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Abstract. Multilineage colony stimulating factor is a 
secretory protein with a cleavable signal sequence that 
is unusually long and hydrophobic. Using molecular 
cloning techniques we exchanged sequences NH2- or 
COOH-terminally flanking the hydrophobic signal se- 
quence. Such modified fusion proteins still inserted 
into the membrane but their signal sequence was not 
cleaved. Instead the proteins were now anchored in the 
membrane by the formerly cleaved signal sequence 
(signal-anchor sequence). They exposed the NH2 ter- 
minus on the exoplasmic and the COOH terminus on 
the cytoplasmic side of the membrane. 

We conclude from our results that hydrophilic se- 
quences flanking the hydrophobic core of a signal se- 
quence can determine cleavage by signal peptidase and 
insertion into the membrane. It appears that negatively 
charged amino acid residues close to the NH2 terminal 
side of the hydrophobic segment are compatible with 
translocation of this segment across the membrane. A 
tripartite structure is proposed for signal-anchor se- 
quences: a hydrophobic core region that mediates tar- 
geting to and insertion into the ER membrane and 
flanking hydrophilic segments that determine the orien- 
tation of the protein in the membrane. 

S 
ECRETORY and membrane proteins are translocated 
across or inserted into the membrane of the ER by a 
mechanism involving a signal sequence, signal recog- 

nition particle, and docking protein (signal recognition parti- 
cle receptor) (Walter and Lingappa, 1986; Lipp and Dobber- 
stein, 1986b; Zerial et al., 1986; Bos et al., 1984; Holland 
et al., 1984; Sakaguchi et al., 1984). Two functions of a sig- 
nal sequence can be distinguished: (a) targeting to the ER 
membrane and (b) insertion into the membrane. Uncleaved 
signal sequences can mediate membrane insertion and an- 
choring. Such proteins span the membrane once and can ex- 
pose the NH2 terminus either on the exoplasmic (type I) or 
on the cytoplasmic (type II) side of the membrane. The signal 
sequence in these proteins functions in targeting as well as 
in anchoring in the membrane (signal-anchor- [SA]' pro- 
teins) (Blobel, 1980; Spiess and Lodish, 1986; Lipp and 
Dobberstein, 1986a). Signal sequences can then be consid- 
ered to have "common" features for ER targeting and "pri- 
vate" features which determine cleavage by signal peptidase 
or membrane insertion in a type I or type II orientation. We 
want to define the "private" features in a signal sequence by 
converting secretory proteins into SA-membrane proteins. 

A common theme for the targeting function of a signal se- 
quence is a continuous stretch of apolar and neutral amino 
acid residues (von Heijne, 1985; Kaiser et al., 1987). The 
length of the hydrophobic segment in a signal sequence can 

1. Abbreviations used in this paper: CAT, chloramphenicol acetyltransfer- 
ase; Mu-CSF, multilineage colony stimulating factor; SA, signal-anchor. 

vary between eight and more than 20 amino acid residues. 
The signal sequence can be cleaved upon translocation 
across the ER membrane or can remain on the polypeptide 
chain (von Heijne, 1985). If the hydrophobic segment of a 
signal sequence is of sufficient hydrophobicity and is not 
cleaved, it can anchor the protein in the membrane (Lipp and 
Dobberstein, 1986a, 1988; Zerial et al., 1987; Spiess and 
Handschin, 1987). However, the hydrophobic segment alone 
does not determine the membrane topology of SA-proteins. 
Experimental evidence suggests that the hydrophilic regions 
flanking the hydrophobic segment determine signal cleavage 
and membrane translocation or, in the absence of signal 
cleavage, insertion in a type I or type II orientation. Thus, 
a type II membrane protein was converted into a secretory 
protein when either the NH2- or the COOH-terminal se- 
quences flanking the hydrophobic segment of a signal se- 
quence were altered (Lipp and Dobberstein, 1986a, 1988). 
Similarly, the SA-membrane protein cytochrome P-450 was 
converted into a secretory protein by exchanging an NH2- 
terminal acidic amino acid residue for two basic ones 
(Szczesna-Skorupa et al., 1988). By comparison of se- 
quences flanking hydrophobic SA-segments NH2-terminal- 
ly, a prevalence of positively charged amino acid residues 
can be observed in type II proteins whilst type I SA-proteins 
mainly contain negative and uncharged residues in this seg- 
ment (von Heijne, 1986a,b; Lipp and Dobberstein, 1986a, 
1988; Williams and Lamb, 1986; High and Tanner, 1987; 
Szczesna-Skorupa et al., 1988). 

We chose the haematopoietic growth factor multilineage 
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colony stimulating factor (Mu-CSF) (Metcalf, 1987) as a 
model protein to determine the requirements for converting 
a secretory protein into a SA-membrane protein. The cleaved 
signal sequence of Mu-CSF is unusually hydrophobic and 
lacks charged amino acid residues (Fung et al., 1984; Yokota 
et al., 1984). A eDNA clone was isolated from a T cell li- 
brary encoding a Mu-CSF species with a highly charged 
NH2-terminal extension of the precursor polypeptide (Dunn 
et al., 1985). We speculated that if signal cleavage could be 
prevented, the hydrophobic segment might be converted to 
a SA-segment. We found that modifications of the segments 
flanking the hydrophobic signal sequence converted Mu- 
CSF to a SA-membrane protein with a type I orientation. 

Materials and Methods 

Materials 
Restriction endonucleases, T4 DNA polymerase and ligase SI nuclease exo- 
nuclease Bai 31, and proteinase K were from Boehringer Mannheim Diag- 
nostics, Inc. (Houston, TX). DNA sequencing reagents were from Pharma- 
cia Fine Chemicals (Freiburg, FRG). L-[35S]methionine, L-[3H]leucine, 
and adenosine 5'-(Lgamma-~S]thio)triphosphate were from Amersham 
(Buchler, Braunschweig). Wheat germ was obtained from General Mills 
(Minneapolis, MN). The acceptor peptide benzoyI-Asn-Leu-Thr-N-methyl- 
amide was a generous gift from E. Bause, KOln. Oligodeoxynucleotides 
were synthesized by Bryan Sproat (European Molecular Biology Labora- 
tory, Heidelburg). 

Cloning of IMu-CSF cDNA 
A eDNA library was prepared using mRNA isolated from the murine T cell 
line LB3 6 h after stimulation with concanavalin A (Gough et al., 1985). 
The library was screened for Mu-CSF clones with 20-met oligonucleotides 
complementary to the known Mu-CSF mRNA sequences as hybridization 
probes (Fung et al., 1984; Yokota et al., 1984). To select for clones having 
the entire coding region, the probes used for hybridization were com- 
plementary to sequences surrounding the translational start and stop 
codons. The nucleotide sequence of the clone with the longest insert, 
pMu2Al, was determined by the dideoxy chain termination method. This 
clone was found to encode the sequence for "long" Mu-CSF (IMu-CSF). 

For in vitro transcription, the eDNA for 1Mu-CSF was subcloned into 
pDS plasmids (Stueber et al., 1984). 

Subcloning of Mu-CSF cDNA into In Vitro 
Transcription Plasmids 
Standard molecular cloning techniques were used as described by Maniatis 
et al. (1982). The in vitro transcription vectors pDS5 and pDS6 were de- 
scribed by Stueber et al. (1984). DNA sequences were determined by apply- 
ing the chain termination technique to the double-stranded pDS plasmids 
as described by Chen and Seeburg (1985). 20-mer primers complementary 
either to the T5 promoter region or to the sequence 3' of the Pvu II site in 
the CAT gene were used. 

pIMC-SS. The Eco RI-Hind III fragment of "°360 bp that contains the 
5' sequences coding for the signal peptide was isolated from pMu2A1 (Dunn 
et al., 1985) and subcloned into pDS6 cut with Eco RI and Hind III. The 
5' GC-tail had to be deleted to obtain efficient in vitro expression of the 
eDNA. This was accomplished by opening the vector at the Xho I site 5' 
of the T5 promoter and digesting with the exonuclease Bal 31, followed by 
restriction with Hind III. Bal 31-Hind III fragments of 160-200-bp length 
were isolated from a gel and ligated into pDS6 that had been cut with Pst 
I, blunt-ended, and cut with Hind III. A clone efficiently expressing the in- 
tact signal sequence was selected by in vitro transcription and translation. 
The 5' sequences of the Mu-CSF insert of this clone were determined by 
DNA sequencing (see Fig. 1 A). 

plMu-CSE The Eco RI fragment containing the entire Mu-CSF coding 
sequence was isolated from pMu2A1. After filling in the Eco RI overhangs 
followed by Hind III restriction, the Hind III-Eco RI fragment coding for 
the mature part of Mu-CSF was isolated and ligated into plMC-SS that had 
been cut with Hind III (3' of the signal peptide sequence) and Pvu II (in the 
CAT sequence). 

pIMC-CAT, plMC-SS was opened with Hind llI (3' of the segment cod- 
ing for the signal sequence), filled in with T4 DNA polymerase in the pres- 
ence of all four deoxynucleotide triphosphates, cut with Pvu II (in the CAT 
sequence), and religated at a dilution favoring circularization of the vector. 
Colonies were screened for expression of a Mu-CSF signal sequence/CAT 
fusion protein by in vitro transcription and translation of vector DNA iso- 
lated by a minipreparation technique. One clone was selected and its DNA 
sequence at the ligation site determined (see Fig. 1, B and C), 

psMu-CSE plMu-CSF was cut with Bam HI and the 369-bp fragment 
coding for the NH2-terminal sequences of tMu-CSF as well as the large 
vector fragment (3784 pb) were isolated from an agarose gel. The 369-bp 
fragment was digested with Sau 3A. The resulting 307-bp Sau 3A-Bam HI 
fragment was isolated from a gel and ligated to the 3,784 bp of the Bam 
HI-cut vector, thus restoring the sequences coding for the COOH-terminal 
80% of the signal sequence and the entire mature part of Mu-CSE This 
"short" Mu-CSF construct psMu-CSF, when transcribed in vitro, results in 
a mRNA in which translation is initiated at the AUG that corresponds to 
the first methionine of the authentic pre-Mu-CSF described by several 
groups (see Fig. 1 A; Fung et al., 1984; Miyatake et al., 1985; Yokota et 
al., 1984). 

psMC-CAT. An 828-bp Sau 3A-Xba I fragment coding for the COOH- 
terminal 80% of the Mu-CSF signal sequence and all of the CAT sequences 
fused to it was isolated from pIMC-CAT. A 2,505-bp Xba I-Barn HI frag- 
ment lacking the CAT sequences was prepared from pDS5. The two frag- 
ments were ligated and transformed inlo bacteria. Resulting colonies were 
screened for plasmids expressing a shortened form of IMC-CAT. This sMC- 
CAT starts at the same AUG as sMu-CSF (Fig. l). 

All constructs were verified by sequence analysis. 

In vitro Transcription and Translation 
Plasmids were transcribed in vitro with Escherichia coli RNA polymerase 
and the resulting mRNA was translated in the wheat germ ceil-free system 
as described by Stueber et al. (1984). Membrane insertion and transtocation 
were assayed by the addition of dog pancreas microsomes (Warren and Dob- 
berstein, 1978) and SRP (Walter and Blobel, 1980) to the translation mix- 
ture. In some experiments, N-linked core glycosylation was inhibited by the 
addition of the acceptor tripeptide benzoyl-Asn-Leu-Thr-N-methylamide to 
a final concentration of 30 #M (Lau et al., 1983; Bause et al., 1983). 

COOH-terminal truncation of newly synthesized polypeptides was 
achieved by the addition of complementary oligodeoxynucleotides to the 
translation mixture as described by Haeuptle et at. (1986). 

Posttranslational Assays 
Protection from proteinase K digestion was assayed as described by Blobel 
and Dobberstein (1975). 

Membrane integration was tested by treatment with carbonate at pH 11 
(Fujiki et al., 1982) as follows: after translation in the presence of micro- 
somes, the translation mixture was diluted sixfold with 0.1 M Na2CO3, pH 
ll, and spun through a cushion of 0.25 M sucrose, 0.1 M Na2CO3, pH 11. 
The top layer and pellet were collected, while the sucrose cushion was dis- 
carded. Proteins from the top layer were precipitated with 10% TCA. Both 
the TCA and the carbonate pellet were dissolved in sample buffer and ana- 
lyzed by SDS-PAGE. For carbonate-extracted samples, the equivalent of 
two times the amount of translation mixture was loaded on an SDS-gel as 
for untreated aliquots. 

Immunoprecipitations were performed as described by Lipp and Dobber- 
stein (1986a). The anti-CAT antibody was a kind gift from H. Bujard, 
Heidelberg. 

Other Methods 
SDS-PAGE was carried out by using either 10-15% polyacrylamide gra- 
dient gels (Maizel, 1969) or 22 % polyacrylamide/6 M urea gels (Haeuptle 
et al., 1986). Fluorography of the gels was performed using EN3HANCE 
according to the instructions provided by the company (New England Nu- 
clear, Boston, MA). 

Results 

Cloning of eDNA Coding for Mu-CSF and 
MC-CAT Proteins 
Mu-CSF stimulates the proliferation and differentiation of 
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Figure 1. (A) Nucleotide sequence of 
the 5' region of the Mu2AI cDNA 
subcloned into the polylinker region 
of pDS 6. The deduced amino acid 
sequence is aligned underneath. The 
translational start sites for 1Mu-CSF 
and sMu-CSF, respectively, are indi- 
cated. Note that in psMu-CSF the 
upstream AUG responsible for the 
NH:-terminal extension in IMu-CSF 
is removed by deleting a Bam HI- 
Sau 3A fragment from the cDNA 
(see Materials and Methods). Re- 
striction sites relevant for the sub- 
cloning described in Materials and 
Methods are indicated. P/O indicates 
the promoter/operator sequences for 
E. coil RNA polymerase. The arrow 
designated SPase points at the signal 
peptidase cleavage site. The asterisk 
indicates a potential N-glycosylation 
site. (B) Schematic outline of Mu- 
CSF and MC-CAT cDNAs cloned 
into the in vitro transcription vector 
pDS6. Coding sequences derived 
from multilineage colony stimulating 
factor (Mu-CSF) or chlorampheni- 
col acetyl transferase (cat) are repre- 
sented by large boxes. H, hydropho- 
bic core of the signal sequence; N, 
hydrophilic NH2-terminal extension; 
3' UT, the 3'-untranslated region of 
Mu-CSF; P/O, promoter/operator 
sequences containing the transcrip- 
tion start site; and t, transcription ter- 
minator. The following restriction 
sites are indicated: B, Bam HI; Bl, 
Bat I; E, Eco RI; H, Hind III; X, Xba 
I. BI indicates the site of truncation 
by an oligonucleotide. (C) NH2- 
terminal amino acid sequences of 
Mu-CSF and Me-CAT proteins. The 
differences in the hydrophilic se- 
quences flanking the hydrophobic 
segment at its COOH and NH2 ter- 
minus are shown. Charged amino 
acid residues are indicated. Potentia] 
N-glycosylation sites are marked 
with asterisks. SPase, signal pepti- 
dase cleavage site. 

haematopoietic cells such as granulocytes, macrophages, eo- 
sinophils, megakaryocytes, erythroid, and mast cells (Met- 
calf, 1987). Sequence analysis of Mu-CSF and of cDNA 
coding for mouse Mu-CSF (Fung et al., 1984; Yokota et al., 
1984) suggests that Mu-CSF is a secreted protein with a 
cleavable signal peptide of  27 uncharged amino acid resi- 
dues. This signal peptide is exceptionally long and hydropho- 
bic if compared to those of other secretory proteins (von 
Heijne, 1985). It has all the features of a membrane-span- 
ning sequence, except that it is cleaved. We constructed four 
fusion proteins containing the signal sequence of Mu-CSF 
but differing in the regions flanking the signal sequence (Fig. 
1, B and C). 

During the course of screening a cDNA library com- 

plementary to mRNA from a stimulated murine T cell line 
(see Materials and Methods) a Mu-CSF cDNA clone, 
pMu2A1, with a novel sequence at its 5' end was isolated 
(Fig. 1 A). The additional segment in this clone does not rep- 
resent an extension into the 5' noncoding region of the short 
Mu-CSF (sMu-CSF) mRNA (Fung et al., 1984; Yokota et 
al., 1984), but rather diverges from the latter at an apparent 
splice site internal to its sequence. Intriguingly, this addi- 
tional 5' exon includes two in-frame translational initiation 
codons (Fig. 1 A, arrows). It is expected that in a mRNA cor- 
responding to this cDNA, the first AUG would initiate trans- 
lation, since in 95 % of eukaryotic mRNAs translation begins 
at the AUG closest to the 5' end of the mRNA (Kozak, 1984). 
Moreover, the nucleotides surrounding this AUG conform 
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well to the consensus sequence noted by Kozak (1984). 
Translation initiating at this AUG would give rise to a pre- 
Mu-CSF molecule that is elongated at the NH2-terminus of 
the signal peptide by 26 amino acids with clusters of posi- 
tively and negatively charged residues (Fig. 1, A and C). 
This long Mu-CSF (1Mu-CSF) contains a sequence with 
rather exceptional features. It is 53 amino acids long with a 
hydrophobic core of 27 residues and a highly charged hydro- 
philic NH2-terminal extension. On average, signal sequences 
are ~20 amino acid residues long with a hydrophobic core 
of 8-12 residues and a short hydrophilic NH2-terminus with 
only one positively charged amino acid (see von Heijne, 
1985). 

Plasmid plMu-CSF was used to construct psMu-CSF 
which codes for authentic Mu-CSF initiating at the ATG im- 
mediately NH2-terminal to the hydrophobic part of the sig- 
nal sequence (Fig. 1, A and C, see Materials and Methods). 

To test the topogenic effect of sequences flanking the hy- 
drophobic core of a signal sequence on the COOH-terminal 
side, we constructed plasmids plMC-CAT and psMC-CAT. 
In these plasmids the mature COOH-terminal portions of 
1Mu-CSF and sMu-CSF were exchanged for the COOH- 
terminal 181 amino acids of the bacterial cytoplasmic protein 
chloramphenicol acetyltransferase (CAT) (see Materials and 
Methods; Fig. 1, B and C). CAT protein had previously been 
shown to be translocated across microsomal membranes if 
fused to a signal-anchor (SA) sequence (Lipp and Dobber- 
stein, 1986a) or a cleavable signal sequence (Ibrahimi and 
Gentz, 1987). The CAT-derived portion of 1MC-CAT en- 
codes no site for N-glycosylation. By contrast, the mature 
part of Mu-CSF contains four sites for N-linked glycosyla- 
tion. The NH2-terminal, hydrophilic extension contains one 
potential site for N-glycosylation very close to the hydropho- 
bic segments of IMu-CSF and 1MC-CAT (asterisks in Fig. 
1 C). All cDNAs were cloned into the in vitro expression 
vector pDS6 (Fig. 1, B; Stueber et al., 1984). 

In Vitro Translation and Membrane Translocation of 
sMu-CSF 

Plasmid psMu-CSF was transcribed with E. coli RNA poly- 
merase and the resulting mRNA was translated in wheat 
germ lysate supplemented with rough microsomes derived 
from dog pancreas ER membranes. Since the mature por- 
tion of sMu-CSF contains only a single methionine residue, 
the commonly used label [3sS]methionine was replaced by 
[3H]leucine to obtain an evenly labeled protein, sMu-CSF 
contains four potential sites for N-glycosylation. To obtain 
migration as a single band on SDS polyacrylamide gels, 
N-linked core glycosylation was prevented by the addition of 
an acceptor peptide for N-linked glycosylation. Such syn- 
thetic peptides have been shown to efficiently compete as 
substrates for oligosaccharyl transferase (Bause, 1983; Lau 
et al., 1983). Fig. 2 (lane 1 ) shows that translation of sMu- 
CSF mRNA in the absence of microsomes results in a pre- 
cursor protein with a relative molecular mass of 18 kD termed 
pre-sMu-CSE When microsomes and acceptor peptide were 
added to the translation assay, membrane translocation and 
signal cleavage became apparent by the appearance of a sec- 
ond, faster migrating band representing proteolytically pro- 
cessed Mu-CSF (Fig. 2, lane 2). This band was protected 
from proteinase K digestion in the absence, but not in the 

Figure 2. Translation and transiocation of sMu-CSE A wheat germ 
cell-free system containing [3H]leucine was primed with sMu-CSF 
mRNA either in the absence (lane 1) or presence (lanes 2-6) of 
microsomes (RM) derived from dog pancreas and an acceptor pep- 
tide for N-linked glycosylation. Aliquots of the proteins translated 
in the presence of RM were assayed for protease protection by incu- 
bation with proteinase K (PK) either in the absence (lane 3) or pres- 
ence (lane 4) of the detergent Triton X-100 (TX). Other aliquots 
were extracted with carbonate at pH II. Solubilized material (lane 
5, S) was separated from membrane-bound proteins (lane 6, P) by 
centrifugation. Proteins were analyzed on a 22% SDS polyacryl- 
amide gel. Precursor multi-CSF (pre-sMu-CSF) and processed, 
mature multi-CSF (Mu-CSF) are indicated. Relative molecular 
masses are given in kilodaltons at the right hand side. 

presence of detergent, suggesting that it had segregated into 
the microsomal lumen (Fig. 2, lanes 3 and 4). 

The cytoplasmically located precursor and the translo- 
cated mature Mu-CSF both represent soluble proteins as 
suggested by their extractability with carbonate at pH 11 
(Fig. 2, lanes 5 and 6). Such a treatment opens the micro- 
somal vesicles and releases all proteins that are not embedded 
in the membranes (Fujiki et al., 1982). From the results 
presented in Fig. 2, we conclude that Mu-CSF, as expected, 
behaves as a typical secretory protein despite its rather un- 
usual signal peptide. 

The Fusion Protein sMC-CAT Is Inserted into 
Microsomal Membranes 

When sMC-CAT, consisting of the Mu-CSF signal peptide 
fused to the cytoplasmic protein CAT, was assayed in the in 
vitro translocation system in the presence of microsomes and 
SRP no proteolytically processed sMC-CAT could be ob- 
served (Fig. 3, lane 2). Treatment with proteinase K revealed 
a low molecular mass doublet (M) that migrated close to the 
dye front (Fig. 3, lanes 3 and 4). The upper of the two bands 
was digested by proteinase K in the presence of detergent, 
suggesting protection of this peptide by the membranes. Note 
that on the same type of gel no such low molecular weight 
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that represents the NH2-terminal hydrophobic segment of 
sMC-CAT. The COOH-terminal CAT sequences are exposed 
on the cytoplasmic side and thus accessible to protease 
digestion. 

In Vitro Transcription, Translation, and Translocation 
o f  lMu-CSF and IMC-CAT 

Plasmids pIMu-CSF and pIMC-CAT were transcribed as 
above and the resulting mRNAs translated in a wheat germ 
cell-free system supplemented with microsomes. Membrane 
topology was analyzed by the protease protection assay. 

IMu-CSE As shown in Fig. 4 (lane 1), translation of 1Mu- 
CSF mRNA gave rise to a major band of ~ 22 kD. When 
microsomes and acceptor peptide blocking N-linked glyco- 
sylation were added to the wheat germ cell-free system con- 
taining [35S]methionine no faster migrating band could be 
observed indicating that no signal cleavage had occurred 
(lane 2). Protease treatment of the microsomes resulted in 
a protected polypeptide of '~6 kD (lane 3, band lM). Protec- 
tion of this peptide from proteolysis was mediated by the 
microsomes as the band disappeared when detergent was 
added to the reaction. The size of the IM peptide and its 
strong labeling with pS]methionine suggest that it repre- 
sents the NHE-terminal part of 1Mu-CSF as five of the six 

Figure 3. Translation and translocation of sMC-C.~r. The experi- 
ment was done as described in Fig. 2 for Mu-CSE except that 
[35S]methionine was used as a label and an additional aliquot of 
protein translated in the presence of RM was treated with proteinase 
K (PK) before carbonate extraction at pH 11. Lanes 7 and 8 rep- 
resent the soluble (S) or membrane-bound (P) fraction of the 
protease protected polypeptides. M, low relative molecular mass 
fragment resistant to protease digestion and cosedimenting with 
microsomal membranes. 

material resistant to protease is observed for Mu-CSF, as 
shown in Fig. 2. 

As the signal sequence of Mu-CSF is very hydrophobic, 
we suspected that in sMC-CAT it might be integrated in the 
membrane. To determine membrane association of sMC- 
CAT and peptide M, we analyzed their membrane associa- 
tion by subjecting microsomes to carbonate extraction at pH 
11. The high pH treatment was carried out either before or 
after protease treatment. As shown in Fig. 3 (lanes 5 and 6) 
the majority of the precursor protein sediments with the 
membranes, i.e., it behaves as an integral membrane protein. 
Fragment M also behaved as integral membrane protein in 
that it was not extractable by carbonate at pH 11 (Fig. 3, lanes 
7 and 8). Artefactual precipitation of sMC-CAT by the high 
pH treatment was excluded in a control experiment where 
microsomes were added after completion of translation; nei- 
ther in the absence of microsomes nor upon their posttransla- 
tional addition did high pH treatment cause sedimentation of 
precursor sMC-CAT (data not shown). 

From these data we conclude that no signal cleavage oc- 
curred and that the unusually long and apolar signal peptide 
anchored the sMC-CAT fusion protein in the microsomal 
membrane in a type I orientation. This is evidenced by the 
membrane integration of the low molecular mass peptide M 

Figure 4. In vitro translation and membrane insertion of IMu-CSF 
and IMC-CAT. Messenger RNAs coding either for 1Mu-CSF (lanes 
1-4) or for IMC-CAT (lanes 5-8) were translated in a wheat germ 
cell-free system supplemented with rough microsomes and acceptor 
peptide for N-linked glycosylation (RM, lanes 2-4 and 6--8). Mem- 
brane translocation or insertion was analyzed for by a protection as- 
say; after translation, microsomes were treated with proteinase K 
(PK) in the absence (lanes 3 and 7) or presence (lanes 4 and 8) 
of Triton X-100 (TX). Proteins were analyzed on a 22% polyacryl- 
amide gel. The bands representing full-length IMu-CSF (,,o22 kD) 
and 1MC-CAT (,°30 kD) are indicated. IM, low molecular mass 
peptides protected from proteolysis. Precursor (pre-BLA) and ma- 
ture/3-1actamase (B/A) are also indicated as they provide a con- 
venient internal control for the processing capacity of the RM used 
in this experiment. Relative molecular masses are given in kilo- 
daltons. 
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methionines in IMu-CSF are within the NH2-terminal 50 
amino acid residues. The protein presumably exposes its ma- 
jor COOH-terminal portion to the cytoplasm and a small 
segment containing the NH2 terminus to the microsomal lu- 
men. As only one methionine residue is present in mature 
Mu-CSF we also used [3H]leucine as a label. In addition to 
the band IM a small amount of IMu-CSF was found to be 
processed to the size of mature Mu-CSF (data not shown). 

The 30-kD band in Fig. 4 (lanes 3 and 4) represents/3-1ac- 
tamase that is also encoded on the pDS plasmids (Stueber et 
al., 1984). The efficient processing of pre-/3-1actamase to 
~/-lactamase serves as a convenient internal marker showing 
that the signal peptidase was active (Fig. 4, cf. lanes 1 and 2). 

IMC-CAT. IMC-CAT synthesized in the absence of micro- 
somes migrated as a 30-kD protein (Fig. 4, lane 5). When 
microsomes and acceptor peptide were added to the transla- 
tion mixture the same size polypeptide was observed (lane 
6). Protease protection of IMC-CAT revealed a prominent 
low relative molecular mass band of 8 kD that was protected 
in the absence but not in the presence of detergent (Fig. 4, 
lane 7, band lM). As judged by its size this band probably 
represents the NH2 terminus of 1MC-CAT inserted into 
microsomes in a type I orientation. The fact that for IMC- 
CAT the protected IM band is larger than for IMu-CSF could 
be explained by the availability of different cleavage sites for 
proteinase K on the two different COOH-terminal polypep- 
tide portions (mature CSF vs. CAT). 

The Fragment IM Arises from the NH2-Terminal End 
of the IMC-CAT Precursor 

The results described above suggest that the majority of the 
precursors of IMu-CSF and 1MC-CAT have the hydrophilic 
NH2 terminus translocated across the membrane; the hy- 
drophobic segment serves as a membrane anchor and the 
COOH-terminal residues of the mature proteins remain in 
the cytoplasm and therefore accessible to proteinase K di- 
gestion. 

To demonstrate that it is indeed a segment close to the NH2 
terminus that anchors IMC-CAT in the membrane we trun- 
cated the protein at the COOH-terminal end. If  the NH2 
terminus of IMC-CAT were translocated across the mem- 
brane, the size of the protease-protected 1M-fragment would 
be the same whether the COOH terminus was truncated or 
not. However, if it was the COOH terminus that was lumi- 
nally exposed, then the size of the protease-protected IM 
fragment should decrease. Truncated polypeptides were ob- 
tained by translating the corresponding mRNA in the pres- 
ence of a 20-mer oligodeoxynucleotide complementary to 
the mRNA sequence located 180 bp 5' of the stop codon (see 
Bal I restriction site, Fig. 1 B). We previously had shown that 
oligodeoxynucleotides added to the wheat germ translation 
system give rise to COOH-terminally truncated peptides. 
Presumably a RNase H-like activity endogenous to the 
wheat germ lysate cuts the mRNA at the site of RNA/DNA 
hybrid formation (Haeuptle et al., 1986; Minshull and Hunt; 
1986). Translocation of 1MC-CAT mRNA in the presence of 
the Bal I oligodeoxynucleotide, should therefore shorten the 
resulting peptide by the COOH-terminal 60 amino acid 
residues giving rise to an "~19 kD polypeptide. Such a poly- 
peptide was observed when truncated IMC-CAT (A1MC- 
CAT) was synthesized in the wheat germ cell-free system in 

Figure 5. Membrane insertion of IMC-CAT that is truncated at its 
COOH-terminal end. Messenger RNA encoding IMC-CAT was 
translated either in the absence (B, lanes 1-4) or presence (A, lanes 
1-4) of an oligodeoxynucleotide complementary to the mRNA se- 
quences located 180 bp 5' of the stop codon in the cat cDNA (B1 
in Fig. 1 B). In the wheat germ system, DNA/RNA hybrids are 
cleaved by an endogenous RNase H-like endonuclease activity. The 
truncated mRNA codes for a polypeptide species shortened at its 
COOH-terminus by 60 amino acid residues. Translation of full- 
length 1MC-CAT and its truncated form A1MC-CAT was performed 
in the absence (lanes 1 ) or presence (lanes 2-4) of rough micro- 
somes (RM). Protein translocation and membrane insertion were 
analyzed for by posttranslational treatment of the microsomes with 
proteinase K (PK) in the absence or presence of detergent (TX). 
Proteins were analyzed on 22 % polyacrylamide gels. IM shows the 
position of the low molecular mass, protease-protected band. The 
asterisks mark bands that represent N-glycosylated forms of 
membrane-inserted AIMC-CAT and IMC-CAT. 

the absence or presence of membranes (Fig. 5 A, lanes 1 and 
2). After digestion with proteinase K the same 8-kD peptide 
was found protected for both full-length and truncated IMC- 
CAT (Fig. 5, A and B, lanes 3, band IM). This demonstrates 
that the COOH terminus of the IMC-CAT polypeptides is ex- 
posed on the cytoplasmic side while the NH2 terminus is on 
the exoplasmic side. 

The NHz-Terminal Hydrophilic Segment of lMC-CAT 
Is Glycosylated 

The oligosaccharyl-transferase that transfers high mannose 
oligosaccharides onto asparagine residues of nascent poly- 
peptides is known to be located in the ER lumen (Kornfeld 
and Kornfeld, 1985). Therefore, N-glycosylation is a con- 
venient marker for luminal disposition of a protein or parts 
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Figure 6. N-glycosylation of IMC-CAT and AIMC-CAT. IMC-CAT 
(lanes 1 and 2) and AIMC-CAT (lanes 3-6) are synthesized in the 
absence (lanes 1, 3, and 5) or presence (lanes 2, 4, and 6) of RM 
either without (lanes 1-4) or with (lanes 5 and 6) the addition of 
an acceptor peptide (AP) that inhibits N-glycosylation. All samples 
were immunoprecipitated with an anti-CAT antiserum and analyzed 
on a 22 % polyacrylamide gel. Asterisks indicate the N-glycosylated 
bands as identified by their absence in those samples containing ac- 
ceptor peptide. 

gested that most of the newly synthesized 1Mu-CSF and 
IMC-CAT is inserted into microsomal membranes in a type 
I orientation. To test membrane integration of the 1M-frag- 
ments, we extracted the microsomes with carbonate at pH 11. 
Fig. 7 shows that most of 1Mu-CSF and IMC-CAT synthe- 
sized in the presence of microsomes cosedimented with the 
membranes (lanes 1, 2, 5, and 6). In control experiments 
(results not shown here) we confirmed that neither of the two 
precursor proteins could be sedimented when microsomes 
were omitted or added posttranslationally. After protease 
digestion, the protected fragments IM resisted extraction 
with carbonate and were recovered in the membrane pellet 
(lanes 3, 4, 7, and 8). 

Discussion 

A Cleavable Signal Sequence Can Become 
the Membrane-spanning Segment of an 
SA-Membrane Protein 

We have demonstrated that the hydrophobic, cleavable signal 
sequence of Mu-CSF can direct SA-type membrane insertion 
when the flanking amino acid sequences are changed. Con- 
version is observed by changes at both the COOH- and the 
NH2-terminal side of the hydrophobic segment. The results 
can be summarized as follows (Fig. 8). (a) sMu-CSF is a 
secretory protein with a rather long apolar signal sequence. 
When pre-sMu-CSF is translocated across microsomal 
membranes the apolar signal peptide of 27 residues is 
cleaved. This finding confirms previously published results 
where multi-CSF cDNA transfected into cells gave rise to 

of it. IMC-CAT contains a single potential site for N-glyco- 
sylation and this is located NH2-terminally to the membrane 
spanning segment. When membrane translocation of 1MC- 
CAT and of AIMC-CAT was analyzed, we observed a band 
'~3 kD larger than the precursor that only appeared upon 
translation in the presence of microsomes (Fig. 5, A and B, 
lane 2; Fig. 6, lanes 2 and 4, see bands marked with aster- 
isks). The increase in relative molecular mass is consistent 
with the addition of one core oligosaccharide to the proteins. 

To demonstrate glycosylation more clearly, transfer of 
N-linked core oligosaccharides to A1MC-CAT was inhibited 
by the acceptor peptide for N-glycosylation. Subsequently, 
newly synthesized polypeptides were immunoprecipitated 
with an anti-CAT antibody. The results are shown in Fig. 6. 
Only when AIMC-CAT was translated in the presence of 
microsomes but in the absence of the acceptor peptide was 
the higher relative molecular mass band representing glyco- 
sylated precursors detectable (lane 4 band marked by an 
asterisk). We conclude that IMC-CAT can be glycosylated 
and that its NH2 terminus is translocated into the lumen of 
microsomal vesicles. 

Fragments 1MAre Membrane Integrated 

Protease protection of the ~6-  and 8-kD peptides 1M sug- 

Figure 7. Resistance to membrane extraction at pH 11. After transla- 
tion of IMu-CSF (lanes 1-4) and 1MC-CAT (lanes 5-8) in the pres- 
ence of rough microsomes (lanes 1-8), some aliquots were digested 
with proteinase K (PK; lanes 3, 4, 7, and 8). All samples were then 
treated with carbonate at pH 11 and spun through a sucrose cush- 
ion. Carbonate-extractable material was recovered in the superna- 
tants (S, lanes 1, 3, 5, and 7), membrane bound polypeptides was 
recovered in the pellets (P, lanes 2, 4, 6, and 8). 1M, low relative 
molecular mass protease protected polypeptides. 
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protein topology 

sMu-CSF m '  ~'-~.:~ 

sMC-CAT ~ 

1Mu-CSF ~ m = ~  

1MC-CAT . . . . . . .  

Figure 8. Diagrammatic presentation of the fusion proteins and 
their inferred membrane topology. The black boxes indicate the hy- 
drophobic region of the fusion proteins. The NH2 terminus is on 
the left and the COOH terminus on the right. The topology of the 
proteins in microsomal vesicles is indicated on the right hand side. 

secreted and functional protein (Fung et al., 1984; Yokota et 
al., 1984). (b) Exchange of the mature portion of sMu-CSF 
for part of the cytoplasmic protein CAT resulted in a mem- 
brane spanning protein (sMC-CAT). Although the apolar 
signal sequence and its consensus cleavage site ( - 3  to -1) 
had not been modified by the construction no signal cleavage 
was observed for sMC-CAT. The protein spans the mem- 
brane in a type I orientation. (c) 1Mu-CSF has a hydrophilic 
extension at the NH2-terminal side of the hydrophobic seg- 
ment. It is membrane inserted in a type I orientation. A small 
proportion of IMu-CSF is translocated across microsomal 
membranes and processed by signal peptidase to authentic 
Mu-CSE This was detected when [3H]leucine was used as 
a label (data not shown). A secreted form of Mu-CSF was 
also found when IMu-CSF was expressed in cos cells (Dunn 
et al., 1985). Whether a membrane integrated form of 1Mu- 
CSF exists also in vivo has not yet been investigated. (d) Fi- 
nally, the fusion protein IMC-CAT was inserted into mem- 
branes as a SA-membrane protein with a type I orientation. 

From these results we conclude that modifications in the 
COOH- or NH2-terminal sequences flanking a hydrophobic 
signal peptide can convert a secretory protein into a SA- 
membrane protein with type I orientation. These and pre- 
viously published results (Lipp and Dobberstein, 1986a, 
1988; Szczesna-Skorupa et al., 1988) strongly suggest that 
the topological signal for ER membrane insertion resides in 
three segments, the hydrophobic core of the signal sequence 
and the flanking hydrophilic amino acid residues. 

Hydrophilic Sequences Flanking the 
Hydrophobic Core of a Signal Peptide Determine 
Cleavage by Signal Peptidase 
1Mu-CSE sMC-CAT, and 1MC-CAT represent proteins in 
which segments flanking the hydrophobic core of the Mu- 
CSF signal sequence were replaced by unrelated amino acid 
sequences. The proteins were inserted into the membrane 
but cleavage by signal peptidase did not or did only very 
inefficiently occur. This confirms our previous observation 
that the hydrophilic amino acid residues flanking the hydro- 
phobic core of a signal sequence determine the site of cleav- 
age by signal peptidase (Lipp and Dobberstein, 1986a, 
1988). Previously a type II membrane protein was converted 
into a secretory protein by either removing the hydrophilic 
amino acid residues preceding the hydrophobic segment or 

changing the sequences adjacent to it. We conclude therefore 
that two parameters specify the site of signal peptidase cleav- 
age. Firstly, potential cleavage sites can be defined by the -3 ,  
-1 rule of von Heijne (1983). This rule states that neutral 
amino acid residues are prevalent in positions - 3  and -1 
NH2-terminal to a signal peptidase cleavage site. Aromatic, 
charged, and large polar residues are essentially absent from 
these positions. Usually many sites are found in a polypep- 
tide that conform to this - 3 , - 1  rule. The second parameter 
therefore might be the accessibility of one of these sites to 
signal peptidase. The results presented here and previously 
suggest that the actual cleavage site is selected by the hydro- 
philic sequences flanking the hydrophobic core of a signal se- 
quence (Lipp and Dobberstein, 1986a, 1988). It is well- 
conceivable that in each polypeptide that is inserted into the 
membrane only a small segment is accessible to signal pepti- 
dase. If no potential cleavage site is found in this segment, 
cleavage can not occur and the polypeptide is either com- 
pletely translocated across the membrane or inserted as a 
SA-membrane protein. 

Membrane Orientation of a SA Segment Is 
Specified by the Hydrophilic Sequences Flantdng 
an Apolar Segment 
Hydrophobicity is certainly the most conspicuous feature in 
primary sequences known to be involved in targeting and 
topogenesis of membrane proteins. If this segment is deleted 
no membrane insertion occurs. In several approaches 
characterizing the signal(s) for membrane insertion hydro- 
phobic segments were exchanged. They usually included 
some of the polar flanking sequences. The hydrophobic seg- 
ment close to the NH2 terminus of the transferrin receptor, 
a type II membrane protein, was exchanged for apolar seg- 
ments from different origins. All the constructs, when tran- 
scribed and translated, resulted in type II membrane proteins 
(Zerial et al., 1987). In a different series of experiments each 
of the transmembrane segments of the multiple spanning 
membrane protein bovine opsin, including some of their po- 
lar flanking sequences, was individually placed behind the 
hydrophilic NH2-terminus of the protein. The resulting fu- 
sion proteins were either membrane inserted in a type II 
orientation or entirely translocated to the microsomal lumen 
(Friedlander and Blobel, 1985; Audigier et al., 1987). Such 
experiments confirmed that hydrophobicity was essential for 
ER targeting and membrane insertion. However, they gave 
no clue as to what determines the final membrane orien- 
tation. 

In our experiments all modifications were made precisely 
at the NH2- or COOH-terminal end of the hydrophobic seg- 
ment corresponding to the cleavable multi-CSF signal pep- 
tide. The resulting mutant proteins were either secreted or 
type I SA-membrane proteins. The question then arises as 
to why these proteins were inserted in a type I rather than 
type II orientation. Comparing SA-membrane proteins it ap- 
pears that the imbalance of charged amino acid residues at 
the NH2- and COOH-terminal side of the hydrophobic seg- 
ment is the most conspicuous feature which distinguishes 
type I and type II SA-membrane proteins. Type II membrane 
proteins usually have positively charged amino acid residues 
at the NH2-terminal side of the hydrophobic segment (yon 
Heijne, 1986a). On the other hand type I membrane proteins 
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of the SA-type are characterized by the absence or low num- 
ber of positively charged amino acid residues at the NH2- 
terminal side of the hydrophobic segment. At present only 
a few SA-proteins of type I orientation are known (Sakaguchi 
et al., 1984; Williams and Lamb, 1986; High and Tanner, 
1987). Cytochromes P-450, a family of microsomal mem- 
brane proteins, are type I SA-proteins. Their membrane in- 
sertion is dependent on signal recognition protein and dock- 
ing protein (Sakaguchi et al., 1984). NH2-terminal to the 
apolar segment there are either uncharged or acidic amino 
acid residues. Sakaguchi et al. (1987) found that a 29-amino 
acid long NH2-terminal fragment of liver microsomal cyto- 
chrome P-450 containing the NH2-terminal acidic residues 
was sufficient to promote membrane insertion when fused to 
the NH2 terminus of interleukin-2 as a reporter protein. 
Szczesna-Skorupa et al. (1988) found that positive charges 
at the NH2 terminus convert the type I membrane protein 
cytochrome P-450 either to a type II membrane protein or 
to a secretory protein. Von Heijne (1986a) observed that in 
bacterial inner membrane proteins basic residues are de- 
pleted in exoplasmic as compared to cytoplasmic domains. 

All these results support the notion that negatively charged 
residues are more compatible with translocation than posi- 
tively charged ones. The finding that the NH2-terminal ex- 
tension in IMu-CSF and IMC-CAT mainly confers type I 
membrane orientation supports this model. This NH2-ter- 
minal extension contains a cluster of acidic residues adjacent 
to the apolar segment (Fig. 1 C). Comparison of sMu-CSF 
(secretory protein) with sMC-CAT (type I membrane pro- 
tein) suggests that negatively charged residues on the NH~- 
terminal flanking region of the hydrophobic segment are not 
a strict requirement for membrane insertion in the type I 
orientation. It is conceivable that an increase in, or redistri- 
bution of, positive charges at the COOH-terminal side of the 
hydrophobic segment can also lead to a SA type I membrane 
protein. A comparison of the sequence COOH-terminal to 
the signal sequence of sMu-CSF with that of sMC-CAT (Fig. 
1 C) shows that the CAT portion contains more positively 
charged amino acid residues close to the hydrophobic seg- 
ment than the mature Mu-CSF. 

The effect of charged amino acid residues on the orienta- 
tion of SA-membrane proteins needs further investigation. 
It is unclear which residues flanking the hydrophobic seg- 
ment are relevant for determining the orientation in the mem- 
brane. In this respect it is interesting to mention that some 
of the signal-anchor segments in SA-membrane proteins are 
encoded by separate exons which include the charged amino 
acid residues on both sides of the hydrophobic segment 
(Koch et al., 1987). Besides an importance of the charged 
amino acid residues it is conceivable that the NH2-terminal 
hydrophilic segments of SA-proteins require unfolding be- 
fore translocation. These segments must be translocated 
posttranslationally as they precede the signal for membrane 
insertion. An unfolding step has been postulated for several 
types of proteins that are translocated posttranslationally 
(Eilers and Schatz, 1988; Park et at., 1988). 

Functional Implications of  the Conversion between 
Secretory and Membrane Proteins 

As secretory and membrane proteins of opposite orientations 
can be converted to one another it is conceivable that such 

topological conversions are also found in the living cell. In- 
deed DNAs coding for the short and the long form of Mu- 
CSF were both isolated from cDNA libraries and, upon 
transfection studies, were shown to yield functional protein. 
sMu-CSF is the normally occurring, abundant species. The 
cDNA coding for IMu-CSF is most likely derived from a 
mRNA generated by the inclusion of an additional exon at 
the 5' end of the canonical multi-CSF mRNA (N. Gough, un- 
published observations). IMu-CSF mRNA could however 
not be traced by Northern blot analysis which leaves it un- 
clear whether its expression is very low or nonexistent. 
Nevertheless, the fact that in an in vitro reconstituted system 
1Mu-CSF displayed two topological phenotypes, i.e., a type 
I membrane protein and a low amount of mature, secretory 
protein, rendering speculations on in vivo implications 
challenging. Segregation of a single protein into different cel- 
lular compartments by the simple addition or deletion of pep- 
tide segments is not novel. Immunoglobulin heavy chains, 
for instance are known to exist as secretory and membrane- 
bound forms. These forms differ in a COOH-terminal hydro- 
phobic segment that can anchor the heavy chain in the mem- 
brane (Air et al., 1980). Such proteins are expressed from 
separate mRNAs. Could multi-CSF represent a case where 
two mRNAs differing at the 5' end give rise to a secreted and 
a membrane protein? While the secretory form expresses the 
"normal" function of a colony stimulating factor we can only 
speculate about the potential function of a membrane bound 
form. One possibility would be autocrine regulation. Multi- 
CSF could gain access to the cytoplasm or nucleus of its pro- 
ducer cell by proteolytic release from the membrane- 
associated form. This is a particularly intriguing possibility 
in view of the highly significant homology on the amino acid 
level observed between a large region of multi-CSF and the 
x-lor gene product of HTLV-I, a transcriptional regulator 
(Gojobori et al., 1986). 

In summary, our results suggest that the signal for anchor- 
ing SA-proteins in the membrane consists of a hydrophobic 
segment and its two hydrophilic flanking regions. Site di- 
rected mutagenesis of these flanking regions will allow fur- 
ther definition of the role that charged amino acid residues 
or folding play in determining the topology of SA-proteins 
in the membrane. 
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