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Background: Hepatocellular carcinoma (HCC) is a heterogeneous disease with various etiological factors, and
ranks as the second leading cause of cancer-related mortality worldwide due to multi-focal recurrence.
We herein identified three major subtypes of HCC by performing integrative analysis of two omics data sets,
and clarified that this classification was closely correlated with clinicopathological factors, immune profiles
and recurrence patterns.
Methods: In the test study, 183 tumor specimens surgically resected from HCC patients were collected for
unsupervised clustering analysis of gene expression signatures and comparative analysis of gene mutations.
These results were validated by using genome, methylome and transcriptome data of 373 HCC patients provided
from the Cancer Genome Atlas Network. In addition, omics data were obtained from pairs of primary and recur-
rent HCC.
Findings: Comprehensive molecular evaluation of HCC by multi-platform analysis defined three major subtypes:
(1) mitogenic and stem cell-like tumors with chromosomal instability; (2) CTNNB1-mutated tumors displaying
immune suppression; and (3) metabolic disease-associated tumors, which included an immunogenic subgroup
characterized by macrophage infiltration and favorable prognosis. Although genomic and epigenomic analysis
explicitly distinguished between HCCwith intrahepaticmetastasis (IM) andmulti-centric HCC (MC), the pheno-
typic similarity between the primary and recurrent tumors was not correlated to the IM/MC origin, but to the
classification. Interpretation: Identification of these HCC subtypes provides further insights into patient stratifica-
tion as well as presents opportunities for therapeutic development.
Fund:Ministry of Education, Culture, Sports, Science and Technology of Japan (16H02670 and 18K19575), Japan
Agency for Medical Research and Development (JP15cm0106064, JP17cm0106518, JP18cm0106540 and
JP18fk0210040).
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Liver cancer is the sixth common cancerwith an estimated global in-
cidence of 782,000 cases in 2012, and ranks as the second leading cause
of mortality in patients with malignancy worldwide [1]. Hepatocellular
carcinoma (HCC) accounts for 90% of all primary liver cancers, and is a
heterogeneous disease with a variety of etiological factors. Chronic
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infection with hepatitis B virus (HBV) and hepatitis C virus (HCV), alco-
hol consumption and metabolic syndrome which includes obesity and
diabetes trigger liver injury, and progressive destruction and regenera-
tion of liver contribute to inflammation, fibrosis and then carcinogene-
sis. Understanding HCC diversity to develop targeted therapies will
require unraveling the molecular events underlying the process [2,3].

Genome-wide analysis of genemutation [4–6], DNAmethylation [7]
and mRNA expression profiles [8–11] has been devoted to this purpose
over the past two decades. Schulze et al. identified three major clusters
of associated alterations, centered on TP53, CTNNB1 and AXIN1, by ana-
lyzing the whole coding sequences of 243 liver tumors surgically
resected [6]. Villanueva et al. quantified the array-based DNA methyla-
tion levels in 221 and 83 HCC samples from the training and validation
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Research in context

Evidence before study

Caner stratification will be essential for improvement in prog-
nosis following therapy. Several studies have challenged to cate-
gorize HCC by mutation, DNA methylation and expression
profiles, but the links between themolecular and clinicopatholog-
ical traits have not been fully unveiled.

Added value of this study

We have classified HCC into three subtypes characterized by dis-
tinctive molecular and clinical features, of mitogenic, CTNNB1-
mutated andmetabolic disease-associated tumors, through the in-
tegration of genome, epigenome and transcriptome analysis. Cell-
type deconvolution of gene expression data further identified the
second subtype as an immunosuppressive phenotype, and the
immune-related subgroup with encouraging outcome in the third
subtype. Comparative analysis between primary and recurrent tu-
mors clarified that they resembled each other in subtype whether
they shared cells-of-origin or not.

Implication of all the available evidence

This phenotypic classification of HCC has important implica-
tions for clinical practice and drug development of targeted ther-
apies including immunotherapy, particularly in predicting post-
operative recurrence of HCC.

458 S. Shimada et al. / EBioMedicine 40 (2019) 457–470
sets, respectively, and clarified that methylation signature of 36 unique
probes divided patient survival [7]. Gene expression patterns of HCC
have been examined by several laboratories [8–11], and mainly classi-
fied into two subclasses [12–14], “proliferative and non-proliferative”
or “aggressive and less aggressive”. Thus, although clinical samples are
stratified in each genome, methylome or transcriptome study, these
omics data have not been integrated sufficiently, or the relationships be-
tween themolecular and clinicopathological features have not been elu-
cidated completely.

A serious conundrum in HCC treatment is represented by frequent
recurrence, which is categorized into two types, intrahepatic metastasis
arising from a primary tumor (IM) and multi-centric occurrence (MC).
Although discrimination and characterization of the recurrence types
provide great benefits for determination of post-operative adjuvant
therapy and care strategy, there is no consensus on accurate diagnosis
from clinical or pathological traits. Whole-genome sequencing of pairs
of primary and recurrent HCC clearly distinguished between the IM
and MC types with high (15.53 to 93.02%) and low (0 to 0.28%) shared
mutation call rates, respectively, but was unable to discover genes spe-
cifically mutated in the IM or MC types [15].

Hence, this study performed integrative analysis of two HCC
datasets, and established a molecular classification that resolved into
three distinct subtypes. The molecular subtypes of paired primary and
recurrent tumors closely matched each other, although there was no
significant correlation between the molecular classification and IM/MC
origin designation.

2. Materials and methods

2.1. Human tissue samples

A total of 183 patients who underwent curative hepatic resection for
HCC between 2006 and 2013 at Tokyo Medical and Dental University
Hospital participated in integrative analysis of classification (Classifica-
tion study). Fifteen adjacent liver tissues obtained from patients with
metastasis of colorectal cancer who had not received chemotherapy
were used as control. In addition, primary and recurrent HCC samples
surgically resected from 18 patients at the hospital were utilized for in-
tegrative analysis of recurrence (Recurrence study). With Institutional
Review Board approval, written informed consent was obtained from
all patients (permission No. G2017-018). Patients were anonymously
coded in accordance with ethical guidelines, as instructed by the Decla-
ration of Helsinki.

2.2. DNA and RNA extraction

Genomic DNA and total RNA were extracted from tissue specimens
and cell lines by using QIAamp DNA Mini Kit (QIAGEN, Tokyo, Japan)
and RNeasy Protect Mini Kit (QIAGEN), respectively. Contaminating
DNA was removed by digestion with RNase-Free DNase Set (QIAGEN).
The integrity of the obtained DNA and RNA was confirmed by using
2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA).

2.3. Microarray analysis

Microarray data were analyzed as follows in accordance with the
manufacturer's instructions. Complementary RNA was prepared from
100 ng of total RNA from each sample with 3′ IVT Express Kit
(Affymetrix, Santa Clara, CA). Hybridization and signal detection of the
GeneChip Human Genome U133 Plus 2.0 Array (Affymetrix) were car-
ried out.

2.4. Integrative analysis for the TMDU study

The microarray data set of 183 tumor tissues from HCC patients and
15 normal liver controls (GSE112790, GEO) was normalized by using
the robust multiarray average method in R statistical software (version
3.0.3) and the affy Bioconductor package. Then, 938 geneswere selected
according to two criteria; genes significantly upregulated or downregu-
lated between tumor tissues and normal liver tissues by using
Mann-WhitneyU test and the Benjamini-Hochberg procedure for calcu-
lating P-values and false discovery rates (FDRs), respectively (FDR b

0.05); genes differentially expressed by estimating interquartile
ranges (IQRs) among tumor samples (IQR N 1.5). Consensus clustering
analysis was performed by using the k-means algorithm in the
ConsensusClusterPlus Bioconductor package.

2.5. Genome analysis

For the Classification and Recurrence studies, genomic DNA were
obtained from 33 pairs of HCC and adjacent liver controls and from pri-
mary and recurrent tumors and adjacent liver tissues of 18HCCpatients,
respectively (hum0041.v1, NBDC). The genomic DNA was fragmented
with Covaris S220 (Covaris Inc.,Woburn,MA), andDNA librarywas pre-
pared by using the SureSelect XT Human All Exon V4 kit (Agilent Tech-
nologies, Santa Clara, CA) according to the manufacturer's protocol.
After high throughput sequencing for each DNA library was performed
by using HiSeq 2000 platform (Illumina, San Diego, CA) with 100-bp
paired-end sequencing, potential PCR duplicates with the same se-
quences in both pairs of reads were removed, and then sequence
reads were aligned to the reference genome (hg19) by using the
Burrows-Wheeler Aligner (BWA, version 0.6.1) [16]. Genome Analysis
Toolkit (GATK, version 1.5.30) was utilized for base calibration and
local realignment by following the GATK best practices [17]. Single nu-
cleotide variants and small insertions/deletions were identified by
MuTect (version 1.0.27783) [18] and SomaticIndelDetector (version
1.5.30, included in the GATK software) with the default parameters, re-
spectively. The somatic variants were annotated by ANNOVAR (version
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2012/03/08) [19]. The whole-exome sequencing data (hum0041.v1)
are deposited in National Bioscience Database Center (NBDC).
2.6. Methylation analysis

The microarray data set of eight human HCC cell lines (Hep3B,
HepG2, HLE, HLF, Huh1, Huh7, JHH2 and JHH4) exposed and unexposed
to 5 μM 5-azacitidine, a demethylating agent, for three days
(GSE112788, GEO)was normalized by using the robustmultiarray aver-
age method in R statistical software and the affy Bioconductor package.
For the classification and recurrence studies, genomic DNA were ob-
tained from 29 pairs of HCC and adjacent liver controls (GSE113017,
GEO) and from primary and recurrent tumors and adjacent liver tissues
of 18HCC patients (GSE113019, GEO), respectively. Bisulfite conversion,
amplification, fragmentation, hybridization, labeling and scanningwere
performed according to themanufacturer's protocols. DNAmethylation
profiles were analyzed by using Infinium HumanMethylation450
BeadChip (Illumina) according to the manufacturer's instruction. The
methylation levels of CpG sites were reported as β-values by
GenomeStudio software (Illumina). In the Classification study, since
methylation levels are increased around the promoter regions but not
necessarily contribute to gene silencing, 112 genes were extracted fol-
lowing four criteria; genes hypermethylated in HCC by evaluating the
difference of median β-values of cancerous and non-cancerous speci-
mens (βcancer - βnon-cancer N 0.1); genes differentially methylated be-
tween paired tumor tissues and adjacent liver tissues by using
Wilcoxon signed-rank test (p b .01); genes differentially methylated
among the molecular subtypes by using Kruskal-Wallis test (p b .01);
genes upregulated in more than one HCC cell line among the eight
HCC cell lines under the treatment of 5-azacitidine (fold change N1.5).
In the Recurrence study, kernel density estimation for β-values of the
same 112 genes in the 18 pairs of primary and recurrent HCC was plot-
ted in the ks package of R.
2.7. Integrative analysis for the TCGA study

Public omics and clinical data of 373 HCC patients were provided
from the Cancer GenomeAtlas Network (TCGA) andNational Cancer In-
stitute, and downloaded from the cBioPortal and Genomic Data Com-
mons (GDC) Data Portal sites, respectively. All the mRNA expression
data (RNASeq Version 2 RSEM) were transformed into log 2 base, and
726 genes were matched to the 938 genes determined in the TMDU
study. Significant focal copy number alterations were identified from
segment data by using GISTIC 2 (version 2.0.23) [20]. DNA methylation
profiles of 373 cancerous and 46 non-cancerous tissues by using the
same 112 CpG probe set of Infinium HumanMethylation450 BeadChip
defined in the TMDU study were collected from the GDC Data Portal.
The tables of the TCGA sample ID and the subtype of the iCluster classi-
fication [21] and the immune classification [22] have been published in
the papers.
2.8. Gene set enrichment analysis and aggregate score

The gene set enrichment analysis (GSEA) was performed with the
MSigDB gene sets (H: hallmark gene sets, C2: chemical and genetic per-
turbations and C5: GO biological process; version 5.0) [23]. Aggregate
scores for gene setswere calculated as previously explained [24]. Briefly,
the expression of each gene in the pathway was transformed into per-
centiles and the activity of each pathway was calculated as the average
percentile score of all genes in a pathwayminus 50, that is, the expected
median activity of a pathway. Gene expression signatures were deter-
mined by aggregate scores of representative gene sets to prevent a mo-
saic pattern of gene sets including similar components.
2.9. Immune analysis

Immune-related gene setswere previously listed [25]. In accordance
with the manufacturer's instructions, CIBERSORT analysis of mRNA
expression data of all the 373 HCC samples provided from TCGA was
performed in the Absolute mode with LM22 signature matrix on the
web (https://cibersort.stanford.edu/) [26].
2.10. Statistical analysis

Statistical analyses were performed by using R statistical software.
Mann-Whitney U test was used to analyze for differences between
values of two independent groups. Kruskal-Wallis test with Steel-
Dwass post hoc test was also done for those of more than three groups.
Hierarchical clustering analysis was performed by usingWard'smethod
in the hclust package of R. Fisher's exact test and χ2 test were applied to
analyze categorical variables. Survival curveswere constructed by using
theKaplan-Meiermethod and compared by using the log-rank testwith
univariate and multivariate Cox proportional hazards analysis. p b .05
was considered statistically significant.
3. Results

3.1. Classification based on transcriptome analysis

To define molecular subgroups of HCC, we first extracted 938 genes
upregulated or downregulated between tumor tissues and normal tis-
sues (FDR b 0.05, Mann-Whitney U test and the Benjamini-Hochberg
procedure) and differentially expressed among tumors (IQR N 1.5) by
using microarray data from 183 HCC samples surgically excised in
TokyoMedical and Dental University (TMDU)Hospital (Supplementary
Table S1a). We next performed unsupervised clustering analysis of
them, and yielded two major groups termed as A and B (Fig. 1a) on
the basis of consensus clustering analysis inferring that the optimal
number of groups was two (Fig. 1a and Supplementary Fig. S1a). We
then examined biological meaning ascribed to the two subgroups. The
Gene Set Enrichment Analysis (GSEA) demonstrated that gene sets in-
volved in mitogenic activity and cellular metabolism were enriched in
Group A and B, respectively (Supplementary Fig. S1b and Supplemen-
tary Table S1b). GroupAwas remarkably characterized by the increased
expression levels of genes playing essential roles in G2/M cell cycle
phase (FoxM1, aurora kinases and polo-like kinases), and stem/progen-
itor markers including epithelial cell adhesion molecule (EPCAM), and
CD133 (PROM1) cytokeratin 19 (CK19) as shown in Supplementary
Fig. S1c. In contrast, genes specifically upregulated in Group B included
GLUL encoding glutamine synthetase as well as FABP4 and SPARCL1
[27,28].

We then compared the clinical characteristics and observed signifi-
cant differences of not liver conditions but etiological features between
the HCC samples (Supplementary Table S1c). Group Awasmainly com-
posed of carriers of hepatitis virus (p= .002), whereas Group B was as-
sociated with patients with obesity and diabetes (p = .045 and 0.012).
Alcohol abuse had no relationship with this classification. The serum
levels of tumor markers for HCC, α-fetoprotein (AFP) and protein in-
duced by vitamin K absence or antagonists II (PIVKA-II), were signifi-
cantly elevated in Group A (p b .001 and p = .012). Pathological
findings indicated that Group Awas composed of tumors with poor dif-
ferentiation and portal vein (PV) invasion of HCC (both p b .001),
resulting in advanced TNM and BCLC stages (p = .001 and p b .001).
These molecular and histological traits conferred worse disease-free
survival (DFS) and overall survival (OS) in the patients of Group A
(Fig. 1b). Molecular classification of Group A and B was an independent
prognostic factor of DFS (HR = 0.62, 95% CI = 0.43 to 0.89, p = .009;
Supplementary Table S1d).

https://cibersort.stanford.edu
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3.2. Integrative analysis of exome, methylome and transcriptome profiles

Since the large-scale transcriptome analysis identified the two dis-
tinct subgroups, we randomly selected 17 and 16 HCC samples from
Group A and B, respectively, and further conducted integrative analysis.
They were subjected to whole-exome sequencing, detecting 24,878 so-
matic mutations comprised of 23,050 single nucleotide variants and
1828 small insertions/deletions. Comparative analysis of the genomic
data discovered nine genes mutated specifically in each group (Supple-
mentary Table S1e). We highlighted somatic mutations of CTNNB1 ob-
served only in Group B for two reasons; CTNNB1 ranked as one of the
top genes differentially mutated between Group A and B; active muta-
tion of CTNNB1 is frequently detected and well-known as a driver in
HCC [4–6]. We re-categorized the 33 HCC samples into three molecular
subtypes (MS) as below; the MS1 was equal to Group A, and the MS2
andMS3were Group Bwith orwithout CTNNB1mutations, respectively
(Fig. 1c). The classification could not additionally provide any other in-
formation about genes frequently mutated in HCC such as TERT, TP53,
chromatin remodelers, and mediators of the Wnt/β-catenin and RTK/
RAS/PI(3)K pathways.

Infinium Human Methylation450 arrays were used for quantify-
ing the methylation levels of the tumors and normal pairs, and
gene expression profiles of eight HCC cell lines treated with and
without 5-azacitidine were examined for exploring gene silenced
in HCC. We extracted a set of 112 probes targeting CpG sites highly
methylated in cancerous tissues relative to non-cancerous tissues
(βcancer - βnon-cancer N 0.1; p b .01, Wilcoxon signed-rank test) and
differentially modified among the three molecular subtypes (p b

.01, Kruskal-Wallis test) considering the results from the compara-
tive expression analysis of HCC cell lines (genes N1.5-fold upregu-
lated under the treatment of 5-azacitidine; Supplementary Fig. S1d
and Supplementary Table S1f). DNA methylation profiles with this
probe set revealed that the MS2 was hypermethylated followed in
order by the MS1 and MS3, possibly resulting from a protein inter-
action between β-catenin and a DNA methyltransferase DNMT1
[29].

We compared gene expression patterns of the three subtypes
with each other by introducing the GSEA with the Hallmark gene
sets of the MSigDB collections, and elucidated that gene sets impli-
cated in mitosis, the Wnt/β-catenin pathway, and inflammatory re-
sponse via the IL6/STAT3 and TNFα/NFκB pathways were
specifically enriched in the MS1, MS2 and MS3, respectively. We de-
fined G2M_CHECKPOINT, WNT_BETA_CATENIN_SIGNALING and
INFLAMMATORY_RESPONSE as the representatives of gene expres-
sion signatures for each subtype, which was statistically validated
by computing aggregate scores for determining the fittest in each
specimen (p = 3.49 × 10−7). As illustrated in Fig. 1a, the MS1 ex-
hibited distinct gene expression patterns of proliferative and stem/
progenitor cell-like phenotypes. The expression levels of GLUL and
SPARCL1 were selectively upregulated in the MS2 bearing active mu-
tations of CTNNB1, since they are direct downstream genes of the
Wnt/β-catenin signaling pathway [10,30].

Clinicopathological properties in the integrative study were de-
termined from those in the transcriptome study (Supplementary
Table S1c and S1g). It was worth noting that the MS1 was com-
posed of patients with hepatitis virus infection (p b .001), and
that the MS3, not the MS2, was tightly associated with metabolic
risk factors of obesity, diabetes and dyslipidemia (p = .066, 0.024
and 0.060).
Fig. 1. Comprehensive molecular classification of HCC in the TMDU test study identifying thre
clustering analysis of gene expression identified two groups; Group A (red, n = 94) and B
expression levels of genes specifically upregulated in Group A or B. (b) Kaplan-Meier analys
Genome analysis divided Group B into HCC samples with (MS2) or without (MS3) CTNNB1 m
and MS3 (blue, n = 10).
3.3. Validation study for molecular classification by using public omics data

We used public data of the Cancer Genome Atlas Network (TCGA)
study [21] provided from the cBioPortal and Genomic Data Commons
(GDC) Data Portal to evaluate the accuracy of our classification and fur-
ther characterize each subtype.We first performed hierarchical cluster-
ing analysis of mRNA expression data from 373 HCC samples in the
TCGA study, similarly to the TMDU study. The 938 genes differentially
expressed between Group A and B (Supplementary Table S1a) could
also divide them into two major clusters, and the left cluster was
enriched with genes contributing to mitogenic and stem cell-like activ-
ity, which indicated that the left and right clusters might correspond to
Group A and B, respectively. Whole-genome sequencing uncovered 58
tumors with CTNNB1 mutations in Group B, especially in the left node
of Group B. Considering the molecular effects of CTNNB1 active muta-
tions on gene expression profiles, we placed the three nodes to the
MS1, MS2 and MS3 subtypes respectively as shown in Fig. 2.

Genomic analysis discovered 49 genes differentially mutated among
the three subtypes (Supplementary Table S2a), and that TP53 and
CTNNB1mutations were substantially augmented in the MS1 and MS2,
respectively (p=1.18 × 10−4 and 5.53 × 10−27). Somatic copy number
alteration (CNA) analysis by using theGISTIC identified 40 amplifications
and 34 deletions (Supplementary Fig. S2a), and clarified that the MS1
harbored extensive copy number aberrations, which could imply chro-
mosomal instability, compared with the MS2 and MS3 subtypes. While
focal amplifications of TERT and focal deletions of CDKN2A were com-
monlydetected in the three subtypes, focal deletions of tumor suppressor
genesMACROD2 andACVR2Awere characteristic of theMS2 andMS3, re-
spectively (Supplementary Table S2b). Methylome analysis of the 373
tumor tissues and 46 adjacent liver tissues by using the same probe
set of the Human Methylation450 array (Supplementary Table S1f)
distinguished cancerous and non-cancerous tissues from each other,
and revealed hypermethylation phenotype of theMS2 samples (Supple-
mentary Fig. S2b). An aggregate score for each gene expression signature
defined in the TMDU test study was calculated in each cases, and con-
firmed the correspondence relationship between the signatures and sub-
types (Supplementary Table S2c; p = 1.14 × 10−25). The expression
patterns of the nine genes selected for representing each subtype in the
TMDU test study resembled those in the TCGA validation study.

Clinicopathological features in the TCGA data setwere highly consis-
tent with those in the TMDU data set (Supplementary Table S2d); the
MS1 was associated with increased serum AFP level, vascular invasion
scores and TNM stages (all, p b .001). The MS3 was composed of over-
weight individuals (p= .003). Although patients infectedwith hepatitis
virus were accumulated in the MS1 in the TMDU study, this tendency
was not clearly observed in the TCGA study (p = .042) due to racial
and ethnic gaps in the enrolled population. In DFS and OS, Group A
showed worse prognosis compared with Group B, and the MS1 more
than the MS3, but not more than the MS2 (Supplementary Fig. S2c
and S2d), which was confirmed as an independent predictor of patient
outcome in HCC by univariate and multivariate Cox proportional haz-
ards model analysis (Supplementary Table S2e).

3.4. Comparative analysis of molecular classifications

Several groups have proposed HCC molecular classifications mainly
based on transcriptome data during the past two decades, and Lee,
Hoshida, Boyault and Chiang's classifications [8–11] are widely ac-
cepted. We then compared our classification based on multi-platform
e molecular subtypes. (a) Transcriptomic classification of HCC. Unsupervised hierarchical
(black, n = 89). The panel of molecular features is a heatmap displaying the relative
is of patients stratified by group. (c) Genomic and transcriptomic classification of HCC.
utations which were detected only in Group B. MS1 (red, n = 17), MS2 (green, n = 6)



Fig. 2. Comprehensivemolecular classification of HCC in the TCGA validation study. Hierarchical clustering analysis with the gene set used in Fig. 1 could separate 373 HCCs into theMS1
(red, n = 114), MS2 (green, n = 74) and MS3 (blue, n = 185) as defined in Fig. 1c.
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data from the TMDU and TCGA studies (Fig. 3a, Supplementary Fig. S3
and Supplementary Table S3a). In the TMDU test study, Group A was
linked to the subclasses of SURVIVAL_DN in Lee's classification, S1 and
S2 in Hoshida's classification, G1/2 and G3 in Boyault's classification,
and PROLIFERATION in Chiang's classification. All the subclasses have
been well-documented as the “proliferative” and “aggressive” pheno-
types characterized by high serum AFP levels and poor patient progno-
sis [12–14]. As predicted, thesemalignant subclasseswere also enriched
in theMS1 of the TMDU test study and the TCGA validation study. How-
ever, as previous investigations have described that the “non-prolifera-
tive” and “less aggressive” phenotypes are heterogeneous in nature,
only the MS2, the G5/6 in Boyault's classification, and the CTNNB1 in
Chiang's classification revealed patients with CTNNB1 somatic muta-
tions in Group B as shown in Supplementary Table S3a (p = 5.53
× 10−25, 5.28 × 10−21, and 7.82 × 10−36). Conversely, the MS3, the
SURVIVAL_UP in Lee's classification, and the S3 in Hoshida's classifica-
tion were associated with obesity, suggesting that only our subtyping
could distinctively separate the “non-proliferative” and “less aggres-
sive” phenotypes into the MS2 (CTNNB1-mutated subtype) and MS3
(metabolic disease-related subtype). We finally compared our molecu-
lar classification with the iCluster classification proposed by the Cancer
Genome Atlas Network [21], and observed that the iCluster 1, 2 and 3
were corresponded to the MS1, 3 and 2, respectively (Supplementary
Table S3a). Our molecular classification showedmuch stronger correla-
tion with the four other classification than the iCluster classification.
Thus, our classificationmay have important advantages for determining
the relationship of the molecular characteristics to clinicopathological
features such as viral infection, obesity and vascular invasion (Supple-
mentary Table S3b).

Taken together, the unique traits of each molecular subtype were
summarized in Fig. 3b; theMS1 harboring TP53mutations displayed ex-
tensive mitotic activity eliciting chromosomal instability and stem cell-
like property, and has significant correlationwith high serumAFP levels,
aggressive vascular invasion, and unfavorable prognosis; CTNNB1muta-
tions activate the Wnt/β-catenin pathway in the MS2 and induced
hypermethylation; the MS3 is composed of patients with metabolic
risk factors, such as obesity and diabetes, and inflammatory response
may be enhanced via the IL6/STAT3 and TNFα/NFκB pathways.

3.5. Classification based on immunological expression profiles

Given the potential effects of infiltrating immune cells on carcino-
genesis and the significant improvement of therapies targeting immune
checkpoint pathways, immune phenotyping of cancer has recently been
addressed by several studies, which is accompanied by the develop-
ment of computational approaches that allow virtual dissection of tu-
mors [21,25,31]. We first calculated aggregate scores of each tissue
specimen surveyed in the TMDU test study for immune-related gene
sets, and performed hierarchical clustering analysis (Fig. 4a and Supple-
mentary Fig. S4a). Among the distinct expression patterns, one cluster
was attributed to the presence of inflammatory conditions and immune
cells, and was designated as the Immune class. The Immune class
accounted for 42% of all the cases, and contained 90% of the MS3 sam-
ples (p = 4.22 × 10−4), consistent with the activation of inflammatory
response pathways in theMS3. In the TCGA validation study, the cluster
corresponding to the Immune class was also identified (38%), and
marked by the enrichment of the MS3 cases (46%, p = 5.61 × 10−3).
We then divided each of the threemolecular subtypes into the Immune
andNon-immune classes for the evaluation of individual outcomes, and
DFS in the Immune class of the MS3 was better than that in the Non-
immune class of the MS3 (p= .003), whereas there were no significant
differences in survival time between the other Immune and Non-
immune classes (Supplementary Fig. S4b and Supplementary
Table S4a). Considering this discrepancy between the Immune and
Non-immune classes of the MS3 (Supplementary Fig. S4c), we re-
defined them as the MS3i and MS3n, respectively. The MS3i had longer
DFS than the other three subtype (Fig. 4b), and showed weak positive
correlation with alcohol consumption (Supplementary Table S4b and
S4c).

Next, we investigated correlation between our molecular classifica-
tion and the immune molecular subtypes [22], and observed that the
C1/C2 (wound healing/IFNγ dominant), C3 (inflammatory) and C4
(lymphocyte depleted) were closely corresponded to the MS1, MS3i
and MS2/MS3n, respectively (p = 1.28 × 10−25; Supplementary
Fig. S4d and Supplementary Table S4d). These findings were intriguing
in twoways; theC1hadmitogenic activity and chromosomal instability,
similarly to the MS1; the C3 showed better prognosis, which was char-
acteristic of the MS3i subclass.

To further explore which types of immune cells resided in each sub-
type, we utilized the CIBERSORT for the deconvolution of tumor sam-
ples, and revealed much higher cumulative scores of immune cells in
theMS3i (Fig. 4c). ActivatedM1 andM2macrophages infiltrated specif-
ically in tumor tissues of the MS3i, and CD8+ T cells were significantly
depleted in the MS2 and MS3n (Fig. 4d), which was accurately pre-
dicted by the immune molecular classification described above. Nota-
bly, such features in cumulative scores of immune cells were also
observed when the HCC samples were simply classified into the three
molecular subtypes (Supplementary Fig. S4b, S4e and S4f).

3.6. Inheritance of the phenotypic subtypes during tumor recurrence

To investigate phenotypic alterations during tumor recurrence,
whole-exome sequencing was performed for 18 primary and 19 recur-
rent tumors surgically resected from 18 individuals. The mutation pat-
terns of single nucleotide variants and frameshifts discriminated them
into two types on the basis of the number of common mutations (Sup-
plementary Table S5); one sharedmuchmoremutations than the other,
indicating genetically determined HCC with intrahepatic metastasis
(gIM) and multi-centric HCC (gMC), respectively (Fig. 5a). Unfortu-
nately, gIM- or gMC-specific mutations were not detected in this
study [15], and frequently mutated genes such as TERT, TP53 and
CTNNB1 were not enriched in the gIM or gMC. We next compared
DNA methylation statuses of the 112 probes listed in Supplementary
Table S1f (Fig. 5b), and identified that the gIM pairs had higher correla-
tion coefficient of β-values than the gMC (p = 2.26 × 10−7). These re-
sults supported the hypothesis that tumors derived from the same
origin could inherit the DNA methylation patterns (R2 = 0.520), and
also suggested that even multi-focal tumors developing in the same
background could resemble each otherwith respect to epigenetic signa-
ture (R2=0.331) because of field cancerization [32]. Finally, we catego-
rized the primary and recurrent HCC into the three molecular subtypes
according to the optimized criteria which were established from the
data set of the TMDU test study by using logistic regression analysis
(Supplementary Table S6). Surprisingly, the recurrent HCC exhibited
the same phenotype of the primary HCC, but the gIM/gMC diagnosis
was not correlated to the subtype transition (Fig. 5c). These findings im-
plied that themolecular subtype of HCC could be controlled by extrinsic
factors such as tumor microenvironment.

4. Discussion

Molecular classifications with gene expression profiles have
achieved clinical success in the prediction of patient outcome and the
decision for cancer therapy, and advances inDNA sequencing andmeth-
ylation array technologies have led to a precise categorization and a bet-
ter understanding of carcinogenesis. In HCC, the four transcriptome-
based classifications (Fig. 3a) are broadly accepted [8–11], but lacks ge-
nomic and epigenomic analysis. Meta-analysis of these classifications
suggests that HCC can be divided into two major groups [12–14], “pro-
liferative and non-proliferative” or “progressive and less progressive”.
The former is well-characterized by mitogenic and stem cell-like prop-
erties, HBV infection, malignant phenotype such as high AFP, poor



Fig. 3. Summary ofmolecular classification of HCC. (a) Comparison of aggregate scores with gene sets associatedwith the previously definedmolecular classifications of HCC in the TMDU
test study (upper) and TCGA validation study (lower). (b) Schematic representation of molecular subtypes.
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Fig. 4. Immunological evaluation of primary HCC. (a) Hierarchical clustering analysis of aggregate scores with immune-related gene sets in the TCGA validation study. (b) Kaplan-Meier
analysis of patients stratified bymolecular subtype and immune class. (c) Cumulative CIBERSORT score for various types of immune cells in each sample. Horizontal lines show themedian
values. (d) CIBERSORT score for immune cells in eachmolecular subtype. Boxes in violin plots represent the interquartile range (range from the 25th to the 75th percentile), and horizontal
lines show the median values.
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differentiation and frequent vascular invasion, and then unfavorable
prognosis, whereas the latter is heterogeneous and the clinical and
pathological features are ambiguous.

Integratedwith genomic, epigenomic and clinical data, the 938 differ-
entially expressed genes which were generated from the TMDU dataset
of 183 HCC samples (Supplementary Table S1a) discriminated the non-
proliferative/less progressive group into the MS2 and MS3 subtypes,
that is, subtypes harboring CTNNB1 mutations and complicated with
metabolic disease, respectively. We reached similar conclusion by using
1157 differentially expressed genes between 123 pairs of HCC tissues
andadjacent normal liver tissues of theTMDUtest study (Supplementary
Fig. S5). In contrast, 881 differentially expressed genes from the TCGA
data set couldonly separate the subtype characterizedbyactivemutation
of CTNNB1 from the others (Supplementary Fig. S6). In the MS2 tumors,
the Wnt/β-catenin signaling pathway was aberrantly activated, which
resulted in the elevated expression levels of downstream genes like
GLUL and SPARCL1 [10,30]. Consistent with previous findings in
methylome analysis of HCC [25], DNAmethylation was highly enriched
at the CpG sites in CTNNB1-mutated HCC, presumably because constitu-
tively active β-catenin protein recruits a DNA methyltransferase
DNMT1 to thebinding sites [29]. TheMS3 tumorswereusuallydeveloped
in individuals with metabolic syndrome including obesity and diabetes,
and could be derived from non-alcoholic steatohepatitis (NASH). Gene
sets involved in inflammation were remarkably augmented in the MS3,



Fig. 4 (continued).
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and these findings are similar to the results previously described. Lipid
accumulation stimulates inflammatory pathways through endoplasmic
reticulum dysfunction and reactive oxygen species production [33].
Combinatory analysis of genomics, transcriptomics and metabolomics
identifies the C2 subtype linked to excess bodyweight and severe inflam-
mation among 199 Asian liver cancer [31].
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The MS2 harboring CTNNB1 mutations demonstrated immunosup-
pressive phenotype, which was confirmed by the CIBERSORT analysis
as well as the immune classification. Three recent papers have reported
the close correlation between functional mutation of β-catenin and po-
tential exhaustion of immune cells including T cells [22,25,34]
(Spranger et al., 2015; Sia et al., 2017; Thorsson et al., 2018). Regulatory
T cells (Treg), suppressing immune responses, were rather decreased in
theMS2 subtype than in the stemcell-likeMS1. Although Spranger et al.
described that the Wnt/β-catenin signaling pathway upregulated cyto-
kine secretion which inhibited tumor immune microenvironment
(TIME) in melanoma cells, further investigation is necessary for under-
standing the molecular mechanism in HCC.

Chronic inflammation induced by viral hepatitis andNASHpromotes
hepatocarcinogenesis. Immunological expression profiles [25] eluci-
dated the enrichment of immunogenic HCC in the MS3 subtype, and
the immune subclass of the MS3 (MS3i) had two hallmarks, better pa-
tient prognosis and increased immune cell infiltration, named as
“hot”. As previously reported, patientswith “hot” tumors of the Immune
class [25] and the C3 subtype [22] exhibited better survival.Wemost re-
cently addressed that fatty acid binding protein 4 (FABP4) was
overexpressed in intratumoral hepatic stellate cells of metabolic
disease-associated HCC, and that FABP4 contributed to the secretion of
inflammatory cytokines through NF-κB nuclear translocation, resulting
in the recruitment of macrophages [28]. M2Macrophages are attractive
targets for cancer treatment [35], and pexidartinib, an inhibitor of the
CSF1/CSF1-R signaling which plays essential roles in proliferation and
differentiation of M2 macrophages, may improve the prognosis of pa-
tients with the MS3 subtype. Shalapour et al. have recently reported
that the PD-L1/PD-1 signaling contributes to liver carcinogenesis in in-
dividuals with NASH [36]. These results are consistentwith the immune
profiles of theMS3 subtype (Fig. 4 and Supplementary Fig. S4), and then
imply that PD-1 blockade may inhibit the MS3 HCC growth and devel-
opment. Since anti-CSF1R and anti-PD-1 antibodies can synergistically
attenuate BRAFV600E-driven melanoma cells in mice [37], the combina-
tion is also a promising therapy for the MS3 subtype.

It is an important issue which of intrinsic or extrinsic signaling path-
ways mainly cause cancer initiation and progression. If intrinsic factors
are dominant, the IM pairs of primary and recurrent HCCs, which are
originated from the same parental cells and share gene mutations and
epigenetic patterns, could resemble each other in the phenotype, but
not the MC pairs. Our molecular classification however revealed that
the subtypes, not the IM/MC classification, influenced the phenotypic
similarity between the paired primary and recurrent tumors,
supporting the superior role of extrinsic factors such as inflammation
and vascularization in hepatocarcinogenesis. This observation provides
evidence for the use of immunotherapy. This idea is particularly attrac-
tive in the MS3 due to the underlying systemic diseases such as over-
weight and hyperglycemia. Therefore, optimal weight and glycemic
management could be useful for prevention of recurrence in patients
with the MS3 tumors.

This study presented three critical findings in molecular classifica-
tion of HCC. First, combinational gene expression profiles of the mitosis
and immune axes identified unique subtypes. The gene set defined in
the TMDU test study was closely connected to mitotic process and
clearly classified HCC samples into three molecular subtypes, namely
the proliferative subtype (MS1) and the non-proliferative subtypes
with andwithout CTNNB1mutation (MS2 andMS3). Immune signature
discovered significant accumulation of HCC with enhanced inflamma-
tory response in the MS3, and further divided this subtype into immu-
nogenic and non-immunogenic subclasses (MS3i and MS3n), resulting
Fig. 5. Molecular evaluation of recurrent HCC. (a) Genomic landscape of the gIM (orange, n =
shown. White, gray and black bars represent primary, recurrent and re-recurrent HCC, re
differentially done among the molecular subtypes in the gIM and gMC pairs. (c) Subtype trans
are described in Supplementary Table S6. Upper (light) and lower (dark) bars shows the gIM a
in favorable prognosis of the MS3i. Second, immunological characteris-
tics were essentially different among the molecular subtypes. Immune
cell-type deconvolution, recently emerging and providing profound in-
sights into TIME, elucidated that the MS2 and MS3i exhibited immuno-
suppressive and immunogenic traits (decreased CD8+ T cells and
increased macrophages, respectively). There is a limitation that molec-
ularmechanisms causing the immunological difference remain obscure.
The immunological classification could guide immunotherapy for HCC,
such as 4-1BB agonist antibody for the immunosuppressive subtype
and PD-1 blocking antibody for the immunoactive subtype [38]. Third,
a cluster of metabolic disease-associated HCCwas determined.We clar-
ified that theMS3, the non-proliferative subtypewithout CTNNB1muta-
tion, was intimately linked with metabolic risk factors such as diabetes
and obesity in the TMDU test study. These observations are important
since HCC in patients suffering from metabolic syndrome, not infected
with hepatitis virus, is gradually rising worldwide in the past decade,
and it would be difficult to formulate the concept of this subtype
were it not for the rich clinical information of the TMDU test study.
Taken together, these subtypes demonstrated distinct features includ-
ing activated signaling pathways, infiltrating immune cells and clinico-
pathological factors, and the classification system could therefore be
used to design more intelligent clinical trials in the future so as to de-
velop strategies in a subtype specific manner [2,3].
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