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Abstract

Motivation: Prediction of protein complexes from protein–protein interaction (PPI) networks is an important problem
in systems biology, as they control different cellular functions. The existing solutions employ algorithms for network
community detection that identify dense subgraphs in PPI networks. However, gold standards in yeast and human
indicate that protein complexes can also induce sparse subgraphs, introducing further challenges in protein com-
plex prediction.

Results: To address this issue, we formalize protein complexes as biclique spanned subgraphs, which include both
sparse and dense subgraphs. We then cast the problem of protein complex prediction as a network partitioning into
biclique spanned subgraphs with removal of minimum number of edges, called coherent partition. Since finding a
coherent partition is a computationally intractable problem, we devise a parameter-free greedy approximation algo-
rithm, termed Protein Complexes from Coherent Partition (PC2P), based on key properties of biclique spanned sub-
graphs. Through comparison with nine contenders, we demonstrate that PC2P: (i) successfully identifies modular
structure in networks, as a prerequisite for protein complex prediction, (ii) outperforms the existing solutions with
respect to a composite score of five performance measures on 75% and 100% of the analyzed PPI networks and gold
standards in yeast and human, respectively, and (iii,iv) does not compromise GO semantic similarity and enrichment
score of the predicted protein complexes. Therefore, our study demonstrates that clustering of networks in terms of
biclique spanned subgraphs is a promising framework for detection of complexes in PPI networks.

Availability and implementation: https://github.com/SaraOmranian/PC2P.

Contact: zniko@uni-potsdam.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identification of protein complexes can provide mechanistic insights
into principles of cellular organization and functions. Protein com-
plex formation can affect different cellular processes, from signaling
cascades (Pawson and Nash, 2000) to metabolism (Sweetlove and
Fernie, 2018) via alteration of enzyme abundance, enzyme activity
and substrate specificity (Reyes-Turcu et al., 2009). Due to techno-
logical developments, protein–protein interactions (PPIs) underlying
protein complexes can now be profiled by the combination of yeast
two hybrid (Fields and Sternglanz, 1994), co-immunoprecipitation
(Lin and Lai, 2017), affinity purification-mass spectrometry (Bauer
and Kuster, 2003), split luciferase complementation assay (Fujikawa

and Kato, 2007) and correlation of elution profiles from size exclu-
sion chromatography (McBride et al., 2019). The resulting interac-
tions comprise large-scale PPI networks which are available for well-
studied model organisms, from Escherichia coli (Rajagopala et al.,
2014) and Saccharomyces cerevisiae (yeast) (Collins et al., 2007;
Gavin et al., 2006; Krogan et al., 2006; Stark, 2006) to Homo sapi-
ens (human) (McDowall et al., 2009; Szklarczyk et al., 2015).

The increase in size and quality of PPI networks is paralleled by
the development of algorithms for mining of these networks. In par-
ticular, there has been a considerable interest in design of algorithms
for prediction of protein complexes based on PPI networks (Wu
et al., 2020; Zahiri et al., 2020). Unbiased comparison of these algo-
rithms has been facilitated by the generation of gold standards of
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protein complexes for different model organisms, such as: MIPS,
SGD and CYC2008 for yeast (Hong et al., 2007; Mewes, 2004; Pu
et al., 2009) and CORUM for human (Giurgiu et al., 2019). The
approaches for prediction of protein complexes based on PPI net-
works can be divided into supervised and unsupervised. For in-
stance, one supervised approach determines the probability that a
subnetwork of interactions is a part of a given complex by training a
neural network with structural features of the subnetwork (Shi
et al., 2011). However, due to the relatively small number of com-
plexes documented in different gold standards and their diverse
structural properties, the increase in performance is marginal in
comparison to the unsupervised approaches.

The unsupervised approaches for protein complex prediction
based on PPI networks rely on detecting network clusters based on
different network properties and concepts (Zahiri et al., 2020). A
unifying idea of unsupervised approaches is that protein complexes
are embedded in dense subnetworks. Such dense subnetworks are
identified either by merging and growing clusters or by network par-
titioning, following different criteria. The merging and growing of
clusters usually starts with small subnetworks, e.g. cliques, which
are expanded based on different similarity measures, such as the size
of overlaps. These network clusters are further combined with add-
itional biological knowledge, from ontologies or evolutionary rela-
tionships, to increase the prediction accuracy. Therefore, the
unsupervised approaches have been categorized into those which
rely only on network clustering and those which consider additional
biological information (Srihari and Leong, 2013).

Comparative analyses of the performance of the existing un-
supervised approaches for protein complex prediction demonstrate
that they exhibit small recall (at most �65%), largely due to the as-
sumption that protein complexes correspond to dense subnetworks
(Srihari and Leong, 2013). Moreover, it has been found that some
protein complexes are sparse, either due to the incompleteness of
PPI networks or the nature of the complex composition (Srihari and
Leong, 2012). For instance, examination of the protein complexes in
yeast has pointed out that they vary in terms of density, ranging
from star-shaped (Fig. 1A) to the more dense complexes (Fig. 1B)
including those that form cliques (Fig. 1C). This observation has led
to the design of algorithms to identify sparse (Srihari and Leong,
2012; Yong et al., 2012) as well as small complexes (Ruan et al.,
2018; Yong et al., 2014), which have slightly improved the recall of
protein complexes.

This brief summary of the state-of-the-art approaches for protein
complex prediction based on PPI networks points at the need to for-
malize the problem of identifying protein complexes so that both
sparse and dense subnetworks can be considered. Moreover, the
existing network clustering approaches depend on multiple parame-
ters, and it is challenging to optimize their values on different net-
work topologies and gold standards. Further, the optimal values of
different parameters may result in drastically different predictions of
protein complexes. Therefore, it is critical that the formalization of
the problem of protein complex prediction is parameter-free. It is
also important to ensure that the novel formalization extracts clus-
terings of local structures with large cluster quality measures. This
will allow us to determine the effect of the network structure on the
prediction of protein complexes.

Our contribution is fourfold: (i) we formalize the concept of a pro-
tein complex as a biclique spanned subgraph, that addresses the density

issue of the existing approaches; (ii) we propose a parameter-free ap-
proximation algorithm, termed Protein Complexes from Coherent
Partition (PC2P), that solves the network partitioning into biclique
spanned subgraphs by removing the minimum number of edges in a
given PPI network; (iii) we demonstrate that the resulting clusterings
are of high modularity, thus reflecting the local structures in the net-
work and (iv) we provide a thorough comparison with nine seminal un-
supervised approaches for protein complex prediction and show that
our biclique spanned subgraph partition outperforms them with respect
to twelve established performance measures and composite score com-
bining five of these measures.

2 Materials and methods

2.1 Contending algorithms
We compared the performance of our approximation algorithm
with nine contenders, including: Markov Clustering (MCL) (Enright
et al., 2002), Molecular Complex Detection (MCODE) (Bader and
Hogue, 2003), CFinder (Adamcsek et al., 2006), Affinity
Purification (AP) (Frey and Dueck, 2007), CMC (Liu et al., 2009),
Clustering with overlapping neighborhood extension (ClusterOne)
(Nepusz et al., 2012), Core and Peel (Pellegrini et al., 2016), Inter
Module Hub Removal Clustering (IMHRC) (Maddi and Eslahchi,
2017) and ProRankþ (Hanna and Zaki, 2014). We prioritized the
inclusion of approaches which have implementations in the public
domain and do not rely on availability of additional knowledge (e.g.
ontologies), to facilitate fair comparison. For AP, MCL and
ClusterOne, we used the implementation available in Cytoscape,
while for CMC, CFinder and ProRankþ, we download the respect-
ive software from https://www.comp.nus.edu.sg/�wongls/projects/
complexprediction/CMC-26may09/, http://cfinder.org/ and https://
faculty.uaeu.ac.ae/nzaki/Research.htm. Similarly, we used the im-
plementation of Core and Peel and IMHRC which are available at
http://bioalgo.iit.cnr.it/ppin/index.php?page¼app&id¼572664770
and http://www.eslahchilab.ir/softwares/cdap, respectively. Since all
of these approaches depend on multiple parameters, we have used
their default values. Optimizing the parameters is challenging since
they depend on both the networks and gold standards used as well
as on the objective to be optimized. Finally, optimization of different
performance measures yields different clusterings (i.e. predicted pro-
tein complexes), rendering it impossible to do meaningful interpret-
ation and combination of the findings.

2.2 Networks and gold standards used
To test our proposed approach and compare its performance with
contending algorithms, we used PPI networks and gold standards of
protein complexes from yeast and human. For yeast, we used four
PPI networks, including: Collins (Collins et al., 2007), Krogan core,
containing highly reliable interactions (probability � 0.273),
Krogan extended, containing more interactions of smaller reliability
(probability � 0.101) (Krogan et al., 2006) and Gavin (Gavin et al.,
2006). The gold standard was given by the CYC2008 (Pu et al.,
2009), an update to The Munich Information Centre for Protein
Sequences (MIPS) catalogue (Mewes, 2004), and complexes derived
from the Saccharomyces Genome Database (SGD) (Hong et al.,
2007). In the case of human, we used the up-to-date PPI networks
obtained from STRING (Szklarczyk et al., 2015) and PIPS
(McDowall et al., 2009) databases. The cut-off score for the
STRING and PIPS PPI networks are set to 999 and 25, respectively.
In addition, we employed CORUM as gold standard for human pro-
tein complexes (Giurgiu et al., 2019). The used PPI networks and
gold standards differ with respect to the number of proteins and
interactions they include. For completeness, Supplementary Table
S1 includes these features for the PPI networks, gold standards, and
their intersections employed in the analyses.

2.3 Performance measures
The predicted complexes based on the clusterings obtained from the
computational approaches, above, were compared with the
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Fig. 1. Protein complexes vary in density. Shown are three proteins complexes in

yeast (A) CURI, inducing a star, (B) Npa2p-containing subcomplex, inducing a

biclique spanned subgraph and (C) Prefoldin, forming a clique
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complexes in the gold standard based on twelve performance meas-
ures: sensitivity, positive predictive value, accuracy and separation
from Brohée and van Helden (2006), fraction match and maximum
matching ratio from Nepusz et al. (2012), precision, recall and F-
measure from Liu et al. (2009) and precisionþ, recallþ and F-meas-
ureþ from Maddi et al. (2019). To define the first three measures, a
contingency table T was assembled with n rows denoting complexes
and m columns representing clusters. The entry ti;j contains the num-
ber of shared proteins between complex i and cluster j. Let Ni de-
note the number of proteins in complex i, N ¼

P
i Ni and Pj stand

for the number of proteins in cluster j. Since some of the compared
algorithms allow for overlapping clusters, the marginal row and col-
umn sums may not correspond to the size of complexes and clusters,
respectively.

The sensitivity (SN) of a clustering is defined as SN ¼
P

i
maxj ti;jP

i
Ni

,

while the positive predictive value (PPVÞ is given by

PPV ¼
P

j
maxi ti;jP
j

P
i
ti;j

. The accuracy (ACC) is then given by the geometric

mean of sensitivity and positive predictive value, i.e.

ACC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN � PPV
p

. Separation (SEP) of a clustering is defined as

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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, whereby the product of the

proportion of proteins of a complex that are found in a cluster and

the proportion of proteins in a cluster that are found in a complex,

to quantify a relation between clusters and complexes. The fraction

match (FRM) for a complex i and cluster j is given by
t2
i;j

NiPj
and we

considered the fraction of clusters of FRM greater than 0.25, as sug-

gested by Nepusz et al. (2012). Finally, the maximum matching

ratio (MMR) is given by the value of the maximum matching per

complex in a bipartite graph, with nodes corresponding to the gold

standard complexes and extracted cluster, as two partitions, and

edges denoting the overlap between the respective complexes and

clusters.

To calculate precision and recall, we first determine if any of the
predicted clusters matches with any of the reference complexes.
Following Habibi et al. (2010), Liu et al. (2009) and Srihari et al.

(2015), we used Jaccard similarity (i.e. Jaccard P;Cð Þ ¼ P\C
P[C). The

predicted cluster is said to match the reference complex if their
Jaccard similarity is greater than 0.5. The precision is defined as a
ratio between the number of predicted clusters that match the refer-
ence complexes and the number of predicted clusters

(Precision ¼ fpi�Pj 9cj�C; pi matches cjg
P ). The recall is defined as the

ratio between the number of reference complexes that match the
predicted complexes and the total number of reference complexes

(Recall ¼ fci�Cj 9pj�P; pi matches cjg
C ). Finally the F-measure is defined

as 2�Precision�Recall
PrecisionþRecall . The measure precisionþ is given by

Nþ
P

P

and NþP ¼ pi�Pj 9cj�C; NAðpi; cjÞ�h;ðpi; cjÞ2MatchðP;C;hÞ
� �

.

Similarly, recallþ is defined as
Nþ

C

C and NþC¼ ci�Cj 9pj�P;
�

NAðpi; cjÞ�h;ðpi; cjÞ2MatchðP;C;hÞ g. In the definitions of these

terms; NAðpi; cjÞ represents the neighborhood affinity score be-

tween complexes and clusters, while MatchðP;C;hÞ includes the
edges by employing maximum matching algorithm on the bipartite
graph that has complexes on one side and the clusters on the other
side. We note that h is a parameter that can take values in the inter-
val [0, 1]. These measures were selected based on their usage in sem-
inal studies about prediction of protein complexes (Adamcsek et al.,
2006; Liu et al., 2009; Nepusz et al., 2012; Pellegrini et al., 2016).
Further, the composite score is given by the sum of the values for
MMR, FRM, SEP, ACC and F-measure (Cao et al., 2018; Nepusz
et al., 2012; Wang et al., 2018). Finally, as suggested in Maddi et al.
(2019), the sum of MMR and F-measureþ over different threshold
values was utilized as another performance measure.

Functional similarity between two proteins can be assessed by se-
mantic similarity of their respective GO annotation terms (Cho
et al., 2007). We employed the GOSim R package (Fröhlich et al.,
2007) to determine similarity between protein pairs in a given clus-
ter. The semantic similarity of a cluster was summarized by the
mean and minimum of the semantic similarity of the protein pairs in
the cluster, respectively, and their performance was compared.
Moreover, the biological relevance of predicted complexes is eval-
uated by enrichment analysis of the biological process, molecular
function and cellular component terms. We applied the
clusterProfiler R package (Yu et al., 2012) to obtain the biological
relevance of predicted complexes. The enrichment score of each GO
category was computed for all clusters and their performance was
compared.

Further, structural quality of a network clustering was assessed
by the widely used measure of modularity (Brandes et al., 2008).
The modularity of a clustering C is given by

q Cð Þ ¼
P

C2C
E Cð Þ

m �
P

v2C
deg vð Þ

2m

� �2
� �

, where EðC) denotes the num-

ber of edges with both ends in the cluster C in C, degðvÞ denotes the
degree of v, and m is the number of edges in the graph. However,
modularity may not be suitable to compare algorithms which result
in overlapping clusters (Lázár et al., 2010). Therefore, we also meas-
ured structural cluster quality as defined by (Lázár et al., 2010),
which accounts for overlapping clusters.

3 Results

3.1 Protein complexes as biclique spanned subgraphs
We formalize the concept of a protein complex by a biclique
spanned graph. A graph G ¼ ðV;EÞ is biclique spanned if the node
set can be partitioned into two subsets, V1ðGÞ and V2ðGÞ, with
V1 Gð Þ \ V2 Gð Þ ¼1, V1 Gð Þ [ V2 Gð Þ ¼ VðGÞ, such that EðGÞ con-
tains the edges ðu; vÞ for every u 2 V1ðGÞ and every v 2 V2ðGÞ as
well as additional edges between the nodes of each partition. As a re-
sult, biclique spanned graphs allow for modelling both sparse graphs
(e.g. stars) and dense graphs (e.g. bicliques and cliques). The dis-
tance between any two nodes in a biclique spanned graph is at most
2. It can be shown that a graph G is biclique spanned if and only if
its complement, �G, is disconnected (i.e. it contains more than one
connected component) (Akiyama and Harary, 1981). Thus, the con-
cept of a biclique spanned graph provides a natural formalization of
network cluster based on connectedness, since the complement of a
cluster in a real-world network is expected to be disconnected. For
instance, all graphs in Figure 1 are biclique spanned, including stars
as well as cliques.

A coherent network partition in a graph G is a partition C ¼
fC1; . . . ; Ckg of the node set VðGÞ such that every Ci, 1 � i � k,
induces disconnected subgraph in �G, i.e. a biclique spanned sub-
graph in G (Angeleska and Nikoloski, 2019). A network partition C
is obtained by removing all edges ðu; vÞ, u 2 Ci, v 2 Cj,
1 � i 6¼ j � k, resulting in the clusters C1; . . . ; Ck. The edges that
render a network partition C form an edge cut EðCÞ. A coherent net-
work partition C is optimal if it minimizes the number of edges in
the edge cut EðCÞ that renders the partition.

Given a graph G that represents a PPI network, we hypothesize
that an optimal coherent network partition corresponds to partition-
ing of the network into protein complexes. It has recently been
shown that the problem of finding an optimal coherent network par-
tition is NP-hard (Angeleska and Nikoloski, 2019). Thus, in the fol-
lowing, we present a greedy approximation algorithm for solving
this optimization problem, in which iteratively identify the node of
the best score, defined below, together with the biclique spanned
subgraph in which it participates followed by its removal from the
network.

3.2 PC2P—an algorithm to predict protein complexes
Given a graph G, our approach, termed Protein Complexes from
Coherent Partitions (PC2P), for every node u determines a score that
quantifies the quality of a biclique spanned subgraph in the second
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neighborhood of u, denoted by N2ðuÞ. We consider N2ðuÞ, that con-
tains all nodes at distance at most 2 from u, since a biclique spanned
subgraph that includes u is necessarily of diameter 2. The score is
given by: Eout

Ein

1
d, in which d is the density of the biclique spanned sub-

graph in N2ðuÞ, and is computed as 2Ein

V V�1ð Þ, where Eout is the number
of edges connecting the subgraph to the rest of the network, Ein is
the number of edges inside the subgraph and V is the number of
nodes in the subgraph. It aims at finding a compromise between the
number of edges removed to obtain the biclique spanned subgraph
and edges that remain in it. PC2P then selects the node with the
smallest score and removes the biclique spanned subgraph in N2ðuÞ
from the graph. The procedure is repeated as long as there are con-
nected components in G (Algorithm 1).

To obtain a biclique spanned subgraph in N2ðuÞ which mini-
mizes the proposed score (Algorithm 2), we first investigate the com-
plement of N2ðuÞ. If the complement of N2ðuÞ is disconnected, then
N2ðuÞ forms a biclique spanned subgraph; otherwise, we seek to
identify the minimum node cut in the complement of N2ðuÞ, i.e. the
smallest number of nodes whose removal render the subgraph dis-
connected. The minimum node cut can be determined by solving a
series of max-flow min-cut problems (Kanevsky, 1993). To speed up
the calculations, we check if the complement of the second neigh-
borhood N2ðuÞ contains an articulation point, in which case the re-
moval of a single node disconnects the graph. Moreover, since the
minimum node connectivity of a graph is at least as large as the min-
imum degree (Kammer and Täubig, 2004), to render the algorithm
more efficient, we remove the neighbors of a node of minimum de-
gree which yields the smallest score.

The complexity of finding a complement of a graph on n nodes
is in Oðn2Þ, finding an articulation point can be achieved in time
OðnþmÞ, identifying the minimum degree node is in OðnÞ, while
determining the neighbors of the nodes of minimum degree that re-
sult in the smallest score is in Oðn2Þ. Since the second neighbor
N2ðuÞ contains at most OðD2Þ nodes, where D is the maximum node

degree in the graph, the complexity of one iteration of the algorithm
is in OðnD4Þ. As a result, if in each round the algorithm finds a com-
ponent with D2 nodes, then the algorithm will finish after n

D2 itera-
tions. Therefore, the time complexity of the sequential algorithm is
in Oðn2D2Þ and the parallel version of the algorithm, which renders
it faster by a factor of P, which is the number of processors
O n2

P D2
� �

.
There are two other algorithms for graph clustering based on it-

erative determination of min cuts, but they do not operate in the
complement of a given graph and have not yet been applied to the
problem of protein complex prediction. The algorithm of Flake
et al. (2004) aims at identifying clusters in given graph by determin-
ing its min-cut tree (Gomory and Hu, 1961) and ensuring that the
inter-cluster and intra-cluster edge capacities are bounded from
above and below by a user-specified parameter a. To this end min-
cuts are iteratively determined in the graph augmented by a sink
node; the sink is connected to all other nodes by edges of capacity a.
In contrast to PC2P, this algorithm is parameter-dependent and can-
not identify biclique spanned subgraphs. Further, Hartuv and
Shamir‘s algorithm depends on iterative determination of min-cuts
to arrive at highly connected subgraphs, whose connectivity is
greater than n=2, with n denoting the number of nodes (Hartuv and
Shamir, 2000). In contrast to PC2P, which can identify both sparse
and dense clusters, the approach of Hartuv and Shamir identifies
only dense clusters, in which the number of edges that grows quad-
ratically with the number of nodes. In addition, this algorithm
requires the knowledge of the entire graph, whereas ours is a local
algorithm as it operates on the second neighborhood of nodes.
Furthermore, while the generated highly connected clusters, like
biclique spanned graphs, are of diameter no greater than two, the al-
gorithm has the tendency to break up a sparse cluster into single-
tons. The latter issue is addressed by different heuristic steps (pre-
and post-processing) applied on the obtained clusters (e.g. merging
of singletons, removal of nodes of small degree), which also require
user input.

We inspected the empirical running time on the four PPI net-
works of yeast and the two PPI networks of human, as specified in
the methods (see Supplementary Table S5). We found that the

A B

C D

Fig. 2. Comparison of modularity and cluster quality measure of predicted protein

complexes. Nine contending algorithms were compared with PC2P with respect to

the modularity and the cluster quality measure (Lázár et al., 2010) of the clusterings,

resulting in protein complexes, on (A) and (C) four PPI networks in yeast and (B)

and (D) two PPI networks in human. PCP2 has the highest modularity compared to

all contending algorithms in three out of four and one out of two networks of yeast

and human respectively. Whereas it outperforms other contenders only in one of the

yeast networks when cluster quality measure is considered

Algorithm 1 PC2P algorithm

1: procedure Find_Coherent_Partition (G)

2: edge_cut  1
3: connected_components  connected component of G

4: while there is a component in connected_components do

5: for each node v in connected_component do

6: result  CNP(v,connected_components)

7: Update edge_cut

8: Update connected_components

9: return (edge_cut)

Algorithm 2 CNP Function

1: procedure CNP (v, cmp)

2: N2  second neighborhood of node v in cmp

3: complement_N2  complement of N2

4: if complement_N2 is disconnected then

5: cut_ratio  calculate cut ratio for the cmp

6: return (cmp, cut_ratio)

7: else

8: cut_node find minimum node cut in complement_N2

9: remove cut_node from cmp

10: cut_ratio compute cut ratio for the cmp sub-graph

11: return (cmp, cut_ratio)
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running time scales with the diameter of the network. For instance,
the KroganCore graph has a diameter of 12, while that of Collins is
15 in a smaller graph regarding the number of nodes; as seen in
Supplementary Table S5, the running time for the former is 4 h,
while for the latter it is 8 min. All mentioned experiments were car-
ried on the same machine, an Intel(R) Xeon(R) CPU E5-2670 v2
with 2.50 GHz.

3.3 Structural, functional quality and biological

relevance of PC2P clusters
To inspect the performance of PC2P with respect to structural, func-
tional quality and biological relevance of the resulting clusters, we
determined the modularity, the GO semantic similarity and standard
enrichment score of the clusterings in four PPI networks for yeast,
i.e. Collins, Gavin, KroganCore and KroganExt, and two for
human, i.e. STRING and PIPS. We compared the performance of
nine other approaches, i.e. MCL, MCODE, CFinder, AP, CMC,
ClusterOne, ProRankþ, Core&Peel and IMHRC (see Section 2.1)
with respect to these three performance measures (see Section 2.3).

or the yeast PPI networks, we found that PC2P results in the larg-
est modularity with respect to nine contenders for three out of four
networks irrespective of whether or not cluster overlap was consid-
ered (Fig. 2A, Supplementary Table S2). For the Collins PPI network
our approach ranked second, with �2% decrease in modularity
compared to MCL. Similarly, for the PPI networks of human, PC2P
outperformed all approaches on the PIPS network. Moreover, it
ranked second for the STRING network, with � 4% decrease in
modularity in comparison to MCL (Fig. 2B, Supplementary Table
S2). For fair comparison with approaches that result in overlapping
clusters, we also used the cluster quality measure defined in Lázár
et al. (2010). We found that PC2P outperformed the other contend-
ing approaches on the Collins PPI, and it ranked second with �1%
smaller value than CFinder on the Gavin PPI network of yeast
(Fig. 2C and D, Supplementary Table S2). For KroganCore and
KroganExt, MCL and AP were the best ranked approaches with re-
spect to this measure. We found that MCL showed the highest
modularity of overlapping clusters in human and PC2P ranked

second for STRING network, with �2% decrease in modularity
(Fig. 2C and D, Supplementary Table S2).

We also calculated the modularity of the clusterings obtained
when only the proteins in two yeast gold standard datasets of pro-
tein complexes, CYC2008 and SGD, were considered
(Supplementary Table S1). Our findings demonstrated that the
modularity of PC2P clusterings was the largest in 1 out of 8 combi-
nations of PPI networks and gold standards. In all but one of the
remaining cases, PC2P resulted in the second best performance,
closely behind MCL (Supplementary Table S3). For the human gold
standard of protein complexes, CORUM, PC2P clusterings were of
the highest modularity for the two PPI networks (Supplementary
Table S3). Interestingly, PC2P outperformed one of the compared
approaches when the cluster quality measure from Lázár et al.
(2010) was used on the combination of PPI networks and gold
standards of yeast. In the remaining combinations, PC2P ranked
among the top three performers, except in the case of KroganExt
PPI where all approaches resulted in small values for the modularity
of overlapping clusters. MCL showed the best performance with re-
spect to this measure across all combinations of human PPI net-
works and gold standard, however, PC2P ranked second
(Supplementary Table S3). Altogether, these findings indicated that
PC2P can effectively identify the modular structure in protein inter-
action network as a prerequisite for prediction of protein
complexes.

With respect to the functional quality of the clusterings, we
determined the minimum and mean semantic similarity for every
pair of proteins in each predicted complex (i.e. clusters) and com-
pared the distribution of these values over all clusters for the nine
contenders. For the minimum GO semantic similarity, in the four
yeast PPI networks as well as in the two human PPI networks, we
found that all of the approaches resulted in largely overlapping dis-
tributions of GO semantic similarity over the respective clusters for
the three GO categories, i.e. biological process (BP), cellular compo-
nent (CC) and molecular function (MF) (Fig. 3A). Nevertheless,
PC2P exhibited the largest median GO semantic similarity with re-
spect to MF in two out of four yeast PPI networks and ranked se-
cond in the rest of PPI networks. While proteins involved in

A B

Fig. 3. Comparison of minimum GO semantic similarity for predicted protein complexes. PCP2 is compared against nine algorithms (ordered by the year of publication) with

respect to the distribution of minimum GO semantic similarity over all clusters, for (A) Collins PPI network of yeast and (B) STRING PPI network of human. GO semantic

similarity is determined for the three GO categories: biological process (BP), cellular component (CC) and molecular function (MF)
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complexes may have distinct functions, they usually are annotated
with multiple MF GO terms with indicate their involvement in the
function of the complex as a whole, leading to larger GO semantic
similarity (Ashburner, 2000). In the rest of the cases, PC2P showed
comparable distributions and medians of GO semantic similarity to
those of MCL. Similar findings were obtained for the two PPI net-
works of human (Fig. 3B).

Interestingly, the same conclusions can be drawn when analysing
the distributions of mean GO semantic similarity over all clusters:

all approaches, except for AP, exhibited comparable distributions,
with the medians of Core&Peel and PC2P ranked highest
(Supplementary Fig. S1). These findings hold for both yeast and
human PPI networks, demonstrating that PC2P performs as well as
the existing approaches in capturing functional quality of the result-
ing clusters.

We also conducted ANOVA analyses to test if PC2P results in
smaller average GO semantic similarity in comparison to the con-
tending algorithms. To summarize the GO semantic similarity of a
cluster we considered the minimum and the mean semantic similar-
ities. For the ANOVA with the minimum semantic similarity of each
cluster, from 6 comparisons in each of the 4 yeast and 2 human PPI
networks for the MF GO category PC2P has either the same or
greater average in comparison to the other approaches. For the BP
and CC GO categories, PC2P exhibits a smaller average in 1.85%
and 0.37%of the comparisons, respectively, i.e. BP semantic similar-
ity of Core&Peel and ProRankþ on Gavin and KroganExt and
MCODE on the KroganCore PPI network as well as CC semantic
similarity of Core&peel on KroganCore PPI networks
(Supplementary Table S4). For the rest of comparisons, PC2P
showed either higher or the same average as the other contenders.
For the ANOVA with the mean semantic similarity for each cluster,
PC2P exhibited either the same or greater average for the MF GO
category. For the BP and CC GO categories, PC2P has a smaller
average in 2.6% and 1.1% of the comparisons, correspondingly, i.e.
BP semantic similarity of MCODE, ProRankþ and Core&Peel on
KroganCore and ProRankþ and Core&Peel on Gavin and
KroganExt as well as CC semantic similarity of Core&Peel on
Gavin, KroganCore and KroganExt (Supplementary Table S4). In
the remaining comparisons, PC2P demonstrated better or the same
average as the other methods. Altogether, these findings imply that
PCP2 maintains the semantic similarity of the predicted protein
complexes, in line with biological expectations.

Concerning biological relevance, we determined the enrichment
score of the annotations for each predicted complex (i.e. cluster).
We used the enrichGo function in the clusterProfiler package and
selected Benjamini-Hochberg as a P-value adjustment method with
a significant level of 0.05. We compared the average of predicted

Fig. 4. Comparative analysis of approaches for prediction of protein complexes in yeast. The comparative analyses is conducted with respect to a composite score combining

five performance measures, maximum matching ratio (MMR), fraction match (FMR), separation (SEP), accuracy (ACC) and F-measure. Ten approaches, ordered by the year

of publication, are compared on four PPI networks in yeast with respect to CYC2008 gold standard. PCP2 outperforms all approaches on three of the four networks

Fig. 5. Comparative analysis of approaches for prediction of protein complexes in

human. The comparative analyses is conducted with respect to a composite score

(see caption of Fig. 4). Ten approaches, ordered by the year of publication, are com-

pared on two PPI networks with respect to CORUM gold standard. PCP2 outper-

forms all approaches
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complexes with at least one enriched annotation over all clusters for
the nine approaches across all datasets (Supplementary Table S6).
The GO annotations with Inferred from electronic annotations
(IEA), No biological Data available (ND), Non-traceable Author
Statement (NAS) and Inferred from Physical Interaction (IPI) evi-
dence codes were dropped from the computation. The results illus-
trate that PC2P predicts biologically relevant clusters with
enrichment scores that are of moderate value that ranks in the top
50% of the contenders with respect to the different GO categories
(Supplementary Table S6).

3.4 PC2P outperforms contending approaches for

protein complex prediction
Next, we employed the two gold standards for yeast and the one for
human with the respective PPI networks to compare the perform-
ance of PC2P with respect to its ability to accurately predict protein
complexes. To this end, we determined twelve performance meas-
ures, including: maximum matching ratio (MMR), fraction match
(FRM), separation (SEP), positive predictive value (PPV), Sensitivity
(SN), accuracy (ACC), precision, recall, F-measure, precisionþ,
recallþ and F-measureþ (see Section 2.2). In addition, we calculated
a composite score that combines MMR, FMR, SEP, ACC and F-
measure for each of the ten compared approaches. Furthermore, we
calculated the MMR and F-measureþ over different h values and
used their sum as an additional score.

For the 8 combinations of protein interaction networks and gold
standards of protein complexes in yeast, our findings demonstrated
that PC2P exhibited the highest MMR and FRM values in all cases
as well as the highest ACC, PPV and recallþ in 7 combinations.
Moreover, PC2P resulted in the highest recall in all 8 combinations,
as high as 71% and 69% in Collins and KroganCore PPI networks
with CYC2008 gold standard (Supplementary Fig. S2,
Supplementary Table S3). It is then not surprising that PC2P outper-
formed all contenders with respect to the composite score in 7 out of
8 combinations for yeast (Fig. 4, Supplementary Table S3).

Similarly, MMR, FMR, ACC and recall were the largest for PC2P
in the 2 combinations of protein interaction networks with the gold
standard of protein complexes in human (Fig. 5, Supplementary
Table S3). The second and third best performers in the case of both
yeast and human included MCL and ClusterOne. Further, we consid-
ered the sum of the MMR and F-measureþ values over the range of h
values from 0 to 1 for all combination of PPI networks and gold
standards in human and yeast as another way of ranking (Maddi
et al., 2019). Here, too, PC2P exhibited the highest values for differ-
ent values of h for all combinations except for Collins PPI network in

yeast. Similarly, PC2P exhibited the highest values over the consid-
ered range of h for the human PIPS as well as STRING PPI network
(Fig. 6, Supplementary Fig. S3). Therefore, our findings demonstrated
that PC2P outperforms the contending approaches for protein com-
plex prediction in both yeast and human PPI networks.

4 Discussion

Assembly of high-quality gold standards of protein complexes in
model eukaryotes has pointed out that protein complexes have di-
verse structure that may not be accurately represented by dense
graphs. Nevertheless, the existing unsupervised approaches for pre-
diction of protein complexes from PPI networks rely on partitioning
the network into dense subgraphs, which affects their performance.
These approaches also suffer from very low recall, and attempts
have been made to resolve these issues by designing of algorithms
that specifically seek to identify sparse structures.

Here, we offered a new perspective on the prediction of protein
complexes from PPI networks by formalizing a protein complex as a
biclique spanned graph. This allowed us to model protein complexes
on the continuum from sparse to dense graphs, since the class of
biclique spanned graphs includes stars, bicliques as well as cliques as
special subclasses. This is the major contribution of our formaliza-
tion, which we later show that it also leads to improvement of recall
over the existing solutions. Further, such a formalization facilitated
casting of the problem of protein complex prediction as that of find-
ing an optimal coherent partition. Since this problem is NP-hard
(Angeleska and Nikoloski, 2019), we proposed a greedy approxima-
tion algorithm called PC2P, for protein complexes from coherent
partition. In contrast to the existing algorithms, PC2P is parameter-
free and, therefore, can be employed objectively, without user-
specified and case-to-case tuned parameters. This is another major
improvement over the existing solutions for determining protein
complexes in large-scale PPI networks.

Extensive comparative analyses demonstrated that PC2P outper-
formed state-of-the-art contending approaches with respect to seminal
performance measures in PPI networks from yeast and human, while
ensuring that the overall semantic similarity of the predicted proteins is
high, in line with biological expectation. Most importantly, PC2P
resulted in the largest recall (and refinements of this measure) in major-
ity of examined datasets, demonstrating that PC2P offers a parameter-
free means to overcome the key shortcoming of the existing
approaches. Finally, we also observed that the distribution of cluster
sizes resulting from PC2P does not differ with respect to the compared
approaches: For all algorithms, except ClusterOne, Core&Peel and

A B

Fig. 6. Summation of MMR and F-measureþ of approaches for prediction of protein complexes. The sum of MMR and F-measureþ is determined over the range of values for

h from 0 to 1. Ten approaches, ordered by the year of publication, are compared on two PPI networks with respect to CYC2008 and CORUM gold standard for (A) Gavin

and (B) STRING in yeast and human respectively. PCP2 outperforms all compared approaches
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IMHRC, the cluster size distributions are monotonically decreasing
(Supplementary Fig. S4). This finding indicates that the improvements
of performance in predicting protein complexes by PC2P are due to

the formalization of the protein complex as a biclique spanned sub-
graph rather than the resulting distribution of cluster sizes.

Future studies will aim on one hand to speed up the running time
of the implementation of the algorithm, by exploring the properties

of the second neighborhood of a node; on the other, additional re-
search efforts will be aimed to identify the connection between sin-
gle gene and whole genome duplication in driving the formation of

biclique spanned subgraphs underlying the predicted protein com-
plexes. Finally, we note that the current formulation of PC2P is not

applicable for detection of overlapping clusters and weighted net-
works, and future work will address these shortcomings to improve
the versatility of the presented formulation of protein complexes in

terms of bicliques.
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