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Electron g‑factor in nanostructures: 
continuum media and atomistic 
approach
Krzysztof Gawarecki1* & Michał Zieliński2*

We report studies of k-dependent Landé g-factor, performed by both continuous media approximation 
k·p method, and atomistic tight-binding sp3d5s∗ approach. We propose an effective, mesoscopic 
model for InAs that we are able to successfully compare with atomistic calculations, for both very 
small and very large nanostructures, with a number of atoms reaching over 60 million. Finally, for 
nanostructure dimensions corresponding to near-zero g-factor we report electron spin states anti-
crossing as a function of system size, despite no shape-anisotropy nor strain effects included, and 
merely due to breaking of atomistic symmetry of cation/anion planes constituting the system.

The measurement and control of a confined electron spin is an important branch of studies on semiconductor 
nanostructures. The linear response of an electron to magnetic field can be conveniently described with a single 
parameter—Lande’s g-factor1. Accurate modelling of g-factors in nanostructures must be able to reproduce two 
apparent extremes: free-electron Dirac equation value of g ≈ 2 for small nanostructures with a strong, confining 
potential, and reproduce bulk g-factor significantly re-normalized in solids by the spin-orbit interaction2,3. In 
case of indium arsenide (InAs), which is fundamentally important as a building component of self-assembled 
and nanowire quantum dots, the bulk g-factor reaches a substantial value of −14.74. A treatment aiming to model 
g-factor in nanostructures must therefore be able to address these two asymptotic cases, as well as work well in 
an intermediate regime of mesoscopic dimensions. Moreover, the real-space description of g-factor should have 
its counterpart in the k-space5,6.

Despite the value of band-edge electron g-factor in bulk semiconductors can be predicted by the well estab-
lished Roth–Lax–Zwerdling formula2, recent years bring development to the theoretical understanding of sys-
tems with the reduced dimensionality. In fact, many theoretical works explores g-factors in nanostructures, 
including quantum wells7–9 and quantum dots of various types (e.g. spherical3,10,11, nanowire-embedded12 and 
self-assembled13–16 systems). The works utilize a variety of approaches, including multiband k·p methods13–15, 
tight-binding models11,17, and empirical pseudopotential framework16. The information about relations between 
the models, their assumptions and accuracy is useful from the theoretical point of view.

In this work, we utilize the theory of the magnetic-field dependence of the Bloch states5 applied in the 
frameworks of the eight-band k·p and the sp3d5s∗ tight-binding method. We calculate the k-dependent effec-
tive g-factors ( g(k) ) for conduction band (CB) states in bulk InAs and demonstrate a relatively good agreement 
between the methods. Based on the bulk k-dependence we introduce a simplified, mesoscopic model. We com-
pare this model with k·p and atomistic tight-binding results, by calculating a size-dependence of g-factor for a 
cubic InAs nanostructure with a size varying from a single lattice constant up to over 120 nm leading to chal-
lenging multi-million atom simulations. Importantly, computationally cost-effective model based on the g(k) , 
gives size-dependent g-factor values inter-mediating between results of atomistic tight-binding and k·p method 
based on the continuous media approximation.

The cubic systems, which we study allow on easily switching between different symmetries by changing 
boundaries with respect to the underlying atomic lattice. We focus on near-zero region of g-factor values, i.e. 
nanostructure spatial dimension where g-factor changes sign. Systems with a vanishing g-factor are particularly 
important in the context of inducing strong coupling between electron and nuclear spin baths, studies of spin 
textures, and possible further application in quantum information and communications16,18. We show however 
there mere difference in atomic scale arrangement of ionic layers of a nanostructure, i.e. low atomistic symme-
try, leads to an apparent anti-crossing of electron spin states, and prevents g-factor from vanishing. This is also 
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interesting since we do not consider hole g-factors strongly affected by band mixing effects, and expected to reveal 
strong anisotropy9, but electron states dominated by contribution for isotropic s atomic orbitals.

Bulk material
The first part of this section contains a general introduction devoted to the linear response theory describing the 
Bloch state g-factors. Then, we use this approach to calculate g(k) in InAs within the eight-band k·p and sp3d5s∗ 
tight-binding models. In the last part, we introduce a simple mesoscopic model geff(k) for InAs.

Introduction: magnetic‑field dependence of the Bloch states.  The electron Landé g-factor in a 
bulk can be calculated within the linear response theory3,19 or using the Berry phase formula20,21. In the first 
approach, magnetic field enters as a perturbation (in the first order) to the Hamiltonian at B = 0 . For the mag-
netic field oriented along the z direction, this reads3,19

where g0 ≈ 2 , the states |ϕ ↑ / ↓� = |ϕ� ⊗ |↑ / ↓� (the orbital part is represented by |ϕ� and |↑ / ↓� is a spinor), 
and L̂z is the axial component of the angular momentum operator.

According to the Bloch’s theorem, the states in a bulk crystal can be written as

where α is the band index (with the corresponding energy Eα(k) ). The L̂z matrix elements can be calculated by5

where Pi,αβ(k) ≡ ��αk|p̂i|�βk� and the position operator matrix elements are calculated from22

Conduction band g‑factors.  In presence of the spin-orbit interaction, the spin operator Ŝz does not com-
mute with the Hamiltonian and states described by some nominal spins, contains admixtures of the opposite 
orientation23. Hence, a state can not be (generally) expressed as a single product of the orbital and spin part. 
However, for the (mainly s-type) conduction band in InAs, the effect of the SO coupling is relatively weak 
in the vicinity of k = 0 . One can build superpositions for which �Sz� ≈ ±�/2 . To this end, the Ŝz operator is 
diagonalized19. In the basis of the CB Bloch states this gives

where a±, b± are coefficients found from the diagonalization and |�αk�, |�α′k� is a pair of CB states which are 
slightly splitted ( Eα(k) ≈ Eα′(k) ) due to the Dresselhaus spin-orbit coupling. The effective bulk CB g-factor 
calculated between such configurations is given by

The Bloch states can be expressed by

where c(α)m (k) are coefficients, |m� are basis states at a chosen k0 point (in the k·p approach) or atomic orbitals (in 
TB models). The index m carries information about the orbital and spin part {ϕ,↑ / ↓} . Then the momentum 
matrix elements can be written as

where P̃i,nm(k) can be calculated using the Hellmann–Feynman theorem19,22,24

where Hnm(k) ≡ �n|H(k)|m� are the bulk Hamiltonian (at B = 0 ) matrix elements.
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1
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∣∣�γ k′

〉〈
�γ k′

∣∣p̂x|�βk�
}

=
∑

γ �=α,β

{
Rx,αγ (k)Py,γβ(k)− Ry,αγ (k)Px,γβ(k)

}
,

(3)Ri,αβ(k) =
−i�

m0

1

Eα(k)− Eβ(k)
Pi,αβ(k).

∣∣∣�̃cb;k ,±
1

2

〉
≈ a±|�αk� + b±|�α′k�,

(4)gcb(k) = g0 +
1

�

(〈
�̃cb;k ,

1

2

∣∣∣L̂z
∣∣∣�̃cb;k ,

1

2

〉
−

〈
�̃cb;k ,−

1

2

∣∣∣L̂z
∣∣∣�̃cb;k ,−

1

2

〉)
.

|�αk� = eikr
∑

m

c(α)m (k)|m�,

(5)Pi,αβ(k) =
∑

n,m

c(α)∗n (k) c(β)m (k) P̃i,nm(k),

(6)P̃i,nm(k) ≈
m0

�

∂Hnm(k)

∂ki
,



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:22001  | https://doi.org/10.1038/s41598-020-79133-0

www.nature.com/scientificreports/

Eight band k.p model.  In the eight-band k·p model, the invariant expansion of the bulk Hamiltonian (at 
B = 0 ) is given by25–27

where 6c , 8v , and 7v are related to the conduction- and valence band blocks (this notation corresponds to the 
irreducible representations of the Td point group), Eg is the energy gap, {Â, B̂} = (ÂB̂+ B̂Â)/2 is the symmetric 
product, �0 is a parameter accounting for the spin-orbit interaction in the valence band, γ ′

1−3 are the reduced 
(by subtracting the contributions coming from the 6c band block) Luttinger parameters, P0 is a parameter pro-
portional to the interband momentum matrix element; σi are the Pauli matrices, while the explicit definitions of 
matrices Ji , Ti , and Tij are provided in Refs.26,27. We use the values of material parameters given in the Appendix 
of Ref.14, except for the P0 =

√
Ep�2/(2m0) which is taken with Ep = 21.2 . The remote band contributions to 

the electron effective mass are neglected. We also neglect the Dresselhaus SO terms and small k-linear terms 
related to the inversion asymmetry (the Ck parameter). Finally, the Hamiltonian is diagonalized (at each consid-
ered k , separately), which gives the c(α)m (k) coefficients.

To calculate the gcb(k) , one needs to find the momentum and position matrix elements constituting the 
Lz,αβ(k) (see Eq. 2). The momentum block matrices are calculated using Eq. (6)

where P̃y(k) and P̃z(k) matrices can be found from cyclic permutations. Then, the Pi,αβ(k) are calculated from 
Eq. (5), while the Ri,αβ(k) result from Eq. (3).

For k = 0 the problem is reduced to the well known case of the band-edge g-factor2,3, where the states in elec-
tron Zeeman doublet are purely S-type and (at B = 0 ) belong to the two-dimensional Ŵ6c representation, giving

The electron g-factor is then given by

which reproduces the well-known Roth–Lax–Zwerdling formula2.

Tight‑binding model.  The tight-binding model28–31 Hamiltonian can be written in form
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where N is the number of atoms, Ei,α represents on-site energy, c†iα ( ciα ) is the creation (anihilation) operator of 
the atomic orbital α on the node i. The indices α carry also information about spin (which doubles the number 
of orbitals). Finally, �i,αβ accounts for the spin-orbit interaction. In the basis of |k,Rnα� = eikRn |Rnα� the Ham-
iltonian matrix elements can be written32

We perform the calculations using the sp3d5s∗ TB Hamiltonian in the nearest neighbors approach, and the 
tiα,jβ parameters are expressed in terms of the direction cosines28. The spin-orbit coupling is accounted for taking 
the elements �n,αβ between the p-shell orbitals29. We take the set of material parameters from Ref.33.

To obtain g(k) for the Zeeman doublet in the conduction band one need to perform a similar procedure to 
the case of the k·p model6. The momentum Pi,µν(k) and the position Ri,µν(k) matrix elements are calculated 
following Ref.22. In the first step, this involves

then Pi,µν(k) are found using the coefficients c(µ)α (k) resulting from the diagonalization of the Hamiltonian. 
Finally, the Ri,µν(k) are calculated from Eq. (3). Substituting these elements at k = 0 to Eqs. (2) and (4) would 
give a tight-binding analogue of Eq. (9)34. However, as it requires a diagonalization of the TB Hamiltonian, its 
practical usability would be limited (in contrast to the original Roth formula, relying only on the basic param-
eters of the k·p model).

Results.  We calculated k-dependent g-factor for the Zeeman doublet in conduction band for the mag-
netic-field oriented along the [001] direction. To avoid spurious solutions in further k·p calculations for 
nanostructures35,36, we use a slightly reduced value of Ep = 21.2  eV (which is close to Ep = 21.5  eV recom-
mended in Ref.37). As shown in Fig. 1a, the results obtained from the 8-band k·p and the sp3d5s∗ TB model are 
in a good agreement. At the Ŵ point in the Brillouin zone the g-factor is about −14.4 (the k·p model) or −14.2 
(the TB model). Such a strongly negative value is caused by the spin-orbit interaction, and can be predicted from 
the Roth–Lax–Zwerdling formula2. Roth formula however does not contain any k-dependence, and is generally 
a poor predictor of g-factors in nanostructures38.
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N∑
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†
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Figure 1.   (Color online) Electron (conduction band) g-factor in a bulk InAs as a function of k along the 
[111]-direction (a). The bottom panels present g(k) obtained from k·p model, in cross-section on the (b) xy-, 
and (c) xz planes.
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For k  = 0 , the value of g-factor increases which is related to vanishing of the spin-orbit contributions. At 
high k , the g-factor tends to its value for free electron g0 ≈ 2 . However, we note that for larger k values g(k) can 
(marginally) exceed 2 (which is visible in Fig. 1a for k > 0.9 nm−1 ). This most likely is a result of several approxi-
mations used throughout the calculation, including usage of finite basis38,39. To further investigate g(k) Fig. 1b,c 
present the cross-sections of the k·p results for g(kx , ky , 0) and g(kx , 0, kz) planes. As in the k·p Hamiltonian we 
neglected terms related to bulk inversion asymmetry, the g(kx , 0, kz) is equivalent to g(0, ky , kz) . While, in the 
xy plane g-factor shows high symmetry, the xz plane exhibit strong anisotropy. This is in agreement to the fact 
that g-factor is more sensitive to a change of the wave-function in plane perpendicular to the magnetic field 
than in the field direction38,40.

Finally, we find that g(k) can be quite well approximated by the following mesoscopic formula

where the parameters α0 = 16.2 , β2
xy = 30 nm2 , β2

z = 11 nm2 were fitted to the TB results, and in particular α0 
is chosen such that in a limit of k → 0 , geff → −14.2 . As shown in Fig. 1a, this formula gives a good agreement 
to the exact results, especially for smaller k values. βxy = 5.48 nm and βz = 3.32 nm have a unit of length, in 
an very loose analogy to the of concept magnetic length for Landau levels (equal to 25.6 nm at 1T). Moreover, 
βxy  = βz indicating lack of equivalence of x,y and z as the field is applied and oriented along z ([001]) direction.

Nanostructures
In the first part of this Section we describe the implementations of magnetic field to nanostructure modeling 
within the k·p and the TB approaches. Then, we compare the numerical results obtained from both methods 
for an electron confined in a three dimensional InAs box (cube), as a function of box size (edge length) varying 
from a single lattice constant, i.e. 0.6 nm to over 120 nm and over 60 million atoms involved in the computa-
tions. We show, that these results can be qualitatively well reproduced using an effective model based on the 
bulk g-factor g(k) with virtually no computational cost. We also discuss the effect of symmetry breaking due to 
underlying crystal lattice, which (in presence of the SO coupling) allows on the mixing of spin configurations 
in the Zeeman doublet.

Eight band k.p model.  In a standard way, the magnetic field enters the k·p Hamiltonian by the substitu-
tion k → k + (e/�)A . Since, a straightforward implementation leads to gauge dependent results41, the gauge-
invariant scheme was developed42,43. Furthermore, the k·p Hamiltonian is supplemented by the magnetic terms

where27

is related to spin. The band angular momentum (which was neglected in the k·p calculations in the previous 
section) is represented by

Finally, the H̃(r) describes contributions from the remote bands, which are not explicitly included in a given 
k·p model19. As the calculated electron band-edge g-factor ( g = −14.4 ) is already close to the experimental 
value ( g = −14.74), we neglect these remote band contributions.

Tight binding model.  The magnetic field is implemented to the TB Hamiltonian by the standard Peierls 
substitution34,39

with a phase given by

Assuming constant magnetic field and a symmetric gauge, one can obtain44

The contribution from the spin is accounted for via the on-site terms34
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where (σi)αβ are matrix elements of the Pauli matrices in the basis of atomic orbitals (note that indices α contains 
also information about the spin). This can be viewed as a tight-binding analogue of Eq. (13).

For nanostructures, in order to avoid any spurious states in the energy range of interest, the dangling bonds 
of surface atoms are passivated according to well established approach of Ref.45. We found that tight-binding 
results somewhat depend on the choice of the dangling bond shift, however the trends obtained with different 
shifts are very similar, in agreement with conclusions of Ref.11. Strain effects and piezoelectricty are not present 
in a system due to use of a single chemical compound. For sake of comparison with the k·p and the effective 
model, any surface reconstruction or presence of image charges are also neglected.

Results: electron in a box.  In the following, we calculate the electron g-factor for nano-size InAs cubic 
box, and by varying box size simultaneously in all three dimensions. We start with a box size of one lattice con-
stant edge length, corresponding to very high quantum confinement, and we progress through intermediate 
dimensions to very large InAs boxes, with dimensions extending well over 100 nm aiming for near bulk-like 
properties. The largest of considered box (200 × 200 × 200 in lattice constant units) has edge length equal to 
120 nm, corresponding to 64.2 million atoms in the calculation. In this case, the ground electron state energy is 
0.422 eV, thus only 3 meV larger than the bulk limit of 0.418 eV. We note as well, in largest considered cases, the 
tight-binding calculation was performed on parallel computer cluster with 192 computational cores, and MPI-
parallelized Lanczos solver, taking approximately 12 h to find several lowest electronic states, and the time of the 
computation scaling proportionally with number of atoms for smaller systems46.

The numerical results are presented in Fig. 2, where the values of the g-factor are taken from the differences 
between the first excited ( E2 ) and the ground ( E1 ) state energy levels g = (E2 − E1)/(µBB) , calculated at B = 1 T. 
The sign is determined from the spin orientations of states, which are represented by the averages 〈Sz〉 . In the 
tight-binding model, the average z-th spin component for the ψn state can be calculated as

where i describes the atomic sites and indices α , β denote the atomic orbitals.
The results obtained from the TB and k·p models provide qualitatively similar g-factor dependence. In both 

cases, the increasing size brings g-factor to the bulk value in a similar fashion.
Moreover, in both cases for a very strong confinement the value of the g-factor is close to the free electron case 

( g0 ). This dependence on the system size can be connected to increasing (with confinement) effective energy gap 
(see Eq. (18) below)11 and to angular momentum quenching38. Yet, there is a notable difference between both 
approaches, with k·p systematically reporting smaller g-factor magnitudes. However, for a fairness of compari-
son, quantitative differences of that kind are expected, since we compare 20-band atomistic model (including 
d-orbitals), and 8-band method based on continuous media approximation. Both method report somewhat 
different bulk band structures, utilize different of treatment of the cube surface, boundary conditions etc.

We also performed the simulations in a simple effective model which relies on the geff(k) for bulk InAs (see 
Eq. (12)) and on the Fourier transform of the wave-function. For sake of simplicity, and computational efficiency, 
we assume that the electron ground state is build from the bulk conduction band and having the envelope of the 
three-dimensional infinite well (with L× L× L size)

�Sz�n =
N∑

i

20∑

α,β

ψ∗
nα(Ri)(σz)αβψnβ(Ri),

Figure 2.   (Color online) The electron (conduction band) g-factor in the same-anion-terminated InAs cubic 
box of Td symmetry as a function of box size, and calculated using three different approaches. Corresponding 
number of atoms used in atomistic tight-binding calculations is shown in the upper axis. See text for details.
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Utilizing the separation of variables, the envelope representation in the k can be expressed by

where47

Then, the effective g-factor can be calculated from

As shown in Fig. 2, this surprisingly simple, effective model provided results which are in-between k·p 
approach, and the multi-million atom simulations obtained using the TB model. By performing several numerical 
tests, we found that the gbox(L) differs tight-binding prediction mostly due to oversimplified Eq. (16) assuming 
hard-wall boundary conditions, whereas approximation of geff  plays a lesser role.

It is known that electron g-factor for any nanostructure can be decomposed into an isotropic part (depend-
ing on the effective band gap) and the surface part which depends on the shape of the structure11. The first part 
can be expressed by11

where E is the effective band gap, and g̃0 , E0 are parameters which can be fitted for a given material. We used 
this formula for calculations in the box (the red line in Fig. 2). Although for the parameters g̃0 = 3.09 and 
E0 = 1.69 eV (which we fitted to the TB results) we obtain a very good agreement in middle part of the plot, we 
cannot simultaneously reproduce the values at the boundaries (in the limit of a very small/large box). This sug-
gest, that in the considered system the part of the g-factor related to the surface plays important role.

Role of atomistic symmetry.  So far we have studied nanostructures without analyzing the role of under-
lying crystal lattice48,49. We note that nanostructures analyzed in Fig. 2 were cubic boxes cut from zinc-blende 
lattice, obtained by terminating box sides with the same ionic species Fig. 3a. Alternatively such geometry can 
be obtained by choosing the box geometric center to be placed on one of ions. In case of Fig. 3a this center is 
placed on anion (marked as red spheres), and results discussed so far were obtained for this particular choice.

Such atomic arrangement leads to an overall Td (tetrahedral) symmetry of a nanostructure, which may not 
be apparent from inspection of Fig. 3a, however it was additionally verified with Jmol50 and Chemcraft51 tools 
allowing for point-group symmetry determination.

Moreover, for the same Td symmetry, one can choose either cation or anion as an origin. Centering the sys-
tem on the cation effectively corresponds of replacing anions with cations [or red with blue atoms in Fig. 3a]. 
In both cases (whether centered on anion or cation) the overall symmetry is Td provided that box is terminated 
consistently with one ionic species only. As we consider magnetic field oriented in the [001] direction, the field 
effectively lowers the symmetry of the system from the Td to the S4 point group, therefore the tight-binding results 
in Fig. 2 corresponded to S4 symmetry.
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Figure 3.   (Color online) The schematic view of two cubic boxes: (a) the same ion-terminated corresponding to 
S4 symmetry and (b) mixed-anion-cation-terminated leading to a lower C1 symmetry. Red color corresponds to 
anions (arsenic) and blue color marks cation (indium).
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Even though not altering the symmetry, switching indium atomic positions with arsenics, may substantially 
affect single particles energies, however only for smaller boxes, as shown in Fig. 4. These differences are related 
to different ionic composition33 of ground electron states, since nanostructure shown in Fig. 3a will have dif-
ferent number of cation and anion depending on the choice of origin. For the anion-centered case (and anions 
terminating the surface), with overall number of anions is larger than cations. For the cation-centered case the 
situation is exactly opposite. Centering the origin on the anion or cation will thus not alter symmetry, but will 
change the overall ionic “stoichiometry”. Nonetheless, despite substantial differences in single particle energies 
for smaller boxes, anion-cation centering issues have a rather small effect on the final g-factor dependence (inset 
in Fig. 4). Interestingly, a small difference in g-factor values between anion and cation centered cases can be 
observed even for larger boxes, again due to difference in stoichiometry, however it decays with system size, and 
for the edge length of 60 nm (100 × 100 × 100 box; including 4 ×106 cations and 4.06 ×106 anions) the g-factor 
varies by about 1% with respect to cation-centered case (with 4.06 ×106 cation and 4 ×106 anions).

Another possible choice of crystal lattice arrangement with respect to box shape is presented in Fig. 3b, with 
corresponding tight-binding results shown for comparison in Fig. 4. This particular case is given by a seem-
ingly unimportant shift of the box origin by half of a bond length, i.e. placing it in the exactly between anion 
and cation. Such choice also leads to termination of box sides in a mixed anion-cation fashion as apparent from 
Fig. 3b. Moreover, mid-bond case corresponding to exactly equal number of cations and anion, for all considered 
dimensions. Although there is not strict inversion symmetry in zinc-blende lattice, further replacing anions 
with cations in Fig. 3b leads to virtually the same single particle spectra (with µ eV differences), therefore it is 
not considered here.

However, despite ideal stoichiometry, a closer inspection reveals that anion/cation mixing at the boundaries 
leads to an overall symmetry reduction to C3v , and with further reduction of symmetry to C1 , when the magnetic 
field along z-axis is applied. Yet, as seen in Fig. 4 there is virtually no difference to previous results, with the 
exception of near-zero g-factor values.

In the previous case of the high symmetry system (whether anion or cation centered), the g-factor value 
smoothly varied with the box size and crossed 0 (which simply corresponded to a swap of the states in the Zee-
man doublet). In contrast, for the low symmetry box the g-factor changes its sign avoiding 0 (while the absolute 
value remains continuous). This is better illustrated in Fig. 5a where absolute value of g-factor is now presented 
for mid-bond (low symmetry) case only, and with a magnification of close to g-zero regions. This peculiar fea-
ture in g-factor dependence corresponds to an anti-crossing between the states in the Zeeman doublet, which 
is reflected in the values of 〈Sz〉 (Fig. 5b). This behavior is related to the symmetry selection rules. According 
to the group theory, two states can be mixed (which manifests in an anti-crossing of their energy levels) if they 
belong to the same irreducible representation23,52. In the case of the same-ion-terminated box, the symmetry of 
the system is described by the S4 point group (which in presence of the spin-orbit coupling needs to be a double 
group). Then, the two lowest electron states belong to different irreducible representations and coupling between 
them is prohibited. In contrast, for the mixed-anion-cation-terminated box, the symmetry is reduced to the C1 
(which including spin is also a double group). In this case, the states in the Zeeman doublet belong to the same 
representation. Hence, their energies exhibit anti-crossing and spin configurations mix (which is in fact caused 
by the spin-orbit coupling). This effect will thus happen for any low atomic arrangement, and is not limited to a 
particular choice presented in Fig. 3b, although application of magnetic field exactly along high symmetry crystal 
axes, such as [111] (diagonal axis in Fig. 3b) would restore high-symmetry, and allow for electron level crossing 
rather than anti-crossing. However, no nanostructure can ever be grown to have an ideal atomistic symmetry as 
systems presented in Fig. 3. In fact, removal of just a single atom can break the overall symmetry and thus will 
lead to level anti-crossing. The effect of anti-crossing could be also viewed as a presence of off-diagonal terms 
in the g-tensor. It is known that g-tensors in low symmetry systems (the C1 group without magnetic field) have 
9 independent components7, which cannot be reduced to the diagonal form for any magnetic field direction.

Figure 4.   (Color online) The ground electron state energy as a function of box size for different choice of 
origin, i.e. centered on anion, cation, and mid-bond respectively. Inset shows corresponding values of electron 
g-factor. See text for details.
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Conclusions
In summary, with atomistic tight-binding method, and continuous media approximation k·p approach we have 
studied Landé g-factor k-dependence for InAs. Based on that, we proposed a mesoscopic model with three effec-
tive parameters only, and further we compared this model with multi-million atom tight-binding calculations, 
for a cubic nanostructure with dimensions varying from single to 120 nanometers and number of atoms reaching 
64 million. Despite its simplicity the mesoscopic model shows a good qualitative dependence with actual results 
ranging between that of the tight-binding and the k·p at virtually no computation cost.

Further, we have inspected nanostructure dimensions corresponding to near-zero g-factor, and found that 
depending on a detail of atomic arrangement electron spin states can undergo an anti-crossing as a function 
of system size. The effect occurs despite high-shape symmetry, and is not related to cation-anion stoichmetric 
imbalances, but due to low overall symmetry being a result of cubic shape imposed on underlying zinc-blende 
lattice. Our results therefore emphasize the key role of symmetry in nanostructures, and show inherent limits to 
g-factor tuning, especially important for applications involving near-zero g-factor values.
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