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Abstract: Traffic cameras are a widely available source of open data that offer tremendous value to
public authorities by providing real-time statistics to understand and monitor the activity levels of
local populations and their responses to policy interventions such as those seen during the COrona
VIrus Disease 2019 (COVID-19) pandemic. This paper presents an end-to-end solution based on
the Google Cloud Platform with scalable processing capability to deal with large volumes of traffic
camera data across the UK in a cost-efficient manner. It describes a deep learning pipeline to detect
pedestrians and vehicles and to generate mobility statistics from these. It includes novel methods for
data cleaning and post-processing using a Structure SImilarity Measure (SSIM)-based static mask
that improves reliability and accuracy in classifying people and vehicles from traffic camera images.
The solution resulted in statistics describing trends in the ‘busyness’ of various towns and cities in
the UK. We validated time series against Automatic Number Plate Recognition (ANPR) cameras
across North East England, showing a close correlation between our statistical output and the ANPR
source. Trends were also favorably compared against traffic flow statistics from the UK’s Department
of Transport. The results of this work have been adopted as an experimental faster indicator of the
impact of COVID-19 on the UK economy and society by the Office for National Statistics (ONS).

Keywords: traffic camera; deep learning; cloud computing; mobility; time series

1. Introduction

Today’s traffic monitoring systems are highly integrated within urban infrastructures,
providing near-ubiquitous coverage in the busiest areas for managing flows, maintaining
safety, and performance analysis. Traffic cameras and Closed-Circuit TeleVision (CCTV)
networks comprise much of these systems, supplying real-time information primarily
intended for use by control room operators.

A major advantage of CCTV networks is their scalability. A monitoring system can
range from a single camera to potentially thousands of cameras across a city or region
accessible from a unified network. The imagery these cameras provide can be a further
source of data when combined with machine learning and object detection. Through these,
it is possible to obtain data for the modeling of traffic and pedestrian flows, as part of micro-
and macro-simulation systems, ranging from the discrete movements and interactions of a
single entity to overall flow characteristics on a regional scale by simultaneously analyzing
conditions across multiple camera sensors, respectively [1–4]. Recent years have seen
considerable research focus on improved machine learning for CCTV applications, and a
range of open-source, research, and commercial implementations are now widespread.
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A major concern for public policy responding to the COVID-19 pandemic has been
to quantify the efficacy of interventions, such as social distancing and travel restrictions,
and to estimate the consequences of changes in travel patterns for the economy and spread
of the virus. The UK has thousands of publicly accessible traffic cameras with providers
ranging from national agencies such as Highways England, who stream images from
1500 cameras located across the major road system of England, and Traffic Wales; to more
localized authorities such as Transport for London, with more than 900 cameras, and
Reading Borough Council.

There are a number of strengths to traffic cameras as a source of mobility data:

• The data are very timely. Cameras may provide continuous video, or stills updated
many times each hour, and these images can be accessed almost immediately follow-
ing capture.

• A wide range of different types of moving objects can be determined, including cars,
buses, motorcycles, vans, cyclists, and pedestrians, all of which can provide different
useful information from changes in individual behavior to impacts on services and
local economies.

• The source is open. Data are widely accessible to groups with differing interests
and reusing a public resource adds value to public investment without incurring
additional collection cost.

• Cameras provide coverage over a range of geographic settings: the center of towns
and cities, as well as many areas that show either retail or commuting traffic and
pedestrian flows.

• There is a large network of traffic cameras capturing data simultaneously, allowing the
selection of individual cameras for different purposes whilst still retaining acceptable
coverage and precision.

• Individuals and vehicles are, in almost all cases, not personally identifiable, e.g.,
number plates and faces, due to the low resolution of the images.

However, the source is also not without data quality problems. In order to generate
useful mobility statistics, objects of interest within images need to be automatically detected.
These exhibit wide variabilities due to the different styles of vehicles and their sizes in the
image, varying by distance from the camera. The quality of individual images can vary
substantially due to weather, time of day, camera setting, and image resolution and quality.
These factors make robust detection problematic. The images are generated frequently,
creating large data volumes, and are dispersed across multiple sites of different camera
operators. This complicates their collation and processing into statistics. The geographic
coverage of cameras is also biased according to the desire to show traffic flow at strategic
sites and the open data policies of different camera operators in different locations.

In this paper, we investigated these issues within the context of a National Statistical
Office producing early experimental data to monitor the impact of COVID-19 on the UK
economy and society [5]. In Section 2, we describe the source of data used and methods for
selecting cameras pertinent to meet our objectives. The system architecture is described
in Section 3, comprising a scalable pipeline in the Cloud to process these data sources.
This is followed by the description of a deep learning-based machine learning pipeline
in Section 4, which allows the detection of pedestrians and vehicles from traffic camera
images as a way of measuring the busyness of different towns and cities in the UK. Here,
we discuss the comparative analysis on the cost, speed, and accuracy of different machine
learning methods to achieve this, and present pre- and post-processing methods to improve
the accuracy of results. Section 5 introduces the statistical processing of imputation and
seasonal adjustment on the raw time series, and then the raw and processed time series
are validated with other sources from ANPR and traffic activities from the Department for
Transport (DfT) in Section 6. Discussion and conclusions are presented in Sections 7 and 8,
respectively, with plans for further work highlighted. This work has been made available
for public authorities and researchers to re-deploy on an open basis.
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Background

Extracting information from traffic cameras requires semantic entities to be recognized
in the images and videos they capture. This is a popular topic in computer vision, particu-
larly the field of object detection [6–11]. Deep learning research has achieved great success
in this task through the development of algorithms such as the You Only Look Once (YOLO)
series [12] and Faster-Region-based Convolutional Neural Network (Faster-RCNN) [13,14].

Traditional computer vision machine learning techniques have been employed by
authors such as Wen et al. [15]. Here, Haar-like features and AdaBoost classifiers are used
to achieve accurate vehicle detection. Such techniques were also enhanced to make use of a
vehicle indexing and search system [16]. Another well-established technique for accurate
vehicle detection takes the combined approach of background extraction, foreground
segmentation, and blob classification [17,18]. For even further performance and reliability,
Haar-features, histograms of Oriented Gradients (HOG), and blob classification can be
combined [19]. Techniques prior to 2011 can be found in a detailed review by [6].

A major benefit of deep learning-based methods over traditional detection techniques
is robust performance within challenging monitoring conditions. This compensates for
poor lighting conditions [20], or the substandard camera resolution [7,21] used in the
YOLOv2 deep learning framework to recognize multiple vehicle categories. In [22], Mask-
RCNN was utilized, an extension of Faster-RCNN, to define precise segmentation masks
of vehicles within traffic footage. Similarly, authors Hua et al. [23], Tran et al. [24], and
Huang [25] all made use of the Faster-RCNN variant, employing resnet101 for the feature
extractor. In addition to these, Fan et al. [26] demonstrated the use of Faster-RCNN from a
vehicle platform, utilizing the KITTI Benchmark dataset.

Researchers in the UK have applied these models to traffic cameras to see if the data
can be used to improve decision-making in COVID-19 policies. The Alan Turing Institute
worked with the Greater London Authority (GLA) to assess activity in London before and
after the lockdown [27]. Their work is, in part, based on the air pollution estimation project
of University College London (UCL) [28], which detects and counts vehicles from JamCam
(London) traffic cameras to estimate air pollution using a deep learning model based on
YOLOv3. Newcastle University’s Urban Observatory [29] has worked on traffic cameras
and Automatic Number Plate Recognition (ANPR) to measure traffic and pedestrians in
North East England using the Faster-RCNN model [30,31]. Similarly, the Urban Big Data
Centre at the University of Glasgow has explored using the spare CCTV capability to
monitor activity level during the COVID-19 pandemic on streets in Glasgow [32,33]. A
few companies have also undertaken related work using their own networks of cameras.
Vivacity Labs [34] demonstrated the use of their commercial cameras and modeling to
assess compliance with social distancing. Meanwhile, camera-derived data on retail footfall
from Springboard [35] have also been used in ONS as part of experimental data [5] looking
at the economic impacts of COVID-19. Further afield, researchers at the University of
Cantabria, Spain, have analyzed the impact of COVID-19 on urban mobility by comparing
vehicle and pedestrian flow data (pre- and post-lockdown restrictions) from traffic control
cameras [36].

Despite not employing traffic cameras in their research, Zambrano-Martinez et al. [37]
presented a useful approach in modeling an urban environment based upon busyness
metrics such as vehicle loads and journey times. Likewise, Costa et al. [38] did not focus
on utilizing existing traffic camera networks, but rather outlined a concept by which
existing telecommunication infrastructure can be leveraged to achieve accurate traffic flow
modeling and prediction.

There are a number of unresolved issues in realizing the use of open traffic camera
imagery for real-world insight. Most notably, there has been substandard sets of quality
training data and models when compared against similar computer vision applications
within other domains. The versatility of these tools and resources are of critical considera-
tion for scalable applications (where internal and external camera conditions are variable),
and for monocular camera setups (where accurate 3D geometry extraction is often either
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impossible or impractical). Since 2017, the AI City Challenge has gathered researchers
from around the globe to address these problems, as well as to solve the complex issues
that limit accurate data retrieval within real-world contexts [39]. With each challenge,
increasing focus has been given to analyzing multi-camera networks that simulate existing
large-scale urban systems. For example, in 2020, participants were encouraged to compete
in one or more of the following four categories: Multi-Class Multi-Movement Vehicle
Counting, City-Scale Multi-Camera Vehicle Re-Identification, City-Scale Multi-Camera
Vehicle Tracking, and Traffic Anomaly Detection [40]. Among successful experiments,
object detection models from the YOLO series and Faster-RCNN were utilized for their su-
perior speeds and performance on consumer-grade GPUs. Similarly, challenges have been
organized by UA-DETRAC for the AVSS conference 2019, Taipei, Taiwan, whereby partici-
pants contributed innovative solutions for improving computer vision vehicle detection
and counting performance [41]. Here, the UA-DETRAC Benchmark Suite for multi-object
detection and tracking was used exclusively.

The development of benchmark standards is integral for measuring the relative perfor-
mance of deep learning-aided traffic monitoring applications. Notable benchmarks include
the CityFlow Benchmark dataset for multi-camera, multi-target vehicle reidentification,
which contains almost 3.5 h of 960p footage, of traffic at highways and intersections within
the US [42], and UA-DETRAC Benchmark Suite containing 10 h of footage extracted from
24 locations in Beijing and Tianjin, China [41].

As with traffic monitoring applications, several notable pedestrian detection and
tracking benchmarks have been developed. The CrowdHuman benchmark specializes
in pedestrian detection within densely populated and highly diverse scenes, making for
many occlusion instances [43]. In total, the dataset contains 470,000 identified persons
across 24,000 images, for training, testing, and validation purposes. The Multiple Ob-
ject Tracking (MOT) benchmark extends upon basic detection principles by providing
evaluation datasets for multi-target pedestrian tracking [44]. Data are crowdsourced and
distributed periodically with each new benchmark challenge. Built upon the CityScapes
dataset, the CityPersons benchmark dataset consists of 19,654 unique persons captured
across 18 central-European cities [45,46]. Footage was recorded from a vehicle platform
under varying weather conditions. The Caltech Pedestrian Detection Benchmark consists
of 2300 labeled pedestrians [47]. Dataset footage has been captured from a road vehicle
perspective during ‘regular’ Los Angeles metropolitan traffic conditions. The EuroCity
Persons detection benchmark consists of 238,200 persons within 47,300 images from road
vehicle perspectives [48]. Data have been collected from across 31 cities in Europe, in all
seasonal weather and day/night lighting conditions.

One combined traffic and pedestrian monitoring benchmark is KITTI [49]. This dataset
was captured using an array of vehicle platform sensors, including a stereo camera rig
(for computer vision dataset), as well as a Velodyne Laserscanner and Global Positioning
System (GPS) (for spatial and temporal ground truth validations). From these, 3D object
detection and tracking could be achieved. In total, the dataset consists of over 200,000
annotations, in some instances with up to 30 pedestrians and 15 cars per image, in urban
and rural environments alike from the city of Karlsruhe, Germany.

Previous work left a research gap with a lack of publicly available low-resolution
traffic camera imagery and test data sets, so we provide a publicly available dataset of
10,000 traffic images [50] and also aim to release 4000 annotated images.

2. Data

The UK has thousands of traffic cameras, particularly in major cities and towns; for
example, in London alone, there are nearly 1000 accessible cameras (see Figure 1 from the
JamCam website). These data are available in the public domain where automatic periodic
static images are updated from traffic camera networks across the UK.
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Figure 1. Example of a website providing access to traffic camera data streams provided by the
local government body Transport for London via their JamCam open data service (screenshot from
https://www.tfljamcams.net (accessed on 28 June 2021) data © 2021 Google; Contains OS data ©
Crown copyright and database rights 2021 and Geomni UK Map data © and database rights 2021).

Appendix A lists open websites we have reviewed where camera images are publicly
available. We selected a subset of locations from that list and built up a profile of historical
activity from their cameras. Table 1 lists the sources we selected.

Table 1. Sources of open traffic camera image data used in this research and date when ingestion of
data from the source was commenced.

Image Source Date First Ingested

Durham 7 May 2020
Transport for London (TfL) 11 March 2020

Transport for Greater Manchester (TfGM) 17 April 2020
North East England (NE Travel Data) 1 March 2020

Northern Ireland 15 May 2020
Southend 7 May 2020
Reading 7 May 2020

These locations give broad coverage across the UK whilst also representing a range of
different sized settlements in both urban and rural settings.

2.1. Camera Selection

In this research, we were interested in measuring changes in the general busyness of
places, rather than monitoring traffic flow per se. Not all cameras are useful for measuring
this; many of the cameras are focused on major trunk roads or located on country roads
without pavements. To select cameras that were representative of the busyness of local
populations, we manually tagged cameras if they contained certain scene elements, e.g.,
pavements and cycle lanes, within the scenes they captured. The elements we tagged are
shown in Figure 2.

https://www.tfljamcams.net
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Figure 2. Percentage of cameras, for each source of open traffic camera images, that include the given
scene element category within their frame of view.

We scored cameras based on their mix of these scene elements to determine which
were more likely to represent ‘busyness,’ such as street scenes with high footfall potential.
The higher the total score, the more likely the cameras were expected to include both
pedestrians and vehicles. The scores, determined empirically, were given in Table 2.

Table 2. Scores given for the presence of different types of scene elements within the view of a traffic
camera, used to assess the camera’s potential to describe the ‘busyness’ of the local environment.

Object Score

Shops +5
Residential +5
Pavement +3
Cycle lane +3
Bus lane +1

Traffic lights +1
Roundabout −3

We used the total scores to decide if a camera was used; example images with total
scores from 1 to 14 are presented in Figure 3, noting the increasing likelihood of pedestrians
in the image as coverage area becomes more residential or with shops.

We examined the distribution of scores amongst image providers, with total scores
of eight or above noted as having an even distribution amongst providers, and likely to
contain shops or residential areas (a source of pedestrians). A threshold value of eight was
chosen to represent a reasonable likelihood of capturing footfall whilst reducing sample
size (such as excluding areas without pavements).

These types of scenes showed a reasonable spread for all image providers, meaning the
different geographic areas covered by providers have a reasonably consistent distribution
of street scenes. To avoid one area overwhelming the contribution from another, we also
opted to keep each geographic area as a separate dataset. We therefore investigated the
time series behavior for each area independently, rather than producing an aggregate
time series for the UK. How to produce such an output using post-stratification is being
considered as part of future work.
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2020) obtained from Tyne and Wear UTMC Open Data Service under Open Government Licence v3.0.

2.2. Annotation of Images

Annotated data are required to train and evaluate models. For this research, we
created a dataset of manually labeled images. We used an instance [51] of the VGG Image
Annotator (VIA) [52] application to label our data, hosted courtesy of the UN Global
Platform [53]. We labeled seven categories: car, van, truck, bus, person, cyclist, and
motorcyclist. Figure 4 shows an interface of the image annotation application.

Two groups of volunteers from the Office for National Statistics (ONS) helped label
approximately 4000 images from London and North East England. One group labeled a
randomly selected set of images without consideration of the time of day; the other labeled
randomly selected images but with an assigned time of day. Random selection helped
to minimize the effect of bias on training and evaluation. However, we also wanted to
evaluate the impact of different illumination levels and so purposely stratified sampling by
fixed time periods for some images.
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Figure 4. Example of the VGG Image Annotator tool being used to label objects on an image of a
London street (TfL open data): orange box: car, blue box: person, green box: bus.

Table 3 presents counts on the labeled data. The Urban Observatory, Newcastle
University provides a well-trained Faster-RCNN model based on 10,000 images from
North East England traffic cameras, and the above datasets are thus used to evaluate
the models.

Table 3. Counts of labels generated from two collections of image data (London and North East England) by type of
object annotated.

Images Car Van Truck Bus Pedestrian Cyclist Motorcyclist

London 1950 9278 1814 1124 1098 3083 311 243
North East

England 2104 9968 1235 186 1699 2667 57 43

Total 4054 19,246 3049 1310 2797 5750 368 286

3. Processing Pipeline: Architecture

A processing pipeline was developed to gather images and apply models to detect
numbers of pedestrians and vehicles. This architecture can be mapped to a single machine
or a cloud system; we opted to use Google Compute Platform (GCP), but other platforms
such as Amazon’s AWS or Microsoft’s Azure would provide relatively equivalent services.

The solution pipeline was developed in the Cloud, as this removed the need for
machine maintenance, and provided capacity for large (managed) data storage and on-
demand scalable compute. Remote, distributed working is also supported, which was
extremely useful as we developed this during the pandemic and, hence, were all working
remotely. Code in the pipeline was run in ‘bursts’; as cloud computing is only charged
when used, this was a potential saving in compute costs. Our overall architecture is
presented in Figure 5, where blue boxes indicate a process and other colors represent
storage, the color being used to remind the user that this is the same object being referred
to as a dependency.
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The system depends on a list of available camera image Uniform Resource Locator
(URL)s, which are refreshed daily; these camera images are then downloaded every 10 min,
and analyzed 20 min later (as we need a before/after image for filtering—see later in
Section 4.3 Static Model). The analysis generates object counts that are stored in a database,
which is processed weekly to generate a time series and related statistical reports.

Google Cloud Functions [54] were used. These are stand-alone, stateless code that
can be called repeatedly without causing corruption—a key consideration to increase the
robustness of the functions. A major advantage occurs when we make multiple requests
to a cloud function. If it is busy servicing another request and there is sufficient demand,
another instance will be spun up automatically to take up the load. These instances are not
specifically charged for, as charges are for seconds of compute used and memory allocated.
Hence, running 100 instances to perform a task costs little more than running a single
instance 100 times.

This on-demand scalability enabled the code for downloading images to take advan-
tage of GCP’s internet bandwidth. Over a thousand images could be downloaded in under
a minute and the system could easily scale to tens of thousands of images. To cope with
a potentially enormous quantity of imagery, cloud storage buckets were used to hold the
data—these are named file storage locations within GCP that are secure and allocated to
the project. Processing the images through a model to detect cars and pedestrians resulted
in counts of different types of detected objects being written into a database. We used a
managed database, BigQuery [55], to reduce maintenance. The database was used to share
data between the data collection and time series analysis, reducing coupling. The time
series analysis was a compute-intensive process taking hours to run due to imputation
overhead (described in Section 5). Processing was scheduled daily using cloud functions.
The system is highly flexible; it is not restricted to images but is merely a large-scale data
processing pipeline where data are fed into filters and then processed by models to eventu-
ally generate object counts. For instance, the input data could include audio files where we
are looking to detect signals, or text reports where we wish to count key phrases or themes.



Sensors 2021, 21, 4564 10 of 26

It is also cost-efficient. The entire cloud infrastructure to produce weekly time series costs
approximately GBP 10/day to run, processing ~800 cameras and, hence, ~115,000 images
per day.

4. Deep Learning Model

The deep learning pipeline consists of data cleaning, deep learning-based object de-
tection, and a static filter (post-processing). Figure 6 describes the modeling process. The
data flow shown in green processes spatial information from a single image. Spatial infor-
mation refers to information from pixels and their neighbors within the two-dimensional
space or a single image (rather than its location in geographic space). Here, each image
is processed independently without considering other images captured before or after it.
The blue workflow processes both spatial information, of individual images, and temporal
information from their most recent neighboring images in time. The data cleaning step uses
the temporal information to check if an image is duplicated, dummy, or faulty. As it may
be possible to identify number plates or faces on some high-resolution images, the data
cleaning also down-samples images from high resolution to low resolution to blur these
details. The object detection step uses spatial information to identify semantic objects in a
single image using a deep learning model. The static mask is a post-processing step that
uses temporal information over a sequence of images to determine whether these objects
are static or moving.
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4.1. Data Cleaning

A number of issues were found when using these low-quality camera images. In
principle, new images are fetched every 10 min from cameras, for example, via an API
or from cloud storage container. However, in practice, images can be duplicated if the
hosts have not updated them in time. Cameras can be periodically offline, and when
this happens, they display placeholder images. Images can also be partly or completely
distorted due to physical problems with the cameras. Some examples of problematic
images are shown in Figure 7. These types of images will impact counts, so data cleaning
is an important preliminary step to improve the quality of statistical outputs.

By examining images from London and North East England traffic, two common
characteristics of unusable images were identified: large continuous areas consisting of
different levels of pure grey (R=G=B) (Figure 7a–c) and horizontal rows repeated in whole
or part of the image (Figure 7d–f). To deal with the first issue, a subsample of the colors
in the image was used to detect if a single color covered more than a defined threshold
area. We found that sampling every 4th pixel both horizontally and vertically (1/16th
of the image) gave sufficient coverage; further down-sampling pixels from 256 levels to
32 levels in each of the red, green, and blue was sensitive enough to correctly detect all
nonphotograph images, such as ‘Camera 00001.06592 in use keeping London moving’ in
Figure 7a, where a single color covered >33% of an image. For the partly or completed
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distorted images, a simple check to determine if consecutive rows contained a near-identical
sequence of pixels (allowing for variation due to compression artefacts) was used. If a
significant portion of the image contained such identical rows, we marked the image
as ‘faulty’.
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incident; (b,c) cameras offline; (d–f) examples of distorted images (images TfL Open Data).

Some local councils have deployed high-definition cameras, and this brings General
Data Protection Regulation (GDPR) issues where number plates or faces are potentially
identified. Figure 8 shows two modified examples of disclosive number plates captured on
CCTV images. To assess the risk of data protection, we recorded a 24 h period of images
from all the traffic cameras and manually examined the resolution and risk of recognizing
number plates and faces. We observed that the most common image width of these datasets
was 440 pixels, and no legible number plates were identified under this width. A width
of 440 was thus chosen as our threshold to deem an image as being of ‘higher resolution’
if exceeded. The down-sampled height depends on the ratio of width before and after
(440 pixels). Figure 9 shows some examples of images before and after down-sampling.

We have evaluated the object counts generated before and after down-sampling across
all locations on the 24 h recorded images. Figure 10 shows the object counts in different
locations before and after down-sampling during 24 h. Traditional evaluation on object
recognition requires a time-costing manual label, as mentioned in Section 2.2. Alternatively,
we adopted the Pearson correlation to compare two time series, where 1 means perfectly cor-
related, 0 means no correlation, and a negative number means opposite correlated. A high
Pearson correlation score reflects the trivial influence from the down-sampling operation.
In general, cars have a 0.96 correlation, whereas a person and cyclist have a 0.86 correlation,
and this shows a significant close correlation before and after down-sampling.
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4.2. Object Detection
4.2.1. Deep Learning Model Comparison

Object detection is used to locate and classify semantic objects within images. We
compared a number of widely used models including the Google Vision API, Faster-
RCNN, and the YOLO series. Google Vision API provides a pre-trained machine learning
model to ‘assign labels to images and quickly classify them into millions of predefined
categories’ [56]. It helps with rapidly building proof-of-concept deployments but is costly
with slower speed and worse accuracy compared to the other methods. Faster-RCNN was
first published in 2017 [14] and is the most widely used version of the Region-based CNN
family. It uses a two-stage proposal and refinement of regions followed by classification.
The model used in this pipeline was trained on 10,000 camera images from North East
England, and the base model and training code are openly available [57,58]. YOLOv5 is
the latest version of the YOLO series of models, released in May 2020 [59]. The YOLO
architecture performs detection in a single pass with features extracted from cells of an
image split into a grid feeding into a regression algorithm predicting objects’ bounding
boxes. YOLOv5 provides different pre-trained models to balance speed and accuracy. In
our experiments, we chose the YOLOv5s and YOLOv5x, where YOLOv5s is the lightest
model with the fastest speed but the least accuracy, whilst YOLOv5x is the heaviest model
with the slowest speed but the most accurate results. All the models were run on a Google
cloud virtual machine using NVIDIA GPU Tesla T4 [60]. Table 4 shows a comparison of
processing speed using the above models.

Table 4. Comparison of average processing speeds (milliseconds per image) measured for different
object detection models.

Google Vision API Faster-RCNN YOLOv5s YOLOv5x

Speed
(ms/image) 109 35 14 31

Figure 11 shows some example results from different models where the Google Vision
API missed a few objects whilst both YOLOv5x and Faster-RCNN perform better with
fewer omissions with differing confidence scores.

A detailed comparison of performance quality is shown in Figure 12. This is based on
an evaluation dataset of 1700 images captured from JamCam, London during the daytime
detailed in Table 5. As the Google Vision API does not identify any cyclists and YOLOv5
does not provide a category of cyclist or motorcyclist, these classes have been omitted
in the comparison. The performance of object detection is normally evaluated using
mean Average Precision (mAP) over categories [61]. Both YOLOv5 and the Faster-RCNN
achieved better mAP than the Google Vision API did.

Here, 1700 traffic camera images across London (see Table 5) were used to evaluate all
the models. As it is important that the model is able to classify objects at different sizes, in
relation to the distance a detected object is from the camera in a scene, we calculated the
metrics to also consider an object size. This is shown by the horizontal axis, filter pixel size,
in Figure 12. Here, zero means that the testing set includes all sizes of objects; 100 means
that the testing set excludes any labeled objects smaller than 100 pixels and so on. Figure 12
shows that the bigger the object size, the better the performance. Importantly, it also shows
there was a turning point of mAP against object sizes where a model becomes more stable,
and this helps guide the camera settings. For example, in Figure 12a, Faster-RCNN became
stable when the filter pixel size of vehicles was 500 pixels, while YOLOv5s became stable
at 400 pixels. Faster-RCNN achieved the best performance amongst individual models in
the category of vehicle, while YOLOv5x achieved the best against other individual models
in the category of a person.
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Table 5. Number of objects of different categories collected in the evaluation dataset.

Object Class Count of Objects

Car 8570
Bus 958

Truck 1044
Van 1593

Person 2879
Cyclist 281
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Another important factor is the cost. Google Vision API is billed per call [62]. The
cost of using Faster-RCNN to create the weekly time series was about GBP 10 per day,
whilst the Google Vision API charges about GBP 120 per day for the weekly time series.
The YOLOv5 costs were similar to Faster-RCNN.

The Faster-RCNN and YOLO series have the code repositories on GitHub and this
gives users flexibility to tailor the models on their targeted semantic objects or improve the
accuracy through fine-tuning or re-training. However, the deployment and implementation
of the Google Vision API is hidden from the end users.

4.2.2. Investigation of Ensemble of Models

The above accuracy comparison indicates that the YOLOv5 and the Faster-RCNN
models appeared to have particular strengths for different object detection types. Figure 13
shows an example.
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Faster-RCNN and YOLOv5x models was designed. Ideally, a pool with three or more 
models can lead to an easy ensemble solution, such as a voting scheme, when conflicts 
arise from different models. In this case, only two models were available, so this presented 
a challenge to solve conflicts between two models. Through analyzing these two models’ 
behavior, we proposed a ‘max’ method that gives priority to the individual results with 
the maximum confidence scores from different models. 

Recall the comparison of individual models in Figure 12 where Faster-RCNN 
achieved the best mAP on the category of vehicle, while YOLOv5x achieved the best on 
the category of person. Using the same evaluation dataset (Table 5), a comparison of the 
ensemble method against Faster-RCNN and YOLOv5x is shown in Figure 14 where the 
ensemble method achieves a better mAP than the individual models in general in both 
categories of vehicle and person. The ensemble method can be parallelized and the speed 
is limited by the slowest model in the pool. 

Figure 13. Example of object detection using an ensemble method; (a,b) Annotations detected by
the Faster-RCNN and YOLOv5x models independently, respectively; (c) the result of combining
the results in an ensemble. In (c), red boxes show objects detected by both models; green boxes are
objects detected by Faster-RCNN but not YOLOv5x, and blue boxes are objects detected by YOLOv5x
but not Faster-RCNN. (image TfL Open Data).

To exploit these differences and improve accuracy, an ensemble method based on the
Faster-RCNN and YOLOv5x models was designed. Ideally, a pool with three or more
models can lead to an easy ensemble solution, such as a voting scheme, when conflicts
arise from different models. In this case, only two models were available, so this presented
a challenge to solve conflicts between two models. Through analyzing these two models’
behavior, we proposed a ‘max’ method that gives priority to the individual results with the
maximum confidence scores from different models.

Recall the comparison of individual models in Figure 12 where Faster-RCNN achieved
the best mAP on the category of vehicle, while YOLOv5x achieved the best on the category
of person. Using the same evaluation dataset (Table 5), a comparison of the ensemble
method against Faster-RCNN and YOLOv5x is shown in Figure 14 where the ensemble
method achieves a better mAP than the individual models in general in both categories of
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vehicle and person. The ensemble method can be parallelized and the speed is limited by
the slowest model in the pool.

Sensors 2021, 21, 4564 18 of 28 
 

 

 
(a) Comparison of the mAP metric for the ensemble model and individual models for vehicle detection. 

 
(b) Comparison of the mAP metric for the ensemble model and individual models for person detection. 

Figure 14. Comparison of the mAP metric for the ensemble model, and components of Faster-RCNN and YOLOv5x mod-
els by minimum label size in pixels (horizontal axis) and label class (chart; above vehicles, below people) showing the 
superior performance of the ensemble method over its constituents. 

4.3. Static Mask 
The object detection process identifies both static and moving objects. As the aim is 

to detect activity, it is important to filter out static objects using temporal information from 
successive images as a post-processing operation. The images are usually sampled at 10 
min intervals, but cameras may change angles irregularly, so traditional methods for back-
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A Structure SImilarity Measure (SSIM) [64] approach was adopted to extract the 
background. SSIM is a perception-based model that perceives changes in structural infor-
mation. Structural information is the idea that the pixels have strong interdependencies 
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Figure 14. Comparison of the mAP metric for the ensemble model, and components of Faster-RCNN and YOLOv5x models
by minimum label size in pixels (horizontal axis) and label class (chart; above vehicles, below people) showing the superior
performance of the ensemble method over its constituents.

4.3. Static Mask

The object detection process identifies both static and moving objects. As the aim
is to detect activity, it is important to filter out static objects using temporal information
from successive images as a post-processing operation. The images are usually sampled at
10 min intervals, but cameras may change angles irregularly, so traditional methods for
background modeling in continuous video, such as mixture of Gaussians [63], were not
suitable for such a long interval and fast camera view switches. The traditional background
modeling normally requires a period of continuing video with a fixed view to build up a
background image.

A Structure SImilarity Measure (SSIM) [64] approach was adopted to extract the
background. SSIM is a perception-based model that perceives changes in structural infor-
mation. Structural information is the idea that the pixels have strong interdependencies
especially when they are spatially close. These dependencies carry important information
about the structure of the objects in the visual scene. SSIM is not suitable to build up
background/foreground [65] with continuous video, because the changes occur between
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two sequential frames over a very short period, e.g., 40 ms for 25 frames per second video,
and so are too subtle. For a 10 min interval typical of traffic camera images though, SSIM
has enough information to perceive visual changes within structural patterns.

Any pedestrians and vehicles classified during object detection were set as static
and removed from the final counts if they also appeared in the background (Figure 15).
Figure 15a illustrates an example where parked cars have been identified as static. In
Figure 15b, a rubbish bin was misclassified as a pedestrian by the object detection but was
filtered out as a static background element.
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5. Statistical Processing
5.1. Imputation

Once the counts of objects were produced, a number of subsequent processing steps
were carried out to: (a) compensate for missing or low-quality images, (b) aggregate the
cameras to a town or city level, and (c) remove seasonality to facilitate interpretation
of the results. These processes are necessary to make the time series comparable over
time and to ensure that technical faults, such as camera downtime due to maintenance or
nonfunctionality, are not counted as actual drops in activity.

The imputation consisted of identifying missing periods of data from each of the
cameras (usually missing due to technical faults), and then replacing the missing counts of
each object type by estimated values. This ensures that missing images or outages in the
original data do not lead to artificial drops in the estimated level of the time series. The
imputation was carried out using seasonal decomposition. First, the seasonality of the
series was removed from the series. Secondly, the mean of the series within a specified
time window was imputed to the missing periods. Finally, the seasonality was reapplied
to the imputed series. This results in a time series that displays the same seasonality in the
missing periods as the original series. The imputation was applied using the seasonally
decomposed missing value imputation method (seadec) from the ImputeTS package in
R [66], and was found to be the most suitable imputation method out of those assessed.
Other methods such as imputation by interpolation, the last observation carried forward,
and Kalman Smoothing and State Space Models were considered; however, these yielded
less satisfactory results and, in the case of imputation by Kalman Smoothing, the compute
time was significantly longer and unfeasible for production systems.
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Following imputation, the counts of each object type were aggregated to each of the
locations of interest. For example, all the cars counted in the city of Reading by the traffic
cameras (including imputed counts) were summed to produce the corresponding daily
time series for Reading.

5.2. Seasonal Adjustment

Once the series had been aggregated, they were seasonally adjusted to make the inter-
pretation of the results clearer. Seasonal adjustment removes fluctuations due to the time of
day or day of the week from the data, making it easier to observe underlying trends in the
data. Given that these are higher-frequency time series relative to those traditionally used
in official statistics, we applied seasonal adjustment using the TRAMO/SEATS method
in JDemetra+, as implemented in the R JDemetra High Frequency package (rjdhf) [67].
The adjustment was applied on both the hourly and daily time series. The presence of
different types of outliers was tested during seasonal adjustment to ensure that these do
not distort the estimation when it is decomposed into trend, seasonal, and irregular compo-
nents. Seasonally adjusting the data led to the possibility of achieving negative values for
some time series in cases in which the seasonal component was negative and the observed
count was very low (e.g., zero). This is a problem often found in time series with strong
seasonal movements and, as traffic counts are a nonnegative time series, a transformation
was required. A square root transformation was applied to the data, prior to seasonal
adjustment, in order to remove the possibility of artificially creating negative counts.

6. Validation of Time Series
6.1. Time Series Validation against ANPR

Although mean average precision and precision-recall measure the models’ perfor-
mance, it was important to check the consistency of time series data produced against other
sources. Traffic counts from Automatic Number Plate Recognition (ANPR) data obtained
from Newcastle University’s Urban Observatory project and Tyne and Wear UTMC were
used as ground truths to compare against the raw time series generated from the machine
learning pipeline.

ANPR traffic counts are defined on road segments with a pair of cameras, where a
vehicle count is registered if the same number plate is recorded at both ends of the segment.
This has the effect of not including vehicles that turn off onto a different road before they
reach the second camera; such vehicles would appear in traffic camera images and so
counts may not be entirely consistent between the two sources if this happens often. To
this end, we identified short ANPR segments that also contained traffic cameras. We used
the Faster-RCNN model to generate traffic counts from these cameras and compared these
against the ANPR data.

Figure 16 compares time series from ANPR data and the Faster-RCNN model (with
and without the static mask) from 1 March to 31 May 2020. Pearson correlation coefficients
showed a significant positive correlation between the raw time series and the ANPR data
as high as 0.96. The vehicle count from the pipeline is only calculated every 10 min, whilst
ANPR is continuous, so to harmonize the rate at which the two methods capture vehicles,
the ANPR count was downscaled by a factor of 20. This assumes a camera image covers a
stretch of road that would take 30 s for a car to travel along. As the camera only samples
every 10 min (600 s), we assume we have captured 30 s out of the 600 s the ANPR will have
recorded, i.e., 1/20th.

Figure 17 compares the local correlation coefficients for the time series over a rolling
seven-day window. The series is nearly the same for the period of 1 March and 31 May
with or without the static mask, though that with the static mask shows less variation.
The average of these local Pearson correlations was 0.91 for Faster-RCNN and 0.93 for the
Faster-RCNN+static mask.
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6.2. Comparison with Department for Transport Data

The UK Department for Transport (DfT) produces statistics on road traffic aggregated
for Great Britain from 275 automatic traffic count sites [68]. In addition, they provide
statistics on cyclists, bus travel, and rail travel. Their vehicle counts are disaggregated
into cars, light commercial vehicles, and heavy goods vehicles. These data are not directly
comparable to the traffic camera data [5], as the coverage is different (Great Britain-wide
as opposed to a selection of towns and cities), but they are useful to assess whether the
traffic camera sources can be used to estimate inflection points in traffic. Figures 18 and 19
compare vehicle activity from the traffic camera sources from London and North East
England, respectively, with DfT traffic data for Great Britain [69].

Considering the differences in coverage, and the location of count sites (highways,
urban, and rural) and traffic cameras (solely urban), both sources provide similar inflection
points in activity coinciding with the introduction of lockdown measures in late March
2020, during the month of November 2020 and from late December in 2020. Similarly, both
sources provide a similar trend of increasing activity when restrictions are gradually lifted,
with somewhat differing levels. The traffic cameras we applied cover different areas from
DfT data and, moreover, they cover pedestrian counts in commercial or residential areas
that the DfT data do not cover.
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Figure 19. Comparison of time series describing traffic levels between 1 March 2020 and 28 March
2021 based on road traffic statistics for Great Britain produced by the Department for Transport (DfT)
using automatic traffic counters and data produced by traffic cameras from North East England
(NE travel data). Traffic levels are given as a percentage activity index baselined to counts, from the
respective source, on 11 March 2020.

7. Discussion

Traffic camera data can offer tremendous value to public authorities by providing
real-time statistics to monitor levels of activity in local populations. This can inform local
and national policy interventions such as those seen during the COVID-19 pandemic,
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especially where regional and local trends may differ widely. This type of traffic camera
analysis is best suited at detecting trends in ‘busyness’ or activity in town and city centers,
but is not suited for estimating the overall amount of vehicle or pedestrian movements,
or for understanding the journeys that are made given the periodic nature of the images
provided. It provides high frequency (hourly) and timely (weekly) data, which can help to
detect trends and inflection points in social behavior. As such, it provides local insights that
complement other mobility, and supplement other transport, datasets that lack such local
and temporal granularity. For example, Google’s mobility data [70] are aggregated from
Android users who have turned on location history on their smartphones but aggregated
by region; Highways England covers motorways and some A-roads; commercial mobile
photo cell data are not widely available on a continuous basis and can be expensive. These
openly accessible traffic cameras are mainly focused on junctions, and residential and
commercial areas, and thereby capture a large proportion of vehicles and pedestrians
regardless of journey purpose in near real-time. Moreover, as these sensors are already
in place and images are relatively accessible, it provides a scalable and efficient means of
garnering statistics.

Realizing the value of the data within these images requires the application of data
science, statistical, and data engineering techniques that can produce robust results despite
the wide variability in quality and characteristics of the input camera images. Here, we
have demonstrated methods that are reliable in achieving a reasonable degree of accuracy
and coherence with other sources. However, despite the success of the developed pipeline
in providing operational data and as a beacon for future development, there remains a
number of challenges to address. Although we have demonstrated outputs from a range
of locations across the UK, the coverage of open cameras is not comprehensive, and so
the selection has been led by availability and ease of access. Within locations, cameras are
sited principally to capture information about traffic congestion; hence, places without cars
such as pedestrianized shopping districts are entirely absent in some areas. Validation of
the data was successful but reliable metrics on accuracy are problematic as the accuracy
of detecting different object types depends on many factors such as occlusion of objects,
weather, illumination, choice of machine learning models, training sets, and camera quality
and setting. Some factors such as camera settings are also outside of our immediate
control. Current social distancing has meant that the density of pedestrians observed is
sufficiently low for them to be satisfactorily detected. However, we would not expect the
current models to perform so well for very crowded pavements as levels of occlusion, etc.
would increase. The camera images are typically produced every 10 min, which limits
the scope of the insights that can be produced and, therefore, its use for the management
of flows should not be overstated. The data nonetheless have real value in capturing,
describing, and expressing the relative change in the busyness in our cities and, therefore,
the effectiveness of some policy interventions.

8. Conclusions

Using publicly available traffic cameras as a source of data to understand changing
levels of activity within society offers many benefits. The data are very timely with images
being made available in real-time. While we have demonstrated the processing of these in
batch mode, there are no technical barriers to more frequent, near real-time updates. Data
outputs can also easily be scaled to hourly, daily, and weekly summaries.

The camera as a sensor enables a large array of different objects to be detected: cars,
buses, motorcycles, vans, pedestrians, etc. Additional objects, such as e-scooters and e-
bikes, can be added to the models with further training. These camera systems already exist
widely and reusing and repurposing them make further use of existing public resources.
There is no additional cost for the deployment and upkeep of expensive infrastructure
as their maintenance and upgrades are managed as part of existing agreements for the
primary purpose of traffic management and/or public safety. The additional cost for
processing this data is also relatively modest for our architecture less than GBP 1000 (USD
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1200) per month, which is significantly less than the cost of a single traffic counting device
such as a radar-based device.

Whilst not always currently open, camera coverage of town and city centers, which
is the locus of much economic activity, is generally comprehensive, and most cities, and
many smaller towns, already have cameras in place that can readily provide information
on commuting, retail, and pedestrian flows. It is feasible to carry this out on a national
scale with respect to cost, coverage, and digital infrastructure. There are particular benefits
of providing regional updates to national government when there are distinct differences
in policies (e.g., localized lockdown regimes).

The data used here are in the public domain and uses low-resolution imagery from
which it is difficult or impossible to personally identify individuals. The use of time-
separated still images means that tracking or other privacy-invasive practices are largely
impossible. The processing pipeline design ensures that summaries and counts are the
only things that are stored, and images, once processed, can be deleted. As these cameras
provide data in near real-time, there is also the potential for low-latency applications with
data provided within minutes of upload.

The further uptake of this approach and benefits could be realized if more local author-
ities and organizations made their traffic camera imagery data available on a low-resolution,
infrequent, and open licensing basis; non-highways coverage would be especially helpful
and could also help people to avoid crowding and queues at retail sites. Standardiza-
tion in the way imagery is exposed would reduce the complexity of scaling the approach
nationally or internationally and could ensure there is consistency in the data frequency
and aggregation. Commercial pedestrian and vehicle counting systems are also available
for CCTV, but additional transparency around the algorithms used and their efficacy is
desirable before combining different approaches and processing pipelines.

As further work, we intend to make a number of technical enhancements, including
improving the sampling design and scoring system for selecting cameras and investigating
methods for analyzing crowds in images. We will also look at how the data, and related
social and environmental factors, might predict activity at future time points, in locations
without cameras, or in response to proposed public policy interventions.
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Appendix A

Table A1. Publicly available camera sources identified as part of this research. The links are accessed on 28 June 2021.

Location Link

Aberdeen https://online.aberdeencity.gov.uk/services/Webcam/Default.aspx
Andover https://www.romanse.org.uk/CCTVAndover.htm

Bude https://www.budewebcam.co.uk/#
Cinderford https://www.cinderfordtowncouncil.gov.uk/webcam/

Dublin https://www.dublincity.ie/dublintraffic/
Durham https://www.durham.gov.uk/durhamtrafficcameras
Farnham http://www.camsecure.co.uk/farnham_webcam.html
Glasgow https://glasgow.gov.uk/webcam

Kent https://www.kenttraffic.info
Leeds http://www.leedstravel.info/cdmf-webserver/jsp/livecctv.jsp

London (TfL) https://www.tfljamcams.net
Manchester (TfGM) https://tfgm.com/roads/live-traffic-cameras
North East England https://www.netrafficcams.co.uk/map https://www.netraveldata.co.uk/

Northern Ireland https://trafficwatchni.com/twni/cameras
Nottingham https://www.itsnottingham.info

Reading http://www.reading-travelinfo.co.uk/live-traffic-cameras.aspx
Sheffield https://www.sheffield.gov.uk/trafficcameras#

Shropshire https://www.shropshire.gov.uk/webcams/views-from-theatre-severn/
Southampton https://romanse.org.uk/CCTVSoton.htm

Southend https://sbctraffic.southend.gov.uk
Sunderland https://www.sunderland.gov.uk/article/16148/Webcams-
Wrexham https://beta.wrexham.gov.uk/service/wrexham-webcams/live-webcam-llwyn-isaf
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