recurrence free 71 (80.0)
Recurred 18 (20.0)
Missing 0 (0.00)

Grade, n (%)
1 58 (65.2)
2 11 (12.4)
3 1 (1.1)
Missing 19 (21.3)
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test set and then aggregated because of the LOOCV nature of
the results.

Pipeline Generalization
To analyze the pipeline’s generalizability with a stronger control
for overfitting, a nested LOOCV approach (Supplementary
Figure 2) was tested. The nested LOOCV approach consists of
an outer loop which splits the data into a training set and a
patient left out test set, and an inner loop with a 10-fold CV for
feature selection through t-test filtering. For the inner loop, for
each CV, a t-test is applied to all features to determine the
magnitude of the average difference (t-score) for those features
coming from slides of patients who metastasized versus those
that did not. Sorting features by this t-score allowed for a filtering
approach which, at each increasing t-score threshold, retained
increasingly significant variables. By progressively increasing the
t-score threshold for filtering, and then training the inner loop
CVmodels, an optimized feature (or t-score threshold) set can be
selected by identifying what model resulted in the best average
performance (through log-loss) in the inner CV loop.

The random forest in the outer loop was then trained with
features derived from the selected t-score filtering threshold in
the inner loop and used to predict the risk group for patients in
the left-out test set. This cycle is repeated until every patient slide
had a metastasis risk prediction. The number of features for this
analysis was restricted by the t-score thresholds. In this feature
set, only binary (>50% class probability) and a single broad
representation of high (>90%) or low (<10%) metastasis risk
scores were included (Supplementary Table 3).

Statistical Analysis
Accuracy, sensitivity/recall, specificity, precision, negative predictive
value, balanced accuracy, Matthews Correlation Coefficient, and F1
score were calculated based on confusion matrices. The tissue
classification accuracy of the WSI annotation pipeline was
evaluated by the Jaccard index. The significance of survival
difference was assessed with the log-rank test for Kaplan Meier
curves or the Wald chi-square test for Cox regression analysis. P-
values <0.05 were considered statistically significant. Statistical
analyses were performed using the SAS 9.4 software (Cary, NC,
USA), Python, and MATLAB R2018b (The MathWorks,
MA, USA).
RESULTS

Deep Learning WSI Analysis Discriminates
Different PanNET Tissues
A total of 10,132 non-overlapping 150 × 150-pixel, pathologist-
annotated, ground-truth regions were extracted (Figure 2A) and
augmented, providing the 466,072 tiles used to train the annotation
CNN. Nine epochs provided an accurate classification of the training
data. For the validation data, the CNN provided an overall accuracy
of 92.8% and greater than 90% sensitivity and specificity for all
annotated classes (Figure 2B). Importantly, the CNNprovided an F1
score of 0.95 for the validation tiles (n = 42,976) of cancer and
Frontiers in Oncology | www.frontiersin.org 5
normal parenchymal regions. The least precise classification was
obtained for cancer/stroma mixed tiles, with an F1 score of 0.68 and
a precision value of 0.53, indicating false positive classification,
especially toward normal regions (Supplementary Figure 3). High
concordance was observed between CNN-based and pathologist-
based WSI classification (Figure 2C and Supplementary Figure 4),
with a median Jaccard index of 0.79 in cancer regions (Figure 2D).
Cancer regions were accurately identified, with false-positive areas
predominantly in sparse edges/interface areas (less common in the
training dataset). These false-positive areas had a low probability
(<95%), and, thus, were excluded from subsequent analysis.

Prognostic Value of the Model
CNN-based WSI analysis provided 430,318 cancer and 211,361
stroma tile annotations with a greater than 95% probability and
allowed for the creation of a full slide metastasis probability map
(Supplementary Figure 5). CNN training using these tiles (and
the patient’s metastasis status as labels) provided an overall
classification test set F1 score of 0.64 and 0.60 for cancer and
stroma tiles, respectively. Projection of the final CNN pooling
layers from all cross-validated test sets provided a better
delineation between cancer tiles and adjacent stroma tiles in
patients who developed metastasis than in those that did not
(Figures 3A, B and Supplementary Figures 7–9). Analysis of
tiles with higher softmax output probability scores improved the
performance for both cancer and stroma regions. That is,
classification performance generally increased when analyzing
tiles with increasing class probability (going from the default
>50% probability output to restricting analysis to those tiles with
at least a 99.99% output for either class). For cancer tiles with a
maximum analyzed probability score (99.99% softmax output for
either the metastasis or non-metastasis class), the F1 score was
0.83, whereas stromal tiles with a 99.9% probability score had an
F1 score of 0.72 (Figure 3C).

Next, we used the whole-slide features to predict the risk of
metastasis and found that the use of a decision tree classifier
trained using cancer-only features significant above a t-score of
1.2 (when comparing the features values between patients who
metastasized versus those who did not in the respective training
data) provided the best leave-one-out cross-validation accuracy
of 80.77%, properly predicting 84 of 104 slides (Supplementary
Figure 10 and Supplementary Table 4. This accuracy was only
slightly marginally better than that provided by a model built
with all features (slide level accuracy: 78.84, predicting 82 of 104
slides; Supplementary Figure 11) or stroma-only features (slide
level accuracy: 79.81, predicting 83 of 104 slides; Supplementary
Figure 12). Furthermore, the model provided concordant
predictions for nine of the 14 patients with multiple tissue
slides. A high probability of cancer tiles (>0.9%) had the
largest impact on the model (Figure 3D and Supplementary
Figure 13). When aggregated from a slide to a patient level,
almost 70% of patients determined as high risk developed
metastasis within 10 years, whereas this number was only 22%
for patients determined as low risk (Figure 4A and
Supplementary Table 4). Importantly, the model predicted
metastasis-free survival after adjusting for clinical variables,
even in low grade (I/II) patients (Figure 4B).
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Testing the pipelines generalizability through nested cross
validation and a reduced, more broadly thresholded, feature set
resulted in equally sized high and low risk groups, although with
different patient stratifications by our final model. For the full
cohort of patients, the pipeline retained significant stratification,
even when controlling for other clinopathological variables,
although with slightly slower prognostic value (Supplementary
Figure 11A). Low grade patients, however, did by a small margin
lose statistical stratification significance (p = 0.0717) (Supplementary
Figure 14B).
DISCUSSION

PanNET is characterized by variable prognosis. Although some
patients with metastatic PanNET are treated with surgical resection
(27), surgery is only considered a “curative” option for patients with
localized disease. In approximately 35% resected PanNET tumors
with local disease, metastasis eventually develops (27). Therefore,
metastasis remains a concern even in patients with localized, early-
stage PanNET (4). Additionally, the relationship between many
clinicopathological characteristics and long-term survival after
surgery is controversial (1). Although proliferation markers (e.g.,
Ki67 and mitotic index) have shown a prognostic value, their use
suffers from various limitations (28–30). Furthermore, early tumor
stages (I/II) have limited prognostic value between themselves in
PanNET (31–34). Therefore, the development of novel models to
predict outcomes in patients with non-metastatic PanNETs
undergoing surgery is of high clinical importance, especially for
patients with low-grade tumors.
Frontiers in Oncology | www.frontiersin.org 6
In this study, we investigated the prognostic value of a novel
nested deep learning-based computational pathology model.
Deep/machine learning has been demonstrated to outperform
humans in various diagnostic tasks, including the interpretation
of histologic images of tumors (35), and can identify textural
features hidden to the human eye (36). Nested/cascading
machine learning approaches have also shown significant
discriminatory value (37, 38). Tile-based, segmented/annotated
areas have been shown to accurately represent the whole-slide
(39–41). Deep learning-based WSI analysis has also been shown
to predict patient outcomes (13). Our novel deep learning-based
WSI analysis pipeline aggregates metastasis-specific features
from relevant tissue areas. Therefore, our model provides
useful information on the morphological properties of different
tumor regions, which have significant prognostic value in
PanNETs (3, 42). Further, our model provides a powerful tool
to investigate the surrounding tumor stroma, which has
previously been shown to affect PanNET outcomes (43, 44).
Automated image analysis pipelines provide a robust
characterization of alterations in the tumor stroma (41, 45).

Consistent with previous findings (35), our deep learning-
based pipeline provided accurate tissue annotation in PanNETs.
Despite some issues with false positive classification of some
cancer/stroma tiles, especially toward true normal regions, the
overall tissue classification was very good. In over 40,000
validation tiles, the CNN provided an overall annotation
accuracy of over 92% for five different tissues. Even in more
ambiguous tumor areas, CNN-based WSI annotation was largely
in line with the pathologist’s annotation (~80% overlap).
Unsurprisingly, CNN-based WSI analysis provided a poor
A

B D

C

FIGURE 2 | Tile and whole slide performance of the CNN-based tissue annotation. (A) Examples of the tissue annotation classes and (non-augmented) ground-truth
tile counts used for training. (B) The multiclass sensitivity (recall), specificity, precision, F1 score, and accuracy for the validation tiles. (C) Representative pathologist-
based annotations (solid green line) for cancer regions and automated whole-slide annotation (blue: cancer, red: cancer with stroma, purple: normal parenchymal,
green: stroma, yellow: fat, major cancer regions outlined with a white dashed line). (D) Box plot showing the Jaccard score for 11 slides demonstrating the overlap in
CNN-based and pathologist-based annotation of cancer regions.
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discriminatory power for low-confidence metastasis-associated
areas (<50-80% probability), in sharp contrast to its excellent
discriminatory ability for high-confidence areas (>99% probability).
These findings indicate that stromal and cancer tiles possess
morphological features, which are “translated” into a risk of
metastasis by the deep learning pipeline. Notably, the model
provided higher F1 scores indicating a superior predictive
performance when only cancer tiles were analyzed. This cross-
validated model identified high-risk patients, who had an over 4.5
times higher risk of developing distant metastasis. Importantly, the
model was also able to identify high-risk patients with low-grade
PanNET regardless of other clinicopathological variables. Further,
using a restrictive nested cross validation and a small feature set to
better inspect model generalizability confirmed promising results.
Though preliminary, these results demonstrate the ability of our
Frontiers in Oncology | www.frontiersin.org 7
multi-structured deep learning-based model to provide metastasis
risk stratification, and potentially facilitate clinical decision making.
Additionally, the pipeline described here can help identify patients
who might benefit from adjuvant therapy (46) or candidates for
clinical trials, as well as enable personalized treatment (47).

Despite these encouraging findings, the study has limitations.
First, our cohort was from a single institution, and given the
relatively low incidence of PanNETs and high incidence of distant
metastasis (48), our findings require comprehensive external
validation. Second, it is important to increase the size of training
data to better fit the prognostic model. This is also vital to increase
the model sensitivity and capture a higher proportion of metastatic
patients. When controlling through a nested cross-validation
approach, low-grade patients had a significant stratification group
suggesting additional work toward developing a more generalizable
FIGURE 3 | Risk of metastasis in different tiles. (A) UMAP clustering of the final CNN pooling layer of the first test-fold cancer tiles across two dimensions. Each
point (n = 65,126) represents a different tile, and different colors indicate whether the patient developed metastasis (yellow) or not (blue). The inserts show the density
of clustered tiles for each metastasis group. (B) UMAP clustering of adjacent stromal tiles (n = 33,555). (C) CNN-based prediction performance and CNN probability
thresholds for the risk of metastasis in cancer and stroma tiles. The adjacent confusion matrix shows the comparison of the true versus predicted tile labels (M0: no
metastasis, M1: metastasis) at the maximum probability (99.99%). (D) Selected features based on SHAP analysis of all test samples from the aggregated leave-one-
out test sets. The colors represent the feature value, and the SHAP values indicate the importance of each feature in determining a high (>0 SHAP value) or low (<0
SHAP value) risk. For brevity, truncated explanatory titles were used for the feature names: “# High Prob Cancer Met tiles” = “Count Cancer Metastasis Probability
Tiles With Prob >=0.9999 and <0.99999”, “# Sparse Cancer Mets Hotspots” = “# of 8 to 9 Met (≥50% probability) Cancer tile clusters,” “# Medium Cancer Mets
Hotspots” = “# of 10 to 11 Met (≥50% probability) Cancer tile clusters,” “# Dense Cancer Mets Hotspots” = “# of 16 to 17 Met (≥50% probability) Cancer tile
clusters,” “#Dense Highest Risk Mets Hotspots’ = “# of 6 to 7 Met (≥99% probability) Cancer tile clusters.”
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model. Furthermore, our pipeline did not consider important
clinicopathological variables, such as tumor stage components
(outside of tumor size). Although the CNN provided satisfactory
discrimination of the different tissues in the validation sets, further
investigation is required to determine the influence of false positives
and true negatives on whole-slide annotation. Metastasis association
scores we calculated separately for cancer and adjacent stromal tiles.
However, CNNs could be trained to identify metastatic signatures in
other tissues, such as the normal parenchymal (49). Finally, although
our analysis involved investigating a robust selection of algorithms,
the implementation of additional methods, such as survival trees,
could further improve model interpretability. More extensive CNN
training and implementation is justified. More complex, state of the
art networks could further improve model performance whereas
simpler models could potentially retain classification performance
with significantly improved training speed (50).

In conclusion, our findings provide initial evidence that our
novel, multiclassification, deep learning pipeline can predict the
risk of metastasis in PanNET patients, by using H&E sections of
surgically resected tissue. Our results also suggest that prognostic
morphological patterns exist among PanNETs, both within the
tumor as well as the adjacent stromal regions. Future studies, in a
larger cohort with available outcome and treatment data, are
warranted to further investigate the potential value of such
morphological markers in guiding clinical decision making.
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