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In efforts to discover disease mechanisms and improve clinical diagnosis of tumors, it is useful to mine profiles for informative
genes with definite biological meanings and to build robust classifiers with high precision. In this study, we developed a new
method for tumor-gene selection, the Chi-square test-based integrated rank gene and direct classifier (𝜒2-IRG-DC). First, we
obtained the weighted integrated rank of gene importance from chi-square tests of single and pairwise gene interactions. Then, we
sequentially introduced the ranked genes and removed redundant genes by using leave-one-out cross-validation of the chi-square
test-based Direct Classifier (𝜒2-DC) within the training set to obtain informative genes. Finally, we determined the accuracy of
independent test data by utilizing the genes obtained above with 𝜒2-DC. Furthermore, we analyzed the robustness of 𝜒2-IRG-DC
by comparing the generalization performance of different models, the efficiency of different feature-selection methods, and the
accuracy of different classifiers. An independent test of ten multiclass tumor gene-expression datasets showed that 𝜒2-IRG-DC
could efficiently control overfitting and had higher generalization performance. The informative genes selected by 𝜒2-IRG-DC
could dramatically improve the independent test precision of other classifiers; meanwhile, the informative genes selected by other
feature selection methods also had good performance in 𝜒2-DC.

1. Introduction

Tumors are the consequences of interactions between mul-
tiple genes and the environment. The emergence and rapid
development of large-scale gene-expression technology pro-
vide an entirely new platform for tumor investigation.
Tumor gene-expression data has the following features: high
dimensionality, small or relatively small sample size, large
differences in sample backgrounds, presence of nonrandom
noise (e.g., batch effects), high redundancy, and nonlinearity.
Mining of tumor-informative genes with definite biological
meanings and building of robust classifiers with high preci-
sion are important goals in the context of clinical diagnosis
of tumors and discovery of disease mechanisms.

Informative gene selection is a key issue in tumor recog-
nition.Theoretically, there are 2𝑚 possibilities in selecting the

optimal informative gene subset from 𝑚 genes, which is
an N-P hard problem. Available high-dimensional feature-
selection methods often fall into one of the following three
categories: (i) filter methods, which simply rank all genes
according to the inherent features of themicroarray data, and
their algorithm complexities are low. However, redundant
phenomena are usually present among the selected infor-
mative genes, which may result in low classification preci-
sion. Univariate filter methods include 𝑡-test [1], correlation
coefficient [2], Chi-square statistics [3], information gain
[4], relief [5], signal-to-noise ratio [6], Wilcoxon rank sum
[7], and entropy [8]. Multivariable filter methods include
mRMR [9], correlation-based feature selection [10], and
Markov blanket filter [11]; (ii) wrappermethods, which search
for an optimal feature set that maximizes the classification
performance, defined in terms of an evaluation function
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(such as cross-validation accuracy). Their training precision
and algorithm complexity are high; consequently, it is easy
for over-fitting to occur. Search strategies include sequential
forward selection [12], sequential backward selection [12],
sequential floating selection [13], particle swarmoptimization
algorithm [14], genetic algorithm [15], ant colony algorithm
[16], and breadth-first search [17]. SVM and ANN are usually
used for feature subset evaluation; (iii) embedded methods,
which use internal information about the classificationmodel
to perform feature selection. These methods include SVM-
RFE [18], support vector machine with RBF kernel based on
recursive feature elimination (SVM-RBF-RFE) [19], support
vector machine and T statistics recursive feature elimination
(SVM-T-RFE) [20], and random forest [21].

Classifier is another key issue in tumor recognition.
Traditional classification algorithms include Fisher linear
discriminator, Naive bayes (NB) [22], K-nearest neighbor
(KNN) [23], DT [24], support vector machine (SVM) [18],
and artificial neural network (ANN) [25]. There are dom-
inant expressions in parametric models (e.g., Fisher linear
discriminator) based on induction inference. The first goal
for parametric models is to obtain general rules through
training-sample learning, after which these rules are utilized
to judge the testing sample. However, this is not the case
for nonparametric models (e.g., SVM) based on transduction
inference, which predict special testing samples through
observation of special training samples, but classifiers needed
for training. Training is the major reason for model over-
fitting [3]. Therefore, it is important to determine whether it
is feasible to develop a direct classifier based on transduction
interference that has no demand for training.

In recent years, several methods have been developed
to perform both feature-selection and classification for the
analysis of microarray data as follows: prediction analysis
for microarrays (PAM), based on nearest shrunken centroids
[26]; top scoring pair (TSP), based entirely on relative gene
expression values [27]; refined TSP algorithms, such as k
disjoint Top Scoring Pairs (k-TSP) for binary classification
and the HC-TSP, HC-k-TSP for multiclass classification [28];
an extended version of TSP, the top-scoring triplet (TST)
[29]; an extended version of TST, top-scoring “N” (TSN) [30].
A remarkable advantage of the TSP family is that they can
effectively control experimental system deviations, such as
background differences and batch effects between samples.
However, TSP, k-TSP, TST, and TSN are only suitable for
binary data, and the HC-TSP/HC-TSP calculation process
for conversion from multiclass to binary classification is
tedious.The gene scoreΔ

𝑖𝑗
[27] cannot reflect size differences

among samples, and k-TSPs may introduce redundancy and
undiscriminating voting weights.

Chi-square-statistic-based top scoring genes (TSG) [31],
an improved version of TSP family we proposed before,
introduces Chi-square value as the score for each marker
set so that the sample size information is fully utilized.
TSG proposes a new gene selection method based on joint
effects of multiple genes, and the informative genes number
is allowed both even and odd. Moreover, TSG gives a new
classification method with no demand for training, and it
is in a simple unified form for both binary and multiclass

cases. In TSG paper, we did not name the classification
method alone. Here we called it the chi-square test-based
direct classifier (𝜒2-DC). To predict the class information for
each sample in the test data, 𝜒2-DC use the selected marker
set and calculate the scores of this sample belonging to each
class. The predicted class is set to be the one that has the
largest score. Although TSG has many merits, it also has the
following disadvantages: (i) for 𝑘 ≥ 3, in order to find the
top scoring 𝑘 genes (TS

𝑘
), all the combined scores between

TS
𝑘-1 and each of remaining gene need to be calculated. It

needs a large amount of calculation; (ii) if there are multiple
TS
𝑘
s with identical maximum Chi-square value, TSG should

further calculate the LOOCV accuracy of these TS
𝑘
s using

the training data and record those TS
𝑘
s that yield the highest

LOOCV accuracy. If there is still more than one TS
𝑘
, the

computational complexity will be much higher to find TS
𝑘+1

;
(iii) in TSG, an upper bound 𝐵 should be set and find
TS
𝐵
. However, the number of information genes is often less

than 𝐵. The termination condition of feature selection is not
objective enough.

Emphasizing interactions between genes or biological
marks is a developing trend in cancer classification and infor-
mative gene selection.The TSP family, mRMR, doublets [32],
nonlinear integrated selection [33], binary matrix shuffling
filter (BMSF) [34], and TSG all take interactions into con-
sideration. In genome-wide association studies, ignorance
of interactions between SNPs or genes will cause the loss
of inheritability [35]. Therefore, we developed a novel high-
dimensional feature-selection algorithm called a Chi-square
test-based integrated rank gene and direct classifier (𝜒2-IRG-
DC), which inherits the advantages of TSGwhile overcoming
the disadvantages documented above in feature selection.
First, this algorithm obtains the weighted integrated rank of
gene importance on the basis of chi-square tests of single and
pairwise gene interactions. Then, the algorithm sequentially
forward introduces ranked genes and removes redundant
parts using leave-one-out cross validation (LOOCV) of 𝜒2-
DCwithin the training set to obtain the final informative gene
subset of tumor.

A large number of feature-selection methods and clas-
sifiers currently exist. Informative gene subsets obtained by
different feature-selection methods are very minute overlap
[36]. However, different models combined with a certain
feature-selection method and a suitable classifier can get
a close prediction precision [37]. It is difficult to deter-
mine which feature-selection method is better. Therefore,
evaluation of the robustness of feature-selection methods
deserves more attention [32]. In this paper, we analyzed the
robustness of 𝜒2-IRG-DC by comparing the generalization
performance of different models, the efficiency of different
feature-selection methods, and the precision of different
classifiers.

2. Data and Methods

2.1. Data. Because nine common binary-class tumor-gen-
omics datasets [28] did not offer independent test sets, we
simply selected ten multiclass tumor-genomics datasets with
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independent test sets (Table 1) for analysis in this study. It
should be noted that themethod proposed in this paper could
also be applied to binary-class datasets.

2.2. Weighted Integrated Rank of Genes. Assume the training
dataset has𝑝markers and 𝑛 samples.The data can be denoted
as (𝑦
𝑖
, 𝑥
𝑖𝑗
) (𝑖 = 1, . . . , 𝑛; 𝑗 = 1, . . . , 𝑝). 𝑥

𝑖𝑗
represents the

expression value of the 𝑗th marker in the 𝑖th sample;𝑦
𝑖

represents the label of 𝑖th sample, where 𝑦
𝑖
∈ 𝐶 =

{𝐶
1
, . . . , 𝐶

𝑚
}, the set of possible labels; 𝑚 stands for the total

number of labels in the data.

(1) Chi-Square Values of Single Genes. For any single gene 𝐺
𝑗
,

𝑥
⋅𝑗
denotes the mean expression value of all samples. 𝑆𝑓

𝑘1

and 𝑆𝑓
𝑘2
(𝑘 = 1, . . . , 𝑚) represent the frequency counts of

samples in class 𝐶
𝑘
when 𝑥

𝑖𝑗
> 𝑥
⋅𝑗
and 𝑥

𝑖𝑗
< 𝑥
⋅𝑗
, respectively.

These frequencies can be presented as an 𝑚 × 2 contingency
table, as shown in Table 2. Record the frequency counts of
samples in class 𝐶

𝑘
as 𝑆𝑓
𝑘3

When 𝑥
𝑖𝑗
equals 𝑥

⋅𝑗
in class 𝐶

𝑘
,

then both 𝑆𝑓
𝑘1
and 𝑆𝑓

𝑘2
should be incremented by 0.5 ∗ 𝑆𝑓

𝑘3

separately; thus, the chi-square value 𝜒2
𝑗
of gene 𝐺

𝑗
can be

calculated according to (1)

𝜒
2

𝑗
= 𝑆𝑁(

𝑚

∑

𝑘=1

2

∑

𝑞=1

𝑆𝑓
2

𝑘𝑞

𝑆𝑛
𝑘
𝑆𝑇
𝑞

− 1) . (1)

(2)Chi-Square Values of Pairwise Genes. For any two genes𝐺
𝑗

and 𝐺
𝑙
(𝑗 = 1, . . . , 𝑝; 𝑙 = 1, . . . , 𝑝; 𝑙 ̸= 𝑗), 𝑃𝑓

𝑘1
and 𝑃𝑓

𝑘2
(𝑘 =

1, . . . , 𝑚) represent the frequency counts of samples in class
𝐶
𝑘
when 𝑥

𝑖𝑗
> 𝑥
𝑖𝑙
and 𝑥

𝑖𝑗
< 𝑥
𝑖𝑙
, respectively. 𝑥

𝑖𝑗
and 𝑥

𝑖𝑙

are expression values of the 𝑖th sample in genes 𝐺
𝑗
and 𝐺

𝑙
,

respectively. These frequencies can be presented as an 𝑚× 2
contingency table (Table 3). Record the frequency counts of
samples in class 𝐶

𝑘
as 𝑃𝑓
𝑘3

When 𝑥
𝑖𝑗
equals 𝑥

𝑖𝑙
in class 𝐶

𝑘
,

then both 𝑃𝑓
𝑘1
and 𝑃𝑓

𝑘2
should be incremented by 0.5∗𝑃𝑓

𝑘3

separately.TheChi-square value𝜒2
𝑗,𝑙
of pairwise genes (𝐺

𝑗
, 𝐺
𝑙
)

can be calculated according to (2)

𝜒
2

𝑗,𝑙
= 𝑃𝑁(

𝑚

∑

𝑘=1

2

∑

𝑞=1

𝑃𝑓
2

𝑘𝑞

𝑃𝑛
𝑘
𝑃𝑇
𝑞

− 1) . (2)

(3) Rank Genes according to Integrated Weighted Score. Judg-
ing whether a gene is important not only should take main
effect of gene into account, but also consider the interaction
between it and other genes.Therefore, we integrated the Chi-
square value of single gene and the Chi-square values of
pairwise genes to define an integrated weighted score of each
gene 𝑆

𝑗
as shown in (3). 𝑆

𝑗
is the integrated weighted score of

gene 𝐺
𝑗
(𝑗 = 1, . . . , 𝑝), 𝜒2

𝑗
is the chi-square value of single

gene 𝐺
𝑗
, and 𝜒2

𝑗,𝑙
is the chi-square value of pairwise genes

𝐺
𝑗
and 𝐺

𝑙
(𝑙 = 1, . . . , 𝑝; 𝑙 ̸= 𝑗). Genes are ranked by the

integrated weighted score 𝑆
𝑗
to become a descending-range

sequence. Consider

S
𝑗
= 𝜒
2

𝑗
+

𝑝

∑

𝑙=1

(
𝜒
2

𝑗

𝜒2
𝑗
+ 𝜒2
𝑙

× 𝜒
2

𝑗,𝑙
) (3)

make an ordered listΘ of all the genes 𝐺
𝑗
in accordance with

the descending values of the scores 𝑆
𝑗
.

2.3. Chi-Square Test-Based Direct Classifier (𝜒2-DC) . When
the training set has 𝑛 samples and 𝑚 labels, with 𝑟 (𝑟 ≥ 2)
selected genes, there are 𝑟 × (𝑟 − 1)/2 contingency tables
included, each of which has𝑚 rows and 2 columns (Table 2).
If the testing sample belongs to class𝐶

𝑘
(𝑘 = 1, . . . , 𝑚), 𝑟×(𝑟−

1)/2 chi-square values of pairwise genes with 𝑛 + 1 samples
(i.e., including 𝑛 training samples and a testing sample) can
be worked out.The sum of 𝑟× (𝑟−1)/2 chi-square values was
set as 𝜒2

(𝐶𝑘)
(𝑘 = 1, . . . , 𝑚). We assign the test sample to the

class with the largest chi-square value: class of testing sample
= arg max

𝑘=1,...,𝑚
𝜒
2

(𝐶𝑘)
[31].

2.4. Introduce Ranked Genes Sequentially and Remove Redun-
dant Parts to Obtain Informative Genes. Take the top two
genes from the ordered listΘ and extract their expression val-
ues from the training dataset to form the initial training set.
Next, compute the LOOCV accuracy of the initial training
data based on 𝜒2-DC and denote it as LOOCV

2
. Record 𝑚

chi-square values 𝜒2
(𝐶1)
, 𝜒
2

(𝐶2)
, . . . , 𝜒

2

(𝐶𝑚)
of every sample taken

as a measured sample. Finally, introduce parameter ℎ, as
shown in (4)

ℎ =

𝑚

∑

𝑘=1

𝜒
2

(𝐶𝑡)
− 𝜒
2

(𝐶𝑘)

𝜒2
(𝐶𝑡)

𝑘 ̸= 𝑡, (4)

where𝐶
𝑡
is the true label of themeasured sample.The average

value of every training sample is denoted as ℎ
2
.

Now import the third gene from the ordered list Θ and
extract its expression values from the training dataset to
update the initial training set. Following the steps docu-
mented above, obtain LOOCV

3
and ℎ

3
of the updated train-

ing set. If LOOCV
3
> LOOCV

2
, or LOOCV

3
= LOOCV

2
and

ℎ
3
> ℎ
2
, the third gene is selected as an informative gene;

Otherwise, it is deemed as a redundant gene.
Similarly, informative gene subsets will be obtained by

sequentially introducing the top 2% genes from the ordered
list Θ.

2.5. Independent Prediction. With the informative gene sub-
sets, independent prediction based on 𝜒2-DC was conducted
individually on the testing sample to obtain the test accuracy.

2.6. Models Used for Comparison. In this paper, a model is
considered as a combination of a specific feature-selection
method and a specific classifier. Some feature-selectionmeth-
ods are also classifiers (HC-TSP, HC-k-TSP, TSG, DT, PAM,
etc.). We selected mRMR-SVM, SVM-RFE-SVM, HC-k-TSP
and TSG as comparative models for 𝜒2-IRG-DC; NB, KNN,
and SVM as the comparative classifiers of 𝜒2-DC; mRMR,
SVM-RFE, HC-k-TSP and TSG as the comparative feature-
selection approaches of 𝜒2-IRG-DC.

mRMR conducts minimum redundancy maximum rele-
vance feature selection.Mutual information difference (MID)
and mutual information quotient (MIQ) are two versions of
mRMR.MIQwas better thanMID in general [9], so the eval-
uation criterion in this paper is mRMR-MIQ. SVM-RFE is a
simple and efficient algorithm which conducts gene selection
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Table 1: Multiclass gene-expression datasets.

Dataset Platform No. of classes No. of genes No. of samples in training No. of samples in test Source
Leuk1 Affy 3 7,129 38 34 [6]
Lung1 Affy 3 7,129 64 32 [43]
Leuk2 Affy 3 12,582 57 15 [44]
SRBCT cDNA 4 2,308 63 20 [45]
Breast Affy 5 9,216 54 30 [46]
Lung2 Affy 5 12,600 136 67 [47]
DLBCL cDNA 6 4,026 58 30 [48]
Leukemia3 Affy 7 12,558 215 112 [49]
Cancers Affy 11 12,533 100 74 [50]
GCM Affy 14 16,063 144 46 [51]

Table 2: Frequency counts of samples in each class for single genes.

Class 𝑥
𝑖𝑗
> 𝑥
∙𝑗

𝑥
𝑖𝑗
< 𝑥
∙𝑗

Total
𝐶
1

𝑆𝑓
11

𝑆𝑓
12

𝑆𝑛
1
= 𝑆𝑓
11
+ 𝑆𝑓
12

...
...

...
...

𝐶
𝑚

𝑆𝑓
𝑚1

𝑆𝑓
𝑚2

𝑆𝑛
𝑚
= 𝑆𝑓
𝑚1
+ 𝑆𝑓
𝑚2

Total 𝑆𝑇
1
=

𝑚

∑
𝑘=1

𝑆𝑓
𝑘1

𝑆𝑇
2
=

𝑚

∑
𝑘=1

𝑆𝑓
𝑘2

𝑆𝑁 =

𝑚

∑
𝑘=1

𝑆𝑛
𝑘

Table 3: Frequency counts of samples in each class for pairwise
genes.

Class 𝑥
𝑖𝑗
> 𝑥
𝑖𝑙

𝑥
𝑖𝑗
< 𝑥
𝑖𝑙

Total
𝐶
1

𝑃𝑓
11

𝑃𝑓
12

𝑃𝑛
1
= 𝑃𝑓
11
+ 𝑃𝑓
12

...
...

...
...

𝐶
𝑚

𝑃𝑓
𝑚1

𝑃𝑓
𝑚2

𝑃𝑛
𝑚
= 𝑃𝑓
𝑚1
+ 𝑃𝑓
𝑚2

Total 𝑃𝑇
1
=

𝑚

∑
𝑘=1

𝑃𝑓
𝑘1

𝑃𝑇
2
=

𝑚

∑
𝑘=1

𝑃𝑓
𝑘2

𝑃𝑁 =

𝑚

∑
𝑘=1

𝑃𝑛
𝑘

in a backward elimination procedure. The mRMR and SVM-
RFE have been widely applied in analyzing high-dimensional
biological data. They only provide a list of ranked genes; a
classification algorithm needs to be used to choose the set of
variables that minimize cross validation error. In this paper,
SVM was selected as the classification algorithm, and our
SVM implementation is based on LIBSVM which supports
1-versus-1 multiclass classification. For SVM-RFE-SVM and
mRMR-SVMmodels, informative genes were selected by the
followingmethods: (i) rank the genes separately bymRMRor
SVM-RFE; (ii) select the top genes from 1 to 𝑠, which is equal
to approximately 2% of the total gene number, and conduct
10-fold cross-validation (CV10) for the training sets based on
SVM. Accuracy was denoted as CV10

𝑤
(𝑤 = 1, . . . , 𝑠); (iii)

with the highest CV10 accuracy, the genes were selected as
informative genes.

3. Results and Discussion

3.1. Comparison of Independent Test Accuracy and the Number
of Informative Genes Used in Different Models. In order to
evaluate the performance of model in this study, we used

the eight different models to perform independent test on
ten multiclass datasets. The test accuracy and informative
gene number are presented in Table 4. In this case, the
classification accuracy of each dataset is the ratio of the
number of the correctly classified samples to the total number
of samples in that dataset. The best model based on average
accuracy of the tenmulticlass datasets used in this study is𝜒2-
IRG-DC (90.81%), followed by TSG (89.2%), PAM (88.5%),
SVM-RFE-SVM (86.72%) and HC-k-TSP (85.12%). We do
not consider these differences in accuracy as noteworthy and
conclude that all five methods perform similarly. However,
in terms of efficiency, decision rule and the number of infor-
mative genes, one can argue that the 𝜒2-IRG-DC method is
superior. Recall that the 𝜒2-IRG-DC, TSG and PAM have
easy interpretation and can directly handle multiclass case,
but HC-k-TSP and SVM-RFE-SVM need a tedious process
to covert multiclass case into binclass case. For the ten
multiclass datasets, 𝜒2-IRG-DC selected 37.2 (range, 20–64
in ten datasets) informative genes on average. It clearly uses
less number of genes than PAM (1638.8) and TSG (51).
Moreover, the algorithm complexities of 𝜒2-IRG-DC is far
less than TSG. 𝜒2-IRG-DC ranked all genes according to
integrated weighted score firstly and sequentially introduced
the ranked genes based on LOOCV accuracy of training data.
In fact,𝜒2-IRG-DC is a hybrid filter-wrappermodels that take
advantage of the simplicity of the filter approach for initial
gene screening and then make use of the wrapper approach
to optimize classification accuracy in final gene selection [38].

3.2. Robustness Analysis—Evaluating Generalization Perfor-
mance ofDifferentModels. As shown inTable 4, the fivemod-
els (mRMR-SVM, SVM-RFE-SVM, HC-k-TSP, TSG, and
𝜒
2-IRG-DC) exhibited high independent test accuracy and

similar informative gene numbers. We further compared the
LOOCV accuracy for the training data and the independent
test accuracy for the test data from these four models. The
results are shown in Figures 1, 2, 3, 4, and 5. Obviously, over-
fitting occurred in all five models. Among them, 𝜒2-IRG-
DChad higher generalization performance.The test accuracy
of mRMR-SVM and SVM-RFE-SVM was no greater than
their training accuracy for all ten datasets. However, the test
accuracy of𝜒2-IRG-DCwas superior to the training accuracy
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Table 4: Independent test accuracy and informative gene number used indifferent models (in parentheses) for multiclass gene-expression
datasets.

Model Leuk1 Lung1 Leuk2 SRBCT Breast Lung2 DLBCL Leuk3 Cancers GCM Aver ± std

HC-TSP∗ 97.06 71.88 80 95 66.67 83.58 83.33 77.68 74.32 52.17 78.17 ± 13.17
(4) (4) (4) (6) (8) (8) (10) (12) (20) (26) (10.2)

HC-K-TSP∗ 97.06 78.13 100 100 66.67 94.03 83.33 82.14 82.43 67.39 85.12 ± 12.42
(36) (20) (24) (30) (24) (28) (46) (64) (128) (134) (53.4)

DT∗ 85.29 78.13 80 75 73.33 88.06 86.67 75.89 68.92 52.17 76.35 ± 10.49
(2) (4) (2) (3) (4) (5) (5) (16) (10) (18) (6.9)

PAM∗ 97.06 78.13 93.33 95 93.33 100 90 93.75 87.84 56.52 88.5 ± 12.71
(44) (13) (62) (285) (4,822) (614) (3,949) (3,338) (2,008) (1,253) (1,638.8)

mRMR-SVM 76.47 78.13 100.00 75.00 96.67 95.52 96.67 91.96 71.62 45.65 82.77 ± 16.85
(7) (13) (19) (9) (97) (120) (16) (119) (89) (57) (54.6)

SVM-RFE-SVM 85.29 78.13 93.33 95.00 90.00 88.06 90.00 91.07 93.24 63.04 86.72 ± 9.62
(5) (9) (8) (3) (7) (9) (13) (35) (29) (199) (31.7)

TSG 97.06 81.25 100 100 86.67 95.52 93.33 91.07 79.73 67.39 89.20 ± 10.5
(6) (20) (44) (13) (63) (60) (16) (95) (81) (112) (51)

𝜒
2-IRG-DC 97.06 84.38 100 100 90 97.01 93.33 93.75 85.14 67.39 90.81 ± 9.91

(29) (23) (20) (23) (31) (52) (37) (46) (47) (64) (37.2)
∗Results reported in [28].
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Figure 1: Accuracy of mRMR-SVM for training and test data.

for the Leuk2, Lung2, and Leuk3 datasets, and the test
accuracy of TSGwas superior to the training accuracy for the
Lung1, Lung2, Leuk2, and Leuk3 datasets. For another direct
classifier, HC-k-TSP, the test accuracy was also higher than
the training accuracy for the SRBCT and cancers datasets.
These results indicated that the special direct classification
algorithm of 𝜒2-IRG-DC, TSG and HC-k-TSP can effectively
control over-fitting, and exhibiting a better generalization
performance.

3.3. Robustness Analysis—Evaluating Different Feature-Sel-
ection Methods. As shown in Table 5, with the informative
genes selected by the five feature-selection methods, the clas-
sification performances of NB and KNN were significantly
improved. However, the performance of SVM was improved
only with the genes selected by our method, 𝜒2-IRG-DC.
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Figure 2: Accuracy of SVM-RFE-SVM for training and test data.

This observation indicated, on the one hand, that SVM is not
sensitive to feature dimensions [39], and on the other hand,
that 𝜒2-IRG-DCwasmore robust than the other four feature-
selection methods.

With the genes selected by 𝜒2-IRG-DC, four classifiers
(NB, KNN, SVM, and 𝜒2-DC) performed very well, with
average accuracies of 84.23%, 85.54%, 89.54%, and 90.81%,
respectively, across ten datasets; the overall average accuracy
was 87.53%. Similarly, we calculated the overall average
accuracy of other feature-selection methods: 87.53% (𝜒2-
IRG-DC) > 85.99% (HC-k-TSP) > 84.45% (TSG) > 81.93%
(SVM-RFE) > 80.16% (mRMR), once again confirming the
robustness and effectiveness of 𝜒2-IRG-DC.

3.4. Robustness Analysis—Comparison of Classifiers. The
overall average accuracies of the four classifiers with informa-
tive genes selected by five feature-selection methods across
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Table 5: Test accuracy of different classifiers with informative genes selected by different feature-selection methods.

Classifier Feature-selection method Leuk1 Lung1 Leuk2 SRBCT Breast Lung2 DLBCL Leuk3 Cancers GCM Aver-𝐹

NB

ALL∗ 85.29 81.25 100.00 60.00 66.67 88.06 86.67 32.14 79.73 52.17 73.20
𝜒
2-IRG-DC 97.06 81.25 100.00 85.00 86.67 92.54 96.67 59.82 82.43 60.87 84.23

mRMR 79.41 68.75 100.00 90.00 93.33 97.01 96.67 74.11 70.27 45.65 81.52
SVM-RFE 67.65 81.25 80.00 95.00 80.00 89.55 90.00 95.00 77.03 63.04 81.85
HC-K-TSP 91.18 81.25 100.00 80.00 80.00 95.52 86.67 100.00 77.03 65.22 85.69
TSG 91.18 84.38 93.33 100 86.67 94.03 100 51.79 71.62 65.22 83.82
Aver-𝐶† 85.30 79.38 94.67 90.00 85.33 93.73 94 76.14 75.68 60.00 83.42

KNN

ALL∗ 67.65 75.00 86.67 70.00‡ 63.33 88.06 93.33 75.89 64.86 34.78 71.96
𝜒
2-IRG-DC 97.06 71.88 86.67 100.00 86.67 85.07 96.67 87.50 85.14 58.70 85.54

mRMR 70.59 68.75 80.00 80.00 96.67 86.57 100.00 91.07 54.05 36.96 76.47
SVM-RFE 76.47 68.75 86.67 100.00 90.00 86.57 90.00 91.96 58.11 45.65 79.42
HC-K-TSP 88.24 87.50 86.67 85.00 83.33 94.03 93.33 88.39 64.86 52.17 82.35
TSG 91.18 75 93.33 100 80 88.06 96.67 86.6 74.32 39.13 82.43
Aver-𝐶† 84.71 74.38 86.67 93.00 87.33 88.06 95.33 89.10 67.30 46.52 81.24

SVM

ALL∗ 79.41 87.50 100.00 100.00 83.33 97.01 100.00 84.82 83.78 65.22 88.11
𝜒
2-IRG-DC 97.06 87.50 93.33 100.00 93.33 92.54 96.67 86.61 91.89 56.52 89.54

mRMR 76.47 78.13 100.00 75.00 96.67 95.52 96.67 91.96 71.62 45.65 82.77
SVM-RFE 85.29 78.13 93.33 95.00 90.00 88.06 90.00 91.07 93.24 63.04 86.72
HC-K-TSP 85.29 84.38 100.00 90.00 86.67 98.51 96.67 94.64 82.43 60.87 87.95
TSG 91.18 81.25 93.33 80 80 94.03 100 80.36 68.92 54.35 82.34
Aver-𝐶† 87.06 81.88 96.00 88.00 89.33 93.73 96.00 88.93 81.62 56.09 85.86

𝜒
2-DC

𝜒
2-IRG-DC 97.06 84.38 100.00 100.00 90.00 97.01 93.33 93.75 85.14 67.39 90.81

mRMR 82.35 65.63 100.00 90.00 90.00 95.52 70.00 96.43 60.81 47.83 79.86
SVM-RFE 79.41 56.25 66.67 85.00 76.67 92.54 80.00 96.43 94.59 69.57 79.71
HC-K-TSP 97.06 84.38 100.00 95.00 76.67 97.01 93.33 88.39 78.38 69.57 87.98
TSG 97.06 81.25 100 100 86.67 95.52 93.33 91.07 79.73 67.39 89.20
Aver-𝐶† 90.59 74.38 93.33 94.00 84.00 95.52 86.00 93.21 79.73 64.35 85.51

∗Results reported in [28]; ‡30 in original paper, whereas the actual number was 70 after validation; †Aver-𝐶 was the average accuracy of a classifier with
informative genes selected by four feature-selection methods.
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Figure 3: Accuracy of HC-𝑘-TSP for training and test data.

ten datasets are highlighted in bold in Table 5. The order
is as follows: 85.86% (SVM) > 85.51% (𝜒2-DC) > 83.42%
(NB) > 81.24% (KNN). This result revealed that SVM is an
excellent classifier; at the same time, the 𝜒2-DC classifier also
performed well.
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Figure 4: Accuracy of TSG for training and test data.

4. Conclusion

Informative gene subsets selected by different feature-
selection methods often differ greatly. As we can see, genes
number selected by the three different models (mRMRSVM,
SVM-RFE-SVM) in are listed in Table S1. The numbers
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Figure 5: Accuracy of 𝜒2-IRG-DC for training and test data.

of overlapped gene selected by different models are listed
in Table S2. Results showed that there are few overlaps
of genes selected by the three models (see supplementary
Tables S1 and S2 in supplementary materials available online
at http://dx.doi.org/10.1155/2014/589290). However, different
models combined with a certain feature-selection method
and a suitable classifier can get a close prediction precision.
Evaluations of robustness of feature-selection methods and
classifiers should include the following aspects: (i) models
should have good generalization performance, that is, a
model should not only have high accuracy in training sets, but
should also have high and stable test accuracy across many
datasets (average accuracy ± standard deviation); (ii) with
informative genes selected by an excellent feature-selection
method, should improve varies classifiers performance; (iii)
similarly, a good classifier should perform well with different
informative genes selected by different excellent feature-
selection approaches.

The results of this study illustrate that pairwise interaction
is the fundamental type of interaction. Theoretically, the
complexity of the algorithm could be controlled within
𝑂(𝑛
2
) with pairwise interactions. When three or more

genes connect to each other, the complex combination of
three or more genes could be represented by the pairwise
interactions. Based on this assumption, this paper proposes
a novel algorithm, 𝜒2-IRG-DC, used for informative gene
selection and classification based on chi-square tests of
pairwise gene interactions.Theproposedmethodwas applied
to ten multiclass gene-expression datasets; the independent
test accuracy and generalization performance were obviously
better than those of mainstream comparative algorithms.
The informative genes selected by 𝜒2-IRG-DC were able to
significantly improve the independent test accuracy of other
classifiers. The average extent of test accuracy raised by 𝜒2-
IRG-DC is superior to those of comparable feature-selection
algorithms. Meanwhile, informative genes selected by other
feature-selection methods also performed well on 𝜒2-DC.

Currently, integrated analysis of multisource heteroge-
neous data is a key challenge in cancer classification and
informative gene selection. This includes the integration of
repeated measurements from different assays for the same
disease on the same platform [40], as well as the integration

of gene chips, protein mass spectrometry, DNA methylation,
and GWAS-SNP data collected on different platforms for the
study of the same disease [41], and so forth. In future, we
will apply 𝜒2-IRG-DC to the integrated analysis of multi-
source heterogeneous data. Combining this method with the
GO database, biological pathways, disease databases, and
relevant literature, wewill conduct a further assessment of the
relevance of the biological functions of selected informative
genes to the mechanisms of disease [42].
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approach for biomarker selection and the integration of
repeated measures experiments from two assays,” BMC Bioin-
formatics, vol. 13, no. 1, article 325, 2012.

[41] S. Wu, Y. Xu, Z. Feng, X. Yang, X.Wang, and X. Gao, “Multiple-
platform data integrationmethodwith application to combined
analysis of microarray and proteomic data,” BMC Bioinformat-
ics, vol. 13, no. 1, article 320, 2012.

[42] A. C. Haury, P. Gestraud, and J. P. Vert, “The influence of feature
selection methods on accuracy, stability and interpretability
of molecular signatures,” PLoS ONE, vol. 6, no. 12, Article ID
e28210, 2011.

[43] D. G. Beer, S. L. R. Kardia, C. Huang et al., “Gene-expression
profiles predict survival of patients with lung adenocarcinoma,”
Nature Medicine, vol. 8, no. 8, pp. 816–824, 2002.

[44] S. A. Armstrong, J. E. Staunton, L. B. Silverman et al., “MLL
translocations specify a distinct gene expression profile that
distinguishes a unique leukemia,” Nature Genetics, vol. 30, no.
1, pp. 41–47, 2002.

[45] J. Khan, J. S. Wei, M. Ringnér et al., “Classification and diag-
nostic prediction of cancers using gene expression profiling and
artificial neural networks,” Nature Medicine, vol. 7, no. 6, pp.
673–679, 2001.

[46] C. M. Perou, T. Sørile, M. B. Eisen et al., “Molecular portraits of
human breast tumours,”Nature, vol. 406, no. 6797, pp. 747–752,
2000.

[47] A. Bhattacharjee, W. G. Richards, J. Staunton et al., “Classifica-
tion of human lung carcinomas by mRNA expression profiling
reveals distinct adenocarcinoma subclasses,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 98, no. 24, pp. 13790–13795, 2001.

[48] A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, and I. S. Lossos,
“Distinct types of diffuse large B-cell lymphoma identified by
gene expression profiling,” Nature, vol. 403, pp. 503–511, 2000.

[49] E. J. Yeoh, M. E. Ross, S. A. Shurtleff et al., “Classification,
subtype discovery, and prediction of outcome in pediatric acute
lymphoblastic leukemia by gene expression profiling,” Cancer
Cell, vol. 1, no. 2, pp. 133–143, 2002.

[50] A. I. Su, J. B. Welsh, L. M. Sapinoso et al., “Molecular classifica-
tion of human carcinomas by use of gene expression signatures,”
Cancer Research, vol. 61, no. 20, pp. 7388–7393, 2001.

[51] S. Ramaswamy, P. Tamayo, R. Rifkin et al., “Multiclass cancer
diagnosis using tumor gene expression signatures,” Proceedings
of the National Academy of Sciences of the United States of
America, vol. 98, no. 26, pp. 15149–15154, 2001.


