Paneth cells mediated the response of intestinal stem cells at the
early stage of intestinal inflammation in the chicken

Lingzi Yu," Xiaochen Xie,' Keyang Jiang, Yi Hong, Zhou Zhou, Yuling Mi, Caiqiao Zhang, and Jian Li’

Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College
of Animal Sciences, Zhejiang University, Hangzhou 310058, P.R. China

ABSTRACT The rapid renewal and repair of the in-
testinal mucosa are based on intestinal stem cells (ISC),
which are located at the crypt bottom. Paneth cells are
an essential component in the crypt, which served as the
niche for ISC development. However, in the chicken, how
the function of Paneth cells changes during intestinal
inflammation is unclear and is the key to understand the
mechanism of mucosal repair. In the present study, 36
HyLine White chickens (7 d of age, n = 6) were randomly
divided into 1 control and 5 lipopolysaccharide (LPS)
injection groups. The chickens were injected (i.p.) with
PBS in the control group, however, were injected (i.p.)
with LPS (10 mg/kg BW) in the LPS injection groups,
which would be sampled at 5 time points (1 h post-
injection [hpi], 2 hpi, 4 hpi, 6 hpi, and 8 hpi). Results
showed that tumor necrosis factor-oo mRNA transcrip-
tion in duodenal tissue increased gradually since 1 hpi,
peaked at 4 hpi, and then reduced remarkably, indicating

that 4 hpi of LPS was the early stage of intestinal
inflammation. Meanwhile, the MUC2 expression in
duodenal tissue was dramatically reduced since 1 hpi of
LPS. The ISC marker, Lgr5 and Bmil, in the duodenal
crypt were reduced from 1 hpi to 4 hpi and elevated later.
Accordingly, the hydroethidine staining showed that the
reactive oxygen species level, which drives the differen-
tiation of ISC, in the duodenal crypt reduced obviously
at 1 hpi and recovered gradually since 4 hpi. The analysis
of Paneth cells showed that many swollen mitochondria
appeared in Paneth cells at 4 hpi of LPS. Meanwhile, the
Lysozyme transcription in the duodenal crypt was sub-
stantially decreased since 1 hpi of LPS. However, the
Wnt3a and DIl1 in duodenal crypt decreased at 1 hpi of
LPS, then increased gradually. In conclusion, Paneth
cells were impaired at the early stage of intestinal
inflammation, then recovered rapidly. Thus, the ISC
activity was reduced at first and recovery soon.
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INTRODUCTION

Dozens of complex factors will induce intestinal inflam-
mation, which challenges the integrity of the intestinal mu-
cosa. Apart from histomorphologic changes, intestinal
inflammation could also lead to dramatic changes in in-
flammatory cytokine. Tumor necrosis factor-o. (TNF-o)
isa major proinflammatory cytokine involved in the innate
immunologic response induced by lipopolysaccharide
(LPS) (Li et al., 2016). Tumor necrosis factor-o is one of
the most abundant early mediators in inflamed tissue
and rapidly released by macrophages after trauma, infec-
tion, or exposure to  bacteria-derived  LPS
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(Parameswaran and Patial, 2010). In the “cytokine release
syndrome” BALB /c mice model, serum TNF-a, level was
maximal 30 min after anti-CD3 antibodies intraperitoneal
injection and declined gradually after that (Radojevic
et al., 1999). Hence, TNF-o was used as an early indicator
of intestinal inflammation in the present study.

The intestinal mucosa consists of enterocytes, goblet
cells, Paneth cells, enteroendocrine cells, and intestinal
stem cells, and so on. Among them, goblet cells play a
critical role in producing and preserving a protective
mucus blanket on intestinal mucosa through synthesiz-
ing and secreting high-molecular-weight glycoproteins
known as mucins (Kim and Khan, 2013). Infection or
inflammation could influence the amount and secretory
function of the goblet cells. Zhu et al. (2020) demon-
strated that, in young chickens, Salmonella Pullorum
infection could induce a significant loss of goblet cells
and noticeable reduced MUC2 expression. However, in
the chicken, the change of goblet cells at the early stage
of intestinal inflammation is unclear.
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Intestinal stem cells (ISC) are located at the crypt bot-
tom and can differentiate into various epithelia (Sato
et al., 2011). Generally, ISC including rapidly cycling
ISC, which are markered by Lgr5, Olfm4, and Znrf3
(Barker et al., 2007, 2012; van der Flier et al., 2009),
and slowly cycling reserve ISC, which are mainly located
at “+4” stem cell zone and markered by Bmil and Hopx
(Takeda et al., 2011). The activity and development of
ISC can be influenced by infection or inflammation.
Studies have shown that acute intestinal inflammation
in mice was accompanied with a dramatic loss of ISC
(Richmond et al., 2018; Schmitt et al., 2018), whereas
the evoked interferon gamma and TNF-o would activate
the regeneration of reserve ISC (Richmond et al., 2018).
Moreover, Helminth infection in mice could promote in-
testinal mucosal tuft cells to secrete IL-25, which further
promote group 2 innate lymphoid cells to secret 1L-13,
and finally induce ISC to differentiate into tuft cells
and goblet cells (Howitt et al., 2016; von Moltke et al.,
2016). However, in chickens, how the fate of ISC changes
at the early stage of intestinal inflammation is unclear
and is the basis for investigating mucosal repair after
injury.

Paneth cells are an essential component in the crypt,
which served as the niche for ISC development. As a
niche component, Paneth cells could secret Wnt3 and
Notch ligand Delta-likel (DII1) and Delta-like4, which
further acted on adjacent ISC (van Es et al., 2012;
Farin et al., 2016). Nevertheless, the fate and secretory
function of Paneth cells are changing during infection
and inflammation. In mice, Salmonella infection could
increase Paneth cells’ amount (Haber et al., 2017). In
humans, a high level of TNF-a,, which presented in the
lamina propria of the inflamed ileum, was demonstrated
to induce the necroptosis of Paneth cells (Giinther et al.,
2011). In rats, interferon gamma evoked by Tozoplasma
gondii infection could activate autophagy in Paneth cells
and further promote mucosal renewal (Burger et al.,
2018). However, in chickens, how the function of Paneth
cells changes at the early stage of intestinal inflamma-
tion and further influences ISC development is unclear
and is the key to understand the mechanism of mucosal
repair after injury.

In the present study, we sought to investigate the
alteration of the chicken’s Paneth cells and further un-
cover the mechanism that ISC activity altered at the
early stage of intestinal inflammation.

MATERIALS AND METHODS

Experiment Design

A total of 36 HyLine White chickens (Gallus) at the
age of 7 d were randomly divided into 6 groups (1 control
group and 5 LPS injection groups, n = 6). The chickens
in the control group were injected (i.p.) with PBS (pH
7.4). The chickens in the LPS injection groups, which
would be sampled at 5 time points (1 h postinjection
[hpi], 2 hpi, 4 hpi, 6 hpi, and 8 hpi), were injected (i.p.)
with LPS (10 mg/kg BW, L2880; Sigma, St. Louis,

MO). After that, the duodenal tissue and duodenal crypt
were sampled from 6 individuals in each group, then
stored in liquid nitrogen, 4% paraformaldehyde, or
2.5% glutaraldehyde until analyzing. The present study
was carried out following the Guiding Principles for the
Care and Use of Laboratory Animals of Zhejiang Univer-
sity. The experimental protocols were approved by the
Committee on the Ethics of Animal Experiments of Zhe-
jlang University.

Duodenal Crypt Isolation

For investigating the niche for ISC, the duodenal
crypt was isolated. As per the previous protocol (Li
et al., 2018), the duodenum was removed and washed
in PBS after longitudinally cutting. Then, they were
cut into 1- to 2-cm segments and shaken gently in
2 mmol cold EDTA (pH 7.4) for 30 min thrice. After
that, the suspension was passed through a 70-pm nylon
cell strainer (352360; Corning, NY) and was further pu-
rified by centrifuging (100 X g) and resuspending. The
collected crypts were used for further analysis.

Histologic Study

The duodenal samples fixed in 4% paraformaldehyde
were embedded by paraffin, then the cross sections
(5 pwm) were prepared for morphologic study. The
phloxine-tartrazine staining was performed to identify
Paneth cells by their characteristic purple granules.
Briefly, the paraffin cross sections were stained by hema-
toxylin, then dipped in solution A, a mixture of 0.5 g
phloxine B (18,472-87-2; Aladdin, Shanghai, China)
and 0.5 g calcium chloride dissolved in 100 mL distilled
water, for 20 min. After rinsing in tap water, the cross
sections were placed in solution B, a saturated solution
formed by tartrazine (1934-21-0; Aladdin, Shanghai,
China) dissolved in 100 mL 2-ethoxy ethanol, until char-
acteristic purple granules appeared and all other tissue
was yellow.

Transmission Electron Microscopy

The duodenal samples prepared for transmission elec-
tron microscopy (TEM) assay were fixed with 2.5%
glutaraldehyde (at 4°C overnight) and 1% osmium
acid (at room temperature for 2 h). Each fixation was fol-
lowed by 15 min rinse with 0.1 M PBS (pH 7.0) three
times. After fixation, the samples were dehydrated
with a graded ethanol series (30, 50, 70, 80, 90, and
95% for 15 min each, 100% for 20 min). First, samples
were infiltrated in a mixture of Spurr and acetone
(vol/vol = 1:1 for 1 h, vol/vol = 3:1 for 3 h) and then
in Spurr overnight. The following day, the samples
were embedded in Spurr and baked at 70°C overnight.
Ultrathin sections (70-90 nm) were made by a Leica
UC 7 ultramicrotome and then stained with lead citrate
and saturated uranyl acetate in 50% ethanol for 5 to
10 min each. Finally, the ultrastructure of the crypt
was observed by a Hitachi H-7650 TEM.
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Hydroethidine Staining

For detecting the reactive oxygen species (ROS) level
in the crypt, hydroethidine staining was performed.
Hydroethidine is a superoxide indicator, where it inter-
calates within the cell’s DNA, staining its nucleus a
bright fluorescent red. As per the product manual, the
frozen sections were rinsed with PBS three times, then
incubated with 15 pmol hydroethidine (D23107; Ther-
moFisher Scientific, Waltham, MA) in dark at 37°C
for 20 min. The nuclei were then counterstained with
DAPI (300 nmol, MBD0020; Sigma, St. Louis, MO).
Finally, the sections were mounted with the antifade so-
lution (C1210; Applygen Technologies Inc., Beijing,
China).

Quantitative Real-Time PCR

Total RNA from the duodenal tissue and duodenal
crypt were extracted using TRIzol reagent and reverse
transcribed into ¢cDNA using the SuperScript First-
Strand Synthesis System (11904018; ThermoFisher
Scientific, Waltham, MA). The cDNA was used as a
template for quantitative real-time PCR (qPCR) in a re-
action system: 1.5 uL. ¢cDNA, 400 nM primers, 7.5 pL
2 X SYBR ¢PCR Master Mix (Q711-02; Vazyme
Biotech Co., Ltd., Nanjing, China). The qPCR reactions
were performed in a CFX96 Touch real-time PCR, sys-
tem with cycling conditions as follows: 95°C for 30 s,
40 cycles of 95°C 10 s followed by 60°C 30 s. The se-
quences of primers were listed as follows: TNF-«
(192 bp, NM _204267.1, Forward: ACCCGTAGTGC
TGTTCTATGACC; Reverse: TGTTCCACATCTTT-
CAGAGCATC); MUC2 (161 bp, NM_001318434.1,
Forward: TACTTCACCTTCAACCATTACAAC;
Reverse: CATAGTCACCACCATCTTCTTCA); Lgrs
(115 bp, XM _ 425441 .4, Forward: CTTCTCTTCGTT
CTCTGGATTTAGC; Reverse: GAGGACAAAAGGT
TGGATGAC); Bmil (104 bp, NM_001007988.1, For-
ward: AGTTCCTGCGGAGTAAGATGG; Reverse:
GTAGGCAATGTCCATCAGCGT); Lysozyme
(142 bp, NM_ 205281.1, Forward: TCTTTGGAC-
GATGTGAGCTG; Reverse: CCATCGGTGTTACGG
TTTGT); Diit (127 bp, NM_ 204973.2, Forward: TGA
ACTACTGCACTCACCACAA; Reverse: TCGTTG
ATTTCAATCTCGCAGC); Wnt3a (200 bp, NM_ 001
171601.1, Forward: CTTCTTCAAGGCTCCGACTG;
Reverse: GGCACTTCTCTTTCCGTTTC); GAPDH
(116 bp, NM _ 204305, Forward: GATGGGTGTCAAC-
CATGAGAAA; Reverse: CAATGCCAAAGTTGT-
CATGGA). All samples were repeated in triplicate,
and all experiments were repeated more than three
times. All samples were normalized with GAPDH using
the comparative cycle threshold method (27[A”A]Ct)

Statistical Analysis

Statistical analysis was performed using SPSS 16.0.
The statistical significance among various groups was
examined by one-way ANOVA followed by the least

significant difference. The significance level was set at
P-value < 0.05.

RESULTS

The Response of Duodenal Tissue to LPS-
Induced Intestinal Inflammation

For identifying the early stage of intestinal inflamma-
tion, the 7-day-old chickens were injected with LPS and
the mRNA transcription of duodenal TNF-o, which is an
early indicator of inflammation, at various time points
after LPS treatment was analyzed. As shown in
Figure 1A, compared with the control group, the
duodenal T'NF-a level in the LPS group increased grad-
ually since 1 hpi of LPS, peaked at 4 hpi of LPS (higher
than the control group by 191.52%, P-value < 0.0001)
and then reduced dramatically. These indicate that 4
hpi of LPS was the early stage of intestinal inflamma-
tion. Furthermore, after LPS treatment, the MUC2
mRNA transcription (Figure 1B) was reduced gradually
from 1 hpi to 8 hpi and presented statistical significance
with the control group after 2 hpi (lower by 58.27—
94.79%, P-value < 0.001).

The Response of ISC to LPS-Induced
Intestinal Inflammation

As ROS drives differentiation of ISC, hydroethidine
staining was performed to assay the ROS level in the
crypt. As shown in Figure 2A, in the control group,
the nucleus in the crypt showed bright fluorescent red,
especially at the crypt bottom. However, after LPS injec-
tion, the fluorescence intensity weakened obviously at 1
hpi, then recovered gradually from 4 hpi to 8 hpi.

For analyzing the alteration of ISC activity after
LPS treatment, the relative expression of Lgrs (ISC
marker) and Bmil (quiescent +4 position ISC marker)
in the duodenal crypt was analyzed. The qPCR results
(Figures 2B and 2C) showed that after LPS treatment,
Lgr5and Bmil were decreased gradually from 1 hpi to 4
hpi, then elevated at 8 hpi. At 4 hpi of LPS, Lgr5 and
Bmil were lower by 53.78% (P-value = 0.040) and
34.78% (P-value = 0.119) than the control group,
respectively. However, at 8 hpi of LPS, Lgr5 and
Bmil were elevated and comparable with the control

group.

Morphologic Alteration of Paneth Cells
Induced by LPS Injection

For identifying the morphologic alteration of Paneth
cells at the early stage of intestinal inflammation, the
phloxine-tartrazine staining and TEM assay was per-
formed. Under phloxine-tartrazine staining, the char-
acteristic purple granules of Paneth cells were
presented at the crypt bottom of both control and
LPS-4 hpi groups (Figures 3A—3D, red arrowhead).
Under TEM assay, Paneth cells were identified by their
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Figure 1. The response of duodenal tissue to lipopolysaccharide (LPS)-induced intestinal inflammation. Histograms represented the analysis of
TNF-oo mRNA transcription (A) and MUC2mRNA transcription (B) in the duodenal tissue from the control group and LPS injection groups (sampled
at 1 h post-injection [hpil, 2 hpi, 4 hpi, 6 hpi and 8 hpi). Values with no common letters are significantly different (P < 0.05).

elongated, flattened nucleus, large cytoplasm, and
secretory granules (Figure 3E, white star). Meanwhile,
ISC were identified by their wedge-shaped nuclei
(Figure 3E, white triangle), which were located be-
tween Paneth cells. At 4 hpi of LPS, when compared
with the mitochondria in the control group
(Figure 3F, white arrow), a considerable number of

mitochondria in Paneth cells were swollen
(Figures 3E and 3G, white arrow).
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Secretory Functional Alteration of Paneth
Cells Induced by LPS Injection

The Lysozyme (Paneth cell marker), Wnt3a (regulate
Lgr5 gene), and DII1 (key Notch ligand) were mainly
secreted by Paneth cells, which further constitute the
metabolic niche for nearby ISC. In the present study,
mRNA expression of Lysozyme, Wnt3a, and DIl in the
duodenal crypt was analyzed by qPCR. The results
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Figure 2. Alteration of intestinal stem cells (ISC) activity induced by lipopolysaccharide (LPS) injection. (A) The hydroethidine (DHE) staining
showed the reactive oxygen species in the duodenal crypt, DAPI counterstained the nuclei, scale bar = 20 um. Histograms represented the relative
expression of ISC marker Lgr5 mRNA (B) and Bmi! mRNA (C) in the duodenal crypt from the control group and LPS injection groups (sampled
at 1 h post-injection [hpi], 4 hpi, and 8 hpi). Values with no common letters are significantly different (P < 0.05).
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LPS - 4 hpi

Figure 3. Morphologic alteration of Paneth cells induced by lipopolysaccharide (LPS) injection. (A-D) On phloxine-tartrazine staining, the char-
acteristic purple granular of Paneth cells were presented at the crypt bottom (red arrowhead), scale bar = 10 pm. (E) On transmission electron mi-
croscopy assay, Paneth cells (white star) were identified by their elongated, flattened nucleus, large cytoplasm, and secretory granules. Intestinal stem
cells (white triangle) were identified by their wedge-shaped nuclei, located between Paneth cells, scale bar = 2 pm. Compared with the mitochondria in
the control group (F, white arrow), many mitochondria in the LPS-4 hpi group were swollen (G, white arrow), scale bar = 500 nm. Abbreviation: hpi, h

postinjection.

(Figure 4) showed that the Lysozyme expression on LPS
injection was considerably lower than that in the control
group (by 72.56-90.78%, P-value < 0.0001). However,
Wnt3a and DIl1 decreased at 1 hpi of LPS, then
increased gradually. At 8 hpi of LPS, Wnt3a and DIi1
in the crypt were higher by 36.88% (P-value = 0.168)
and 96.46% (P-value = 0.001), respectively, than those
in the control group.

DISCUSSION

The amount and secretory function of the goblet cells
could be affected by infection or inflammation. In young

chickens that were infected with S. Pullorum, a signifi-
cantly reduced MUC?2 expression was observed in the
chicken intestine (Zhu et al., 2020). In the present study,
with the progress of intestinal inflammation induced by
LPS, the MUC2 transcription level decreased rapidly
since 1 hpi. Owing to the upregulated DIl1 in the crypt
at 8 hpi of LPS, which would repress the differentiation
of ISC into the secretory lineage, the MUC2 transcrip-
tion level declined at 8 hpi of LPS. Birchenough et al.
(2015) pointed out that in an inflammatory or infectious
condition, the intestinal goblet cell proliferation and mu-
cous secretion are under direct regulation by the immune
system. We speculated that in young chickens, the
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Figure 4. Secretory alteration of Paneth cells induced by lipopolysaccharide (LPS) injection. Histograms represented the relative expression of
Lysozyme, Wnt3a and DIl mRNA in the duodenal crypt from control group and LPS injection groups (sampled at 1 h postinjection |[hpi], 4 hpi,
and 8 hpi). Values with no common letters are significantly different (P < 0.05).

reduction of MUC?2 at the early stage is a direct reaction
of mucosa to inflammation. However, the decrease of
MUC?2 later could be induced by the alteration of ISC
niche.

Lgr5™ ISC can differentiate into various epithelia and
maintain epithelial self-renew. Previously, 1L-22, 1L-25,
and IL-13 were proved to regulate Lgr5* ISC regenera-
tion or differentiation (Lindemans et al., 2015; Howitt
et al., 2016; von Moltke et al., 2016). Besides, nutritional
state and inflammation have been identified as upstream
regulators of ISC activity in mammal (Beumer and
Clevers, 2016). In the present study, after LPS treat-
ment, Lgr5 and Bmil in the duodenal crypt were
decreased gradually from 1 hpi to 4 hpi, then elevated
at 8 hpi. Similarly, in S. Pullorum—infected chickens,
the expression of ISC markers Lgrd and Bmil was
increased to support the crypt hyperplasia (Xie et al.,
2020). As the ROS signaling in ISC was proved to acti-
vate p38 and drive the differentiation of ISC
(Rodriguez-Colman et al., 2017). Our study further
confirmed that the ROS level in the duodenal crypt
decreased obviously at 1 hpi of LPS and then recovered
gradually. Taken together, we suggested that the LPS-
induced intestinal inflammation would reduce the ISC
activity at an early stage (such as from 1 hpi to 4 hpi)
and recover soon (such as at 8 hpi).

Paneth cells are a primary secretory epithelium that
resides at the crypt bottom and releases antimicrobial
peptides, including lysozyme. Our study demonstrated
that after LPS injection, Lysozyme expression in
duodenal crypt decreased substantially from 1 hpi to 8

hpi. This result aligns well with the finding that Salmo-
nella enterica serovar Typhimurium infected in mice
would reduce the Paneth cell-specific lysozyme content
and the number of granules per Paneth cell (Martinez
Rodriguez et al., 2012). However, the Paneth cell popu-
lation would expand owing to the activation of their dif-
ferentiation program (Martinez Rodriguez et al., 2012).
Moreover, ultrastructural analysis in our study showed
a considerable number of mitochondria in Paneth cells
were swollen at 4 hpi of LPS, indicating that the Paneth
cells impaired severely under LPS challenge. Similarly,
necrosis-like swelling mitochondria also appeared in
the intestinal crypt of mice with inflammatory bowel dis-
ease (Wang et al., 2020). These suggested that Paneth
cells of chickens impaired obviously at the early stage
of intestinal inflammation.

Paneth cells provide a niche for ISC by producing
signaling molecules such as Wnt, Notch ligands, and
epidermal growth factor (Schepers et al., 2012).
Rodriguez-Colman et al. (2017) proved that Wnt3a
would promote the proliferation of Lgr5™ ISC and
transit-amplifying cells in intestinal organoid in vitro.
van Es et al. (2012) suggested that Paneth cells could se-
cret DII1 and Delta-like4 as Notch ligands, which trigger
Notchl and Notch2 on ISC, thus keeping them from en-
try into the secretory lineage. In the present study, after
LPS challenge in young chickens, DIl and Wnt3a in the
crypt increased gradually from 1 hpi to 8 hpi, corre-
sponding to the downregulated MUC2 expression and
upregulated Lgr5 and Bmil at 8 hpi. Consistently,
TNF was demonstrated to enhance Wnt/B-catenin
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signaling during ulcer healing in mice with inflammatory
bowel disease (Bradford et al., 2017). S. Pullorum infec-
tion in chickens could increase the depth of crypt and
abnormal proliferation of ISC by overactivation of
Wnt/B-catenin pathway (Xie et al., 2020). These sug-
gested that the secretion profile of the chicken’s Paneth
cells was changed under LPS-induced intestinal
inflammation.

In conclusion, at the early stage of LPS-induced intes-
tinal inflammation (from 1 hpi—4 hpi), Paneth cells were
impaired obviously, which was reflected as swollen mito-
chondria and downregulated Lysozyme. Subsequently,
the ISC activity reduced remarkably. Soon after that,
the transcription of Wnt3a and DIl1 in crypt increased
gradually and induced the recovery of ISC activity.
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