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Abstract

Slow (,0.1 Hz) oscillatory activity in the human brain, as measured by functional magnetic imaging, has been used to
identify neural networks and their dysfunction in specific brain diseases. Its intrinsic properties may also be useful to
investigate brain functions. We investigated the two functional maps: variance and first order autocorrelation coefficient
(r1). These two maps had distinct spatial distributions and the values were significantly different among the subdivisions of
the precuneus and posterior cingulate cortex that were identified in functional connectivity (FC) studies. The results
reinforce the functional segregation of these subdivisions and indicate that the intrinsic properties of the slow brain activity
have physiological relevance. Further, we propose a sample size (degree of freedom) correction when assessing the
statistical significance of FC strength with r1 values, which enables a better understanding of the network changes related
to various brain diseases.
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Introduction

Spontaneous fluctuations of blood oxygen level-dependent

(BOLD) signals, as measured by functional magnetic resonance

imaging (fMRI), are not simply caused by random noise but

represent brain functions. Functional connectivity (FC) analysis [1]

of these signals, pioneered by Biswal et al. [2], has revealed various

brain networks that are related to specific functions [3–5] and their

relationship with brain diseases [6,7]. The investigation of intrinsic

properties of spontaneous BOLD fluctuations also revealed the

other aspects of the brain function. Garrett et al. showed the

relationship between standard deviation of BOLD signals and

chronological age [8] and Baria et al. showed distinct spatial

distributions of BOLD signals that reflect regional functional

complexity [9]. These studies suggest that the intrinsic properties

of BOLD signals provide novel information about regional

differentiation of the brain.

In this study, we measured the intrinsic properties of

spontaneous BOLD fluctuations using the two parameters,

variance and autocorrelation coefficient, both of which were

extracted by the autocorrelation function. The autocorrelation

function of a time series is the correlation between its past and

present states; thus, a high correlation indicates that the series state

does not so change over time. The autocorrelation function has

been used to extract periodicity in unitary neuronal activity [10–

12] because conventional frequency analysis such as fast Fourier

transform cannot be directly applied. Application of the autocor-

relation function to continuous time series data such as BOLD

signals is useful in extracting two distinct properties, i.e., variance

and the first-order autocorrelation coefficient (r1). The autocor-

relation function is usually shown after normalization so that the

correlation at various lags is between 21 and 1 (that is, the

correlation coefficient). The value at lag zero before normalization

divided by the sample number of the time series corresponds to the

variance of the data. The value of r1 can be calculated by the

correlation at lag zero and lag 1. We show here that the spatial

distributions of these values are different from each other and the

distributions have functional relevance. Further, r1 is useful for the

correction of the degree of freedom during the assessment of FC

strength between the data from two time series.

Methods

Participants
Twenty eight healthy subjects (13 women and 15 men, mean

age: 34.5+/27.3 years) were recruited for this study. All were

right-handed according to the Edinburgh Handedness Inventory

[13] with a mean score of 92+/210.5 and gave informed consent

prior to the study. This study protocol was approved by the Ethics

Committee of Wakayama Medical University and we obtained

written informed consent from all participants involved in this

study.

MRI Data Acquisition
Each subject’s brain structural and resting state functional

images were acquired on a 3 Tesla MRI (PHILIPS, The

Netherlands) using a 32-channel head coil (SENSE-Head-

32CH). High-resolution three-dimensional T1-weighted anatom-

ical images were collected with the following parameters:

TR = 7 ms, TE = 3.3 ms, FOV = 220 mm, Matrix scan = 256,

slice thickness = 0.9 mm, flip angle = 10u. Functional data were

acquired using a gradient-echo echo-planar pulse sequence
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sensitive to BOLD contrast [14] with the following parameters:

TR = 3000 ms, TE = 30 ms, FOV = 192 mm, Matrix scan = 64,

slice thickness = 3 mm, flip angle = 80u. Three runs, each of which

comprised 107 volumes (for 5 min 21 s), were administered to

each subject. During acquisition, the subjects were instructed to

stay awake with their eyes closed.

MRI Data Analysis
Preprocessing of functional MRI (fMRI) data was conducted

using SPM8 (http://www.fil.ion.ucl.ac.uk/spm) and in-house

software developed with MATLAB (Mathworks, Natick, MA,

USA). The first 5 volumes of each fMRI acquisition run were

discarded to allow for T1-equilibration effects leaving 102

consecutive volumes per session. Rigid body translation and

rotation were used to correct head motion, and spatial

normalization was achieved by 12-parameter affine transforma-

tion to the International Consortium for Brain Mapping Echo-

Planar Imaging template in SPM8. Each image was resampled to

2-mm isotropic voxels and spatially smoothed using an 8-mm full

width at half maximum Gaussian kernel. Similarly normalized and

resampled structural images were then used to extract time series
data for the cerebrospinal fluid (CSF), white matter (WM), and

gray matter (GM),which were used to reduce non-physiological

Figure 1. Autocorrelation function of BOLD signals for 306 s. The bottom graph shows the data for the lag range from 21 to 10, which is
indicated by the bar in the middle graph. Note that the autocorrelation is not normalized.
doi:10.1371/journal.pone.0038131.g001

Figure 2. Effective sample size calculated with various r1 and r1’
values. The original sample size is 102. The effective sample size
decreases as the autocorrelation coefficient decreases.
doi:10.1371/journal.pone.0038131.g002
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noise in the time series of BOLD signals (see below). Each subject’s

three tissue images (CSF, WM, GM) were generated using SPM8

with a probability threshold of 90%.

Exclusion of the signals unrelated to brain function (i.e., brain

tissue fluctuations due to head motion, cardiac activity, and

respiration) was done using CompCor [4,15] and global signal

regression [16]. Briefly, CompCor includes the following steps:

identification of voxels showing the highest temporal variation (top

2%), principal component analysis (PCA) of these voxels and

voxels within CSF and WM, identification of the PCA compo-

nents accounting for a significant proportion of the variance in the

data, and exclusion of the identified signal time course for each

voxel using linear regression. Temporal (band-pass) filtering

(ranging from 0.01 to 0.1 Hz) removed constant offsets and linear

trends over each run. The 102 preprocessed images from each

session were concatenated into single four-dimensional (time and 3

spatial data) images and, thus, the data from 3 sessions for each

subject were used for the following analysis.

The autocorrelation function (not normalized by dividing the

values at lag 0, which is also known as autocovariance function) for

each voxel of the functional GM volumes was calculated with the

custom Matlab command (Fig. 1) and the variance (v) and first-

order (lag 1) autocorrelation coefficient (r1) were calculated for

each voxel using the following equations:

Figure 3. Variance t-value map. The result of one-sample t-test is shown excluding non-significant voxels (p.0.05 with FDR corrected). High
variance is seen in restricted cortical regions, such as the vmPFC, insula, PCC, calcarine sulcus, and lateral parietal lobes.
doi:10.1371/journal.pone.0038131.g003

Table 1. High variance cortical regions: Brodmann’s area (BA);
Z-score (Z, mean (SD)).

Region MNI BA Z

x y z

Left superior temporal
gyrus

234 10 229 20 2.54(1.29)

Left precuneus 23 260 32 31 2.02(1.16)

Right superior temporal
gyrus

34 10 229 20 1.83(1.13)

Left parahippocampus 217 0 225 28 1.78(0.92)

Left calcarine fissure and
surrounding cortex

23 284 5 17 1.68(1.96)

Left lingual gyrus 212 255 1 18 1.65(1.03)

Left rectus 24 50 219 11 1.57(1.06)

Right calcarine fissure and
surrounding cortex

4 283 6 17 1.55(1.63)

Right precuneus 4 265 30 31 1.48(1.06)

Right lingual gyrus 12 255 3 18 1.47(0.76)

Right parahippocampus 19 21 223 28 1.24(0.97)

Right angular gyrus 47 266 49 39 1.11(2.14)

Left angular gyrus 248 262 50 39 1.01(1.6)

doi:10.1371/journal.pone.0038131.t001
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C(k)~
XN{k

i~1

(X (i){m)(X (izk){m), m~1=N
XN

i~1

X (i) ð1Þ

v~C(0)=N ð2Þ

r1~C(1)=C(0), ð3Þ

where C(k) is autocorrelation at lag k of N sample data (x1, x2, …,

xN) (N = 102, in this study).

Then, the mean image for 3 sessions for each subject was

calculated and standardized with the mean and standard deviation

among all the voxels’ data. Each subject’s v and r1 Z-score maps

were used to extract voxels whose data were significantly different

from mean zero, as assessed by a random effect one-sample t-test.

The significance level was set at p,0.05 corrected for multiple

comparisons with the false discovery rate (FDR) at 5% [17]. To

assess the effect of lag, we created r2 (lag 2) and r3 (lag 3) maps and

compared with r1 map.

The three dimensional presentations of the functional maps

were created using MRIcron [18], which was also used to estimate

Figure 4. r1 t-value map. The result of one-sample t-test is shown excluding non-significant voxels (p.0.05 with FDR corrected). Low r1 values
distributed around the caudal brain regions. Relatively high values are seen in the DMN regions and the cerebral cortex had the highest values except
the insula and primary sensorimotor areas.
doi:10.1371/journal.pone.0038131.g004

Table 2. High r1 cortical regions: Brodmann’s area (BA); Z-
score (Z, mean (SD)).

Region MNI BA Z

x y z

Left PCC 22 259 31 31 1.2(0.6)

Left middle occipital gyrus 241 278 33 39 1.1(0.6)

Right supramarginal gyrus 65 236 38 40 1.1(0.7)

Right angular gyrus 45 274 36 39 1.0(0.9)

Left vmPFC 24 58 216 11 0.9(0.6)

Left inferior parietal cortex 260 245 41 40 0.9(0.7)

Left middle frontal gyrus 241 49 4 46 0.7(0.7)

Right middle frontal gyrus 32 54 18 46 0.7(0.7)

Left middle temporal gyrus 263 216 216 21 0.7(0.5)

Right superior temporal gyrus 63 22 26 21 0.7(0.7)

Right PCC 6 255 31 31 0.5(0.6)

Right vmPFC 6 44 222 11 0.5(0.9)

Left middle frontal gyrus 242 28 36 45 0.5(0.7)

doi:10.1371/journal.pone.0038131.t002
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the anatomical localization of the regions of interest. At each

region of interest, we extracted the mean values of v and r1 within

a radius of 4 mm for each subject and assessed the regional

difference of these values.

Estimation of Effective Sample Size by the
Autocorrelation Function

The cross-correlation coefficient is commonly used to evaluate

the magnitude of FC between two voxels in a functional volume

[2,19]. The statistical significance of the correlation between two

random time series can be assessed by the t –test:

t~r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N{2)=(1{r|r)

p
, ð4Þ

where r denotes the correlation and N is the number of time points.

Functional data, however, are not random [20,21], i.e., the

observed N samples are not independent from each other. Thus,

the size of N has to be replaced by the effective sample size for

correlation test, which is estimated from the following equation

[22]:

N 0{2~(N{2)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1{r1|r10)=(1zr1|r10)

p
, ð5Þ

where N9 is the effective sample size, and r1 and r1’ are the

respective first order autocorrelation coefficients of the two time

series. Fig. 2 shows the effective sample sizes calculated using

various values of r1 and r1’ when N = 102.

We tested the effect of correcting the sample size on FC analysis.

The default mode network (DMN) was assessed using the FC

between the ventral part of the posterior cingulate cortex (PCC)

(Montreal Neurological Institude (MNI) coordinates: 2, 258, 28)

[23] and other brain regions. Pearson’s correlation coefficient

between the ventral PCC and other brain regions was calculated

for each subject. For the seed data, we used the mean time course

of the voxels less than 4 mm from the center of the ventral PCC.

We created 2 correlation image datasets; one was made with the

Figure 5. r2 t-value map. The result of one-sample t-test is shown excluding non-significant voxels (p.0.05 with FDR corrected). The distribution
pattern is similar to that for r1 (Fig. 4).
doi:10.1371/journal.pone.0038131.g005
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values above the correlation threshold at p,0.05 when the degree

of freedom was 100 (i.e., N22). The other one was made with the

values above the correlation threshold at p,0.05, but the degree of

freedom was corrected using the two first order autocorrelation

coefficients according to Equation (5).

For the group analysis, setting a threshold at each subject data

may not be appropriate because the data would not follow a

Gaussian distribution even after Fisher’s r to z transform. Thus,

we first converted the cross-correlation coefficient values to the t-
values using Equation (4) with N’ for each voxel pair calculated by

Equation (5). These t values were then converted to Z- scores with

the same N’ to perform one-sample t-test as done in v and r1. We

used the t-to-z transform algorithm proposed by Hughett [24].

The result was compared with the Z-score map created with the

conventional procedure that uses Fisher’s r to z transform.

Results

Variance Map
Fig. 3 shows the result of the one-sample t-test for the variance

as the t-value map excluding non-significant voxels (p.0.05, FDR

corrected). As seen, high variance of the spontaneous BOLD

signals was found in the area of the PCC, precuneus, lateral

parietal cortex, parahippocampus, superior temporal gyrus, and

cerebellum. Notably, the precuneus, PCC, and medial occipital

cortex were divided into several regions by the distribution of the

variance. In the frontal lobe, the ventromedial prefrontal cortex

(vmPFC) showed a higher level of variance than the other frontal

areas. MNI coordinates and Z-scores for the high variance regions

are shown in Table 1. In contrast, the insula, posterior temporal

cortex, primary sensorimotor areas, and ventral striatum had low

Figure 6. Relative locations of the seeds in the subdivisions of
the precuneus and PCC shown with mean Z-score maps of v
and r1. The mean Z-score map for the variance (v) is shown in the
middle and the map for r1 is shown in the bottom of the figure. Note
that the distribution pattern for v is different from that for r1 especially
in the precuneus and PCC. a: ventral PCC; b: dorsal PCC; c: visual
precueal region; d: cognitive/associative precuneal region; e: transi-
tional zone; f: sensorimotor precuneal region.
doi:10.1371/journal.pone.0038131.g006

Table 3. Seeded regions in the subdivisions of the PCC and
precuneus.

Region MNI

x y z

PCC

Ventral part 2 258 28

Dorsal part 2 234 40

Precueus

Sensorimotor region 22 247 58

Transitional zone 22 256 51

Cognitive/associative region 22 264 45

Visual region 21 275 36

doi:10.1371/journal.pone.0038131.t003

Figure 7. Z-scores of the variance (v) and r1 in the 2
subdivisions of the PCC. Both values were significantly higher in
the ventral PCC than in the dorsal PCC (p,0.0001, paired t-test).
doi:10.1371/journal.pone.0038131.g007
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PLoS ONE | www.plosone.org 6 May 2012 | Volume 7 | Issue 5 | e38131



levels of variance (Fig. 3).

Autocorrelation Coefficient Map
Fig. 4 shows the result of the one-sample t-test for r1 values as

the t-value map excluding non-significant voxels (p.0.05, FDR

corrected). Cortical areas generally showed high r1 values except

the insula and primary sensorimotor area. Relatively high r1

values were seen in the lateral parietal lobe, lateral prefrontal lobe,

PCC, and vmPFC. Interestingly, these distributions correspond to

the regions in which myelin developed last [25] and with the

lowest myelin content [26]. Notably, the distribution of the r1

values in the PCC and precuneus is different from the distribution

of the variance. The MNI coordinates and Z-scores for the high r1

regions are shown in Table 2. Significantly low r1 values were

observed in the amygdala, hippocampus, and cerebellum, in

contrast to the distribution of the variance (see Fig. 3).

Fig. 5 shows the result of the one-sample t-test for r2 values as

the t-value map excluding non-significant voxels (p.0.05, FDR

corrected). As seen, the distribution pattern is nearly identical to

the map for r1 (see Fig. 4). No significant voxels were found for r3

Z-score values.

Posterior Cingulate Cortex and Precuneus
Recent studies showed that the PCC and precuneus have

distinct FC properties and that these areas could be divided into

several subdivisions. Because the v and r1 maps showed

significantly higher values in these regions, it is of interest to

check if these two values are different among the proposed

subdivisions of the PCC and precuneus. Fig. 6 shows the mean Z-

score maps across all subjects for both values excluding non-

significant voxels (p.0.05, FDR corrected). On the basis of

previous studies [23,27], we seeded 2 and 4 locations in the PCC

and precuneus, respectively. Their relative locations are shown in

Fig. 6 and the MNI coordinates are shown in Table 3. Fig. 7
shows the mean (+/2SEM) v and r1 Z-score values among the

subjects for the PCC subdivisions. Remarkable differences in both

values were seen between the two subdivisions. The ventral part of

the PCC showed significantly higher v and r1 values than the

dorsal part PCC (p,0.0001, paired t-test).

Three subdivisions in the precuneus showed significantly

different variance from each other (Fig. 8). The sensorimotor

region had the lowest variance, and while visual region had the

highest. The variance of the cognitive region variance was not

significantly different from that of the transitional zone. In

contrast, these regions had similar r1 values and the subdivisions

could not be differentiated by r1.

Effective Sample Size
Fig. 9 shows the distribution of r1 for the gray matter voxels in

one subject’s brain. The range from 0.3 to 0.7 indicates that the

effective sample size for the assessment of the cross correlation

coefficient could vary from 59 to 91 when the original sample size

is 102 according to Equation (5).

The effect of sample size correction on the selection of

significant (p,0.05) FC voxels is shown in Fig. 10. As seen, the

area was much reduced and 46.1% of voxels in the whole

brain were excluded by the correction of the sample size. The

mean (+/2SD) percent of the excluded voxels across the subjects

was 43.4+/24.7%.

Fig. 11 shows the results of one-sample t-test for the Z-scores

without (A) and with temporal autocorrelation correction (B) as the

t-maps excluding non-significant voxels (p.0.05, FDR corrected).

The difference (corrected map minus conventional map that uses

Fisher’s r to z transform) of these results is shown in Fig. 11C.

Both procedures revealed the same distribution pattern but the

t values were generally higher for the corrected map than the

uncorrected map. Further, we checked the effect of sample size

correction on the Z-score map by comparing the map created by

the same procedure without sample size correction, that is the map

was created by the same r to t and t to z transform using the

Figure 8. Z-scores of the variance (v) and r1 in the 4
subdivisions of the precuneus. Significant differences in the v
values among the 4 regions were revealed by the paired t-test (p-values
were corrected with Bonferroni’s method). In contrast, there was no
significant difference in the r1 values among the 4 regions. Sm,
sensorimotor region; tz, transitional zone; cg, cognitive/associative
regions; vs, visual region.
doi:10.1371/journal.pone.0038131.g008

Figure 9. Distribution of the r1 values for the gray matter
voxels in one subject. The value ranges from 0.3 to 0.7 though most
of the data are between 0.5 and 0.6.
doi:10.1371/journal.pone.0038131.g009
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original sample size (n = 102). The distribution of the uncorrected

map was the same as that for the corrected map. Fig. 11D shows

the difference between sample size corrected map and sample size

uncorrected (otherwise the same as sample size corrected map)

map. As seen, the t values in DMN regions were higher for the

corrected map than the uncorrected map.

Discussion

We created two human brain maps using the distribution of the

variance (v) and r1, both of which were calculated from the

autocorrelation function for each voxel. These maps showed

distinct spatial distributions and had functional relevance because

the precuneal and PCC subdivisions had significantly different

values.

Although spontaneous fluctuations of BOLD signals has been

clearly shown to have functional relevance in a number of FC

studies, signal variance (or standard deviation) itself in a certain

time period has not been paid much attention until recently [8,28].

One possible reason is that BOLD signal variance could be largely

affected by non-physiological noise such as heart beat, respiration,

and head movements. Thus, proper preprocessing of BOLD time

series data is the cardinal step for the assessment of variance as

shown by Garrett et al. [8].

The physiological relevance of the higher variance seen in the

superior temporal gyrus, lateral parietal lobe, vmPFC, cerebellum,

and parahippocampus (Fig. 3) is not known. Variance is thought

to be related to efficient neural processes [8,29]. If its distribution

was found to be related specifically to the resting state, the

functional relationship of these regions to the DMN would be an

interesting subject of a future study. One of the outstanding results

in this study is that the subdivisions in the precuneus and PCC had

significantly different distributions of the variance (Figs. 7 and 8).

These subdivisions were proposed on the basis of previous FC

studies [23,27]. Our results indicate that these regions have

distinct intrinsic activity that might be important for their specific

functions using the related neural networks. Further, the unique

distributions seen in the precuneus and PCC (Fig. 6) suggest that

these regions could be divided into even more subdivisions, which

was unexpected from the findings of previous studies [27,30].

Previously proposed parameter, amplitude of low-frequency

fluctuation (ALFF) [31,32] would give the same results as the

variance map when the same frequency range and proper

standardization procedure was used. Detail analysis using ALFF

and other frequency analysis may reveal further detail functional

localizations in the precueus and PCC. We used variance instead

of ALFF in this study simply because variance was lag zero

autocovariance (see Methods).

The autocorrelation coefficient (r1) distribution map revealed a

distinct difference between the two subdivisions of the PCC

(Fig. 6). Namely, the ventral part of the PCC had higher r1 and v
values than the dorsal part, which provides further support for the

fractionation of the PCC in addition to its distinct cytoarchitec-

tonics [33] and differential activation and FC during a cognitive

task [23]. The results indicate that future DMN studies should take

these subdivisions of the PCC into account. The distribution of r1

Figure 10. Effect of sample size correction. The top images show the distribution of the cross correlation coefficients (p,0.05, t-test for each
paired voxels’ data) between the ventral PCC and the other brain voxels without sample size correction (i.e., N = 102). The bottom images show the
distribution of the voxels with the cross correlation coefficients that are significantly different from zero (p,0.05). The effective sample size (N’) (see
text) was calculated for each pair of voxels with their autocorrelation coefficients and each pair’s N’ was used to assess the significance of the cross-
correlation coefficient. For this subject, ,46% of voxels were revealed not to be significant after sample size correction.
doi:10.1371/journal.pone.0038131.g010

Variance and Autocorrelation
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in the precuneus and PCC was quite different from that of v
(Fig. 6), which suggests that these values reflect distinct properties

of the neural activity in the same region.

Interestingly, the map showing the high r1 regions (Fig. 4) has

some resemblance to DMN regions [7], low frequency power

distribution [9,31,34], cortical hubs [6], low myelination regions

[25,26], and amyloid beta deposition in Alzheimer’s disease

[35,36]. Similarities between low frequency distribution and DMN

[31], between cortical hubs and amyloid beta distribution [6], and

between amyloid beta deposition and low myelination regions [35]

have been reported. It is reasonable that the distribution of r1

reflects low frequency power distribution rather than high

frequency distribution because the phase is larger for lower

frequency oscillations than for higher frequency oscillations.

Although the physiological relevance of the other similarities is

unknown, the clinical application of r1 maps may become useful

for the diagnosis of Alzheimer’s disease.

In most biological time series data, the first-order autocorrela-

tion coefficient is the highest because the present value must be

affected by the most recent past value if any relationship between

past and present value exists. Indeed, using lags other than 1 was

not successful because the distribution pattern for lag 2 was similar

to that for lag 1 (Fig. 5). The analysis using lag 3 did not show any

significant voxels probably because most of the coefficient values at

lag 3 were not significantly different from the values for random

process. The results also validate the procedure for sampling size

correction using only first-order autocorrelation coefficient.

Sampling size (or degree of freedom) correction for the statistical

assessment of FC strength is important for the time series with

short acquisition time and short TR [19]. Further, the temporal

correlation of BOLD signals that affects the degree of freedom can

vary between subjects even in the same region, which must be

taken into account when an FC study is carried out with different

subject groups. This is because the difference in FC between the

two groups could be due to the different temporal correlations.

Temporal correlation is related to the intrinsic activity in a region

but FC represents a cross-correlation between different regions.

Thus, these measures detect distinct brain functions. We showed

that the effective sample size estimated by each voxel’s r1 value

was useful to exclude ,43% voxels, which were determined to

have a significantly high correlation with the seed voxel before

sample size correction. This sample size correction may also be

useful to compare FC maps with different sample sizes.

The fact that the regions involved in DMN showed relatively

high r1 values (Fig. 4) raises a doubt about its robust functional

connectivity, because functional connectivity strength is exagger-

ated by the high local r1 values. We found it was not the case for

DMN. The connectivity pattern was the same and the strength

could be higher even after the sample size correction (Fig. 11).

Thus, high temporal autocorrelation process in each DMN region

might be caused by strong functional connectivity in the network.

The usefulness of sample size correction was shown by the

difference between sample size corrected map and uncorrected

map (Fig. 11D). Even though each subject’s Z-scores in the DMN

regions should have been reduced by the sample size correction,

group analysis shows that t-values were higher for the corrected

map than the uncorrected map. This indicates that the variance of

FC strength among subjects was reduced by the sample size

correction and suggests that sample size correction increases the

possibility to detect physiologically meaningful FC.

In conclusion, we showed that the distinct distribution patterns

of the two parameters, v and r1. Detailed human brain mapping

with these parameters might be useful for the identification of the

estimated 150–200 cortical areas [26], because these maps seem to

Figure 11. Functional connectivity strength seeding at vPCC. The results of one-sample t-test are shown as t-value maps excluding non-
significant voxels (p,0.05 with FDR corrected) (A: the result for the conventional analysis; B: the result after the sampling size correction). Both
patterns are nearly identical but the latter t-values are higher than the former as shown by the difference map (C). The difference between the
sample size corrected map and sample size uncorrected map created by the same r to t and t to z transform) is shown in D. The t-values in the DMN
regions for the sample size corrected map were higher than that for the uncorrected map though the Z-score distribution was the same (not shown).
doi:10.1371/journal.pone.0038131.g011
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represent distinct brain properties that have not been shown by

other parameters. Further, we proposed a sample size correction

method with r1, which will be important for future FC studies on

brain diseases.
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