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Background: Angiotensin-converting enzyme (ACE) is involved in the chronic

complications of type 2 diabetes mellitus (T2DM) and Alzheimer’s disease. This study

aimed to assess the pathogenetic roles of ACE and the genetic predisposition of its

insertion/deletion (I/D) polymorphism in mild cognitive impairment (MCI) among T2DM

patients.

Methods: A total of 210 T2DM patients were enrolled. Among these patients,

116 satisfied the MCI diagnostic criteria and 94 exhibited healthy cognition. The

cognitive functions of the patients were extensively assessed. The serum level and

activity of ACE were measured via enzyme-linked immunosorbent assay and ultraviolet

spectrophotography. The single-nucleotide polymorphisms of I/D gene of ACE were

analyzed.

Results: The serum level and activity of ACE in diabetic MCI patients (p = 0.022 and

p = 0.008, respectively) were both significantly higher than those in the healthy controls.

A significant negative correlation was found between their ACE activity and logical

memory test score (LMT) (p = 0.002). Multiple stepwise regression iterated the negative

correlation between ACE activity and LMT score (p = 0.035). Although no significant

difference was found in the genotype or allele distribution of ACE I/D polymorphism

between the groups, the serum levels and activity of ACE were higher in the DD group

than in the ID and II groups (p < 0.05).

Conclusions: Serum ACE activity could better predict logical memory in T2DM patients

than ACE level. Further investigations on a large population size are necessary to

test whether the D-allele of the ACE gene polymorphism is susceptible to memory

deterioration.
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INTRODUCTION

Several epidemiological studies have shown that type 2 diabetes
mellitus (T2DM) may exert influence on the prevalence of mild
cognitive impairment (MCI) (Luchsinger et al., 2007), which
is a transitional stage between normal aging and dementia.
Patients with diabetes have higher risks of MCI, particularly
memory ability, than those without diabetes (Cheng et al.,
2012). Several explanations for the link between diabetes and
cognitive dysfunction have been provided, including chronic
hyperglycemia (Strachan et al., 2011), recurrent hypoglycemia
(Muratli et al., 2015), insulin deficiency (Ma et al., 2015), reduced
cerebral blood flow(Strachan et al., 2011; Glodzik et al., 2013;
Nealon et al., 2016), amyloid β (Aβ) deposition (Yang and Song,
2013), tau protein hyperphosphorylation (McCrimmon et al.,
2012) and so on. However, the exact mechanism remains unclear.

Angiotensin-converting enzyme (ACE), which is one of the
key components of the renin–angiotensin system (RAS), is a
zinc metallopeptidase that converts angiotensin I to angiotensin
II (Ang II) (Tiret et al., 1998; Dhar et al., 2012). All organs of
the body are now recognized to have their own local paracrine-
like RAS with organ-specific functions (Kehoe et al., 2009).
The actions of angiotensin II within the central nervous system
are of increasing interest in the context of Alzheimer’s disease
(AD). Ang II may lead to reduction in cerebral blood flow
because of vasoconstriction (Inaba et al., 2009) or oxidative stress
(Tota et al., 2012). Besides, angiotensin II inhibits the release
of acetylcholine from the human temporal cortex (Barnes et al.,
1990) and has a pro-inflammatory effect (Kehoe, 2009). Findings
from in vitro studies and animal models have shown that ACE
may play an important role in the metabolism of Aβ (Hu et al.,
2001; Oba et al., 2005). The level and activity of ACE within the
cerebral cortex are generally elevated in AD patients (Arregui
et al., 1982; Barnes et al., 1991; He et al., 2006; Miners et al.,
2008). Several studies have found that insertion/deletion (I/D)
polymorphism in the ACE gene is associated with ACE levels and
activity (Rigat et al., 1990) and can be associated with AD risk,
whereas the D allele exhibits different results (Elkins et al., 2004;
Lehmann et al., 2005; Helbecque et al., 2009).

The association between T2DM and AD has been described in
various clinical studies (de la Monte and Wands, 2008; Moreira
et al., 2013). High levels of angiotensin II have been reported to
possibly play a key role in glucose and insulin regulation andmay
increase the risk of diabetes (Zhou et al., 2012). The association
of the ACE gene with insulin resistance and inflammatory factors
has been reported (Huang et al., 1998; Stephens et al., 2005). This
study was designed to assess the association between serum ACE
level/activity and cognition performance. In addition, it aimed
to determine whether I/D polymorphism in the ACE gene was
associated with diabetic MCI. The results of our study provide
additional insights into the pathogenesis of T2DMwith MCI and
an early therapeutic strategy for dementia.

MATERIALS AND METHODS

Subjects and Study Design
The study was conducted in the Department of Endocrinology of
the Affiliated Zhongda Hospital of Southeast University. All the

participants were Chinese Han and provided written informed
consents according to a protocol approved by the Research Ethics
Committee of the Affiliated Zhongda Hospital of Southeast
University.

We recruited 210 (119 men and 91 women, aged 50–75
years) hospitalized patients who satisfied the diagnostic criteria
of T2DM. Among these individuals, 116 were diabetic patients
with MCI and 94 were diabetic patients with healthy cognition.
The control group was composed of diabetic patients with
healthy cognition. These patients were diagnosed with T2DM
according to the World Health Organization 1999 criteria
(Alberti and Zimmet, 1998). All the MCI patients satisfied the
diagnostic criteria proposed by the MCI Working Group of
the European Consortium on Alzheimer’s Disease in 2006: (1)
cognitive complaints from patients or their families; (2) decline
in cognitive functioning in the past year relative to previous
abilities, as reported by the patient or an informant, with a
Clinical Dementia Rating (CDR) score of 0.5; (3) cognitive
disorders as evidenced by clinical evaluation (impairment in
memory or in another cognitive domain); (4) the absence
of major repercussions in daily life (however, a patient may
report difficulties in performing complex day-to-day activities);
and (5) the absence of dementia (Portet et al., 2006). The
following exclusion criteria were considered in this study:
diabetic ketoacidosis, hyperosmolar nonketotic diabetic coma,
severe hypoglycemia, acute cardiovascular or cerebrovascular
accident, history of stroke (Hachinski score ≥ 4), head injury,
alcoholism, Parkinson’s disease, epilepsy, major depression or
other physical and mental illnesses, major medical illness (e.g.,
cancer, anemia, and serious infection), and severe visual or
hearing loss (e.g., diabetic retinopathy, glaucoma, cataract, otitis
media, deafness).

Clinical Data Collection
Demographic characteristics, including age, gender, education
levels, occupation, and contact information, were collected.
Medical histories (including hypertension, coronary heart
disease, and cerebral infarction) and physical measurements
(including blood pressure, weight, and height) were obtained
using a standard balance beam scale. Medication history,
including insulin, Angiotensin Converting Enzyme Inhibitors
(ACEI), and Angiotensin Receptor Blockers (ARB), were
collected. Body mass index (BMI) was defined as the body weight
of an individual divided by the square of his/her height [body
weight (kg)/body height (m2)]. Patients with a systolic blood
pressure of ≥ 140mmHg and a diastolic blood pressure of ≥
90mmHg were considered hypertensive. Blood samples were
obtained to determine the levels of glycosylated hemoglobin
(HbA1c, %), triglyceride (TG), total cholesterol (TC), low-density
lipoprotein cholesterol (LDL-C), and high-density lipoprotein
cholesterol (HDL-C). The central laboratory of ZhongdaHospital
implements internal and external quality control procedures as
directed by the Chinese Laboratory Quality Control.

Neuropsychological Tests
A battery of neuropsychological tests, including the Montreal
Cognitive Assessment (MoCA) (Gil et al., 2015), digit span test
(DST) (Leung et al., 2011), verbal fluency test (VFT), clock
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drawing test (CDT) (Yoo and Lee, 2016), word similarity test
(ST), auditory verbal learning test (AVLT) (Hong et al., 2012),
logical memory test (LMT) (Chapman et al., 2016), Stroop
color–word test (SCWT) (Balota et al., 2010), and trail making
tests A and B (TMT-A and TMT-B) (Albert et al., 2001), were
performed to evaluate the cognitive functions, such as semantic
memory, attention, psychomotor speed, executive function, and
visuospatial skills, of each subject. Hachinski ischemic score,
clinical dementia rating (CDR), activity of daily living scale
(ADL), and self-rating depression scale (SDS) were also obtained.
Approximately 50min were used to complete the tests in a
fixed order. An experienced neuropsychiatrist facilitated the
tests, and all the subjects were not informed of the study
design.

Measurement of Serum ACE Level and
Activity
Blood samples (2mL) were collected between 6:30 a.m. and 7:00
a.m. in fasted state via venipuncture in anticoagulant-free tubes.
The blood samples were centrifuged at 100 × g for 15min.
Serum was collected and stored at −80◦C until use. Fasting
serum ACE concentrations were measured using enzyme-linked
immunosorbent assay kits [R&D Systems, Minneapolis, MN,
USA] according to the instructions of the manufacturer. The
serum ACE levels of the subjects were measured during the same
day to minimize assay variance. Fasting serum ACE activity was
determined under ultraviolet spectrophotography using aHitachi
7170 fully automatic biochemical analyzer in accordance with the
instructions of the manufacturer indicated in the ACE activity
kit (Zhejiang Kuake Bioscience Technology Co., Ltd.). Serum
ACE activity was measured in all the subjects on the same day to
minimize assay variance. The intra-assay coefficient of variation
was less than 6%.

Genotyping of ACE I/D Polymorphism
Genomic DNA was extracted from 2mL EDTA anticoagulated-
venous blood using a DNA Purification Kit (Gentra, Minnesota,
USA) according to the recommendations of the manufacturer.
Polymerase chain reaction (PCR)−restriction fragment length
polymorphism was conducted to genotype the DNA sequence
variants of the ACE gene I/D. The primer sequences were forward
primer (5′-GGACTCTGTAAGCCACTG-3′) and reverse primer
(5′-CTCCCATGCCCATAAC-3′). PCR was conducted in 30 µL
reaction mixtures with 20.8 µL ddH2O, 3.0 µL 10 × PCR buffer,
60 ng DNA, 10 pmol primer forward, 10 pmol primer reverse,
and 2 µL dNTP. The amplification conditions were initiated
at 96◦C for 5min, followed by 30 cycles of denaturation at
96◦C for 20 s, annealing at 55◦C for 20 s, extension at 72◦C for
30 s, and a final extension step at 72◦C for 10min. The PCR
products were analyzed using 2% agarose gel electrophoresis
and ethidium bromide staining to identify three patterns: I/I
(490 bp band), D/D (190 bp band), and I/D (both 490 and 190 bp
bands).

Statistical Analysis
Data were reported as mean ± standard error of mean (SEM),
median (interquartile range), or percentage, as appropriate.

Student’s t-test and analysis of variance (ANOVA) were
performed to compare the normally distributed variables.
Nonparametric Mann–Whitney U and Kruskal–Wallis tests were
conducted to compare the asymmetrically distributed variables.
Chi-squared (χ2) test was used to compare the qualitative
variables. This test was also conducted to evaluate the distribution
of genotypes and allele frequencies as well as to determine
the deviations from the Hardy–Weinberg equilibrium (Santiago
Rodriguez, Tom R. Gaunt, and Ian N. M. Day, Hardy–
Weinberg Equilibrium Testing of Biological Ascertainment for
Mendelian Randomization Studies). The correlation between
the neuropsychological test scores and serum ACE level
or activity was examined using Pearson’s or Spearman’s
correlation. Multiple stepwise regression analysis was conducted
to investigate the relationship of cognitive performances with
demographic characteristics, clinical characteristics, and serum
ACE level or activity. Statistical analysis was conducted using
SPSS 19.0 (SPSS Inc., Chicago, IL). A two-sided p < 0.05 was
defined as statistically significant.

RESULTS

Demographic Characteristics, Clinical
Characteristics, and Cognitive
Performances
The demographic characteristics, clinical characteristics, and
neuropsychological test scores of the participants are listed
in Table 1. The MCI group and the control group were well
matched in terms of age, gender distribution, educational
level, smoking history, drinking history, BMI, hypertension
prevalence, diabetes duration, insulin use, and ACEI or ARB
use (p > 0.05). No significant difference was found in TG,
TC, LDL-C, HDL-C, ApoA1, and ApoB levels between the two
groups. T2DM patients with MCI had elevated fasting blood
glucose (FBG) and HbAlc and lower fasting C-peptide than the
control group (p < 0.05). The neuropsychological test scores
of the MCI patients, except for the correct numbers of Card
A, were significantly lower than those of the control subjects
(p < 0.01).

Serum ACE Levels and Activity between
the MCI and the Control Group
The MCI group exhibited markedly higher serum ACE level and
activity than the control group [200.16 ± 8.96 vs. 171.14 ± 8.48,
p= 0.022; 47.45 (26.13–86.68) vs. 33.15 (23.25–52.43), p= 0.008,
respectively; Table 1].

Respective Relationship between
Cognitive Performances and Serum ACE
Level and Activity
Significant differences were found in serum ACE level, ACE
activity, and cognitive performances between the two groups.
The respective correlations between cognitive performances and
serum ACE level/activity were analyzed. Pearson’s or Spearman’s
correlation showed significantly negative correlations between
MoCA and LMT scores and ACE activity in the MCI subgroup
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TABLE 1 | Demographic characteristics, clinical characteristics, cognitive performances, serum ACE levels and ACE activity.

Characteristic MCI group (n = 116) Control group (n = 94) p-value

Age (years) 60.88 ± 0.59 59.33 ± 0.76 0.103a

Female, n (%) 56.00 (48.30) 35.00 (37.20) 0.108c

Education Levels (years) 9.00 (9.00–12.00) 9.00 (9.00–12.00) 0.130b

Smoking, n (%) 48.00 (41.40) 42.00 (44.70) 0.631c

Drinking, n (%) 33.00 (28.40) 22.00 (23.40) 0.408c

BMI (kg/m2) 25.25 ± 0.33 25.21 ± 0.35 0.928a

Hypertension, n (%) 74.00 (63.80) 50.00 (53.20) 0.120c

Hypertension duration (years) 6.00 (0.00–10.75) 3.50 (0.00–10.00) 0.189b

Systolic pressure (mmHg) 140.00 (125.00–150.00) 132.00 (124.00–141.25) 0.068b

Diastolic pressure (mmHg) 80.00 (75.00–90.00) 80.00 (75.00–90.00) 0.423b

Diabetes duration (years) 10.00 (5.25–15.00) 8.00 (5.00–13.00) 0.228b

Use of insulin, n (%) 79.00 (68.10) 54.00 (57.40) 0.111c

Use of ACEI OR ARB, n (%) 25.00 (21.60) 26.00 (27.70) 0.305c

HbA1c (%) 9.59 ± 0.23 8.84 ± 0.24 0.026a*

FBG (mmol/L) 8.30 ± 0.24 7.61 ± 0.23 0.041a*

PBG (mmol/L) 14.67 ± 0.32 13.78 ± 0.39 0.076a

Glucose fluctuation (mmol/L) 6.80 (5.08–9.53) 6.25 (4.28–9.13) 0.150b

FCP (nmol/L) 1.39 (1.03–1.85) 1.77 (1.32–2.53) <0.001b*

Triglyceride (mmol/L) 1.33 (1.04–1.86) 1.50 (1.24–1.94) 0.063b

Total cholesterol (mmol/L) 4.88 ± 0.11 4.80 ± 0.12 0.609a

LDL-cholesterol (mmol/L) 2.99 ± 0.08 2.97 ± 0.09 0.873a

HDL-cholesterol (mmol/L) 1.18 ± 0.03 1.19 ± 0.02 0.881a

ApoA1 (g/L) 1.06 ± 0.02 1.11 ± 0.02 0.162a

ApoB (g/L) 0.87 ± 0.02 0.86 ± 0.02 0.733a

COGNITION TEST LEVELS

MoCA 21.00 (18.00–23.00) 27.00 (26.00–28.00) <0.001b*

DST 11.00 (8.00–12.00) 12.00 (11.00–14.00) <0.001b*

VFT 14.70 ± 0.35 17.20 ± 0.42 <0.001a*

CDT 3.00 (2.00–4.00) 4.00 (4.00–4.00) <0.001b*

ST 7.00 (5.00–9.00) 9.00 (8.00–10.00) <0.001b*

TMT-A 81.00 (61.50–108.50) 59.00 (47.75–71.00) <0.001b*

TMT-B 197.00 (150.00–263.75) 145 (114–180) <0.001b*

SCWT A time 35.69 ± 0.86 28.41 ± 0.62 <0.001a*

SCWT A number 50.00 (49.00–50.00) 50.00 (50.00–50.00) 0.165b

SCWT B time 59.43 ± 1.03 42.56 ± 0.92 <0.001a*

SCWT B number 48.00 (46.00–49.00) 50.00 (49.00–50.00) <0.001b*

SCWT C time 117.38 ± 2.37 84.02 ± 1.45 <0.001a*

SCWT C number 44.50 (42.00–46.00) 47.00 (45.00–50.00) <0.001b*

AVLT immediate recall 15.47 ± 0.39 20.33 ± 0.45 <0.001a*

AVLT delayed recall 4.00 (3.00–6.00) 7.00 (5.00–9.00) <0.001b*

LMT 4.00 (2.00–8.00) 10.00 (7.75–13.00) <0.001b*

ACE level (ng/mL) 200.16 ± 8.96 171.14 ± 8.48 0.022a*

ACE activity (u/L) 47.45 (26.13–86.68) 33.15 (23.25–52.43) 0.008b*

*Significance, p < 0.05.

Data are presented as n (%), mean ± SEM, or median (interquartile range) as appropriate.
aStudent’s t test for comparison of normally distributed quantitative variables between MCI group and control group.
bMann-Whitney U test for comparison of asymmetrically distributed quantitative variables between MCI group and control group.
cχ2 test for comparison of qualitative variables between MCI group and control group. Abbreviations: MCI, mild cognitive impairment; BMI, body mass index; HbAlc, glycosylated

hemoglobin; FBG, fasting blood glucose; PBG, postprandial blood glucose; FCP, Fasting c-peptide; LDL, low-density lipoprotein; HDL, high-density lipoprotein; MoCA, Montreal

Cognitive Assessment; DST, Digit Span Test; VFT, Verbal Fluency Test; CDT, Clock Drawing Test; ST, Similarities test; TMT-A, Trail Making Test-A;TMT-B, Trail Making Test-B; SCWT,

Stroop Color Word Test; AVLT, Auditory Verbal Learning Test; LMT, Logical Memory Test; ACE, angiotensin-converting enzyme.
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(r = −0.242, p = 0.009; r = −0.286, and p = 0.002, respectively;
Table 2). Besides, there was a significantly positive correlation
between VFT and serum ACE level (r = 0.195, p = 0.036;

TABLE 2 | Relationships between serum ACE level, ACE activity and

cognitive performances in T2DM patients with MCI.

Serum ACE level Serum ACE activity

r p-value r p-value

MoCA −0.145 0.122b −0.242 0.009a*

DST 0.003 0.973b −0.056 0.554a

VFT 0.195 0.036a* −0.081 0.390a

CDT −0.092 0.326b −0.026 0.783a

ST 0.104 0.268a −0.054 0.562a

TMT-A 0.033 0.723b −0.003 0.974a

TMT-B 0.039 0.681b 0.029 0.758a

SCWT-A Time 0.048 0.608a 0.078 0.404a

SCWT-A Number −0.044 0.637b −0.031 0.737a

SCWT-B Time 0.006 0.950a 0.051 0.590a

SCWT-B Number 0.117 0.211b −0.061 0.515a

SCWT-C Time 0.057 0.546b 0.064 0.495a

SCWT-C Number 0.045 0.628a −0.065 0.486a

AVLT immediate recall −0.037 0.693a −0.095 0.310a

AVLT delayed recall −0.086 0.361b −0.148 0.113a

LMT −0.104 0.268b −0.286 0.002a*

*Significance, p < 0.05.
aPearson correlation.
bSpearman correlation. Abbreviations: MCI, mild cognitive impairment; MoCA, Montreal

Cognitive Assessment; DST, Digit Span Test; VFT, Verbal Fluency Test; CDT, Clock

Drawing Test; ST, Similarities test; TMT-A, Trail Making Test-A;TMT-B, Trail Making Test-B;

SCWT, Stroop Color Word Test; AVLT, Auditory Verbal Learning Test; LMT, Logical

Memory Test; ACE, angiotensin-converting enzyme.

TABLE 3 | Multiple linear regression analysis of factors associated with

LMT scores in T2DM patients with MCI.

Standardized β 95%CI P

Lower Upper

Education level 0.265 0.134 0.629 0.003*

TC −0.205 −1.182 −0.105 0.020*

Serum ACE activity −0.186 −0.022 −0.001 0.035*

*Significance, p < 0.05.

Abbreviations: LMT, Logical Memory Test; TC, Total cholesterol; ACE, angiotensin-

converting enzyme.

Table 2). By contrast, no significant correlation was found
between DST, CDT, ST, AVLT, or SCWT scores and serum
ACE level/activity (p > 0.05; Table 2). When LMT score was
considered as a dependent variable, and age, educational level,
diabetes duration, hypertension duration, FBG, blood lipid
levels, and serum ACE activity were considered as independent
variables in the multiple stepwise regression analysis, the results
indicated that the LMT score was significantly associated with
educational level, TC, and serum ACE activity (β = 0.265, p =

0.003; β=−0.205, p= 0.020; β=−0.186, p= 0.035, respectively;
Table 3).

Distributions of ACE Genotype and Allele
Frequencies between Groups
The ACE genotype and allele frequencies of the MCI patients
and the control subjects are shown in Table 4. The distribution
of the ACE genotypes was consistent with the Hardy–Weinberg
equilibrium in the MCI group (χ2 = 3.45, df = 1, p > 0.05) and
the control group (χ2 = 3.38, df = 1, p > 0.05). No significant
difference was found in the distributions of the ACE genotypes
(χ2 = 0.038, df = 2, p = 0.981) and allele frequencies (χ2 =

0.028, df = 1, p= 0.867) between the MCI group and the control
group.

Comparison of Serum ACE Level, ACE
Activity, and Cognitive Performances
between Genotypic Subgroups
Serum ACE levels were significantly different among the three
genotypic subgroups (DD, ID, and II) in the DM, MCI, and
healthy-cognition control groups (p < 0.001, p = 0.006, p =

0.014, respectively;Table 5). SerumACE activity was significantly
different among the three genotypic subgroups (DD, ID, and
II) in the DM group and the MCI group (p = 0.003 and p =

0.005, respectively; Table 6). In the MCI group, further statistical
analysis showed that serum ACE level and activity were both
significantly greater in the DD group than in the ID and II groups
(p < 0.05, Figures 1, 2). In the healthy-cognition control group,
the serum ACE level of the DD subgroup was only different from
that of the II genotypic subgroup (p < 0.05, Figure 1). However,
serum ACE activity was not significantly different in the three
genotypic subgroups in the healthy-cognition control group (p
> 0.05, Figure 2). The neuropsychological test scores were also
not significantly different in the genotypic subgroups in the MCI
and control subjects (p > 0.05, Table 7).

TABLE 4 | Distributions of ACE genotype and allele frequencies between groups.

Genotype, n (%) Allele, n (%)

Group DD ID II p-valuea D I p-valuea

MCI 50 (43.10) 45 (38.80) 21 (18.10) 0.981 145 (62.50) 87 (37.50) 0.867

Control 40 (42.60) 36 (38.30) 18 (19.10) 116 (61.70) 72 (38.30)

Data are presented as n (%).
aχ2 test for comparison of genotype and allele frequencies between MCI group and control group. Abbreviations: MCI, mild cognitive impairment; ACE, angiotensin-converting enzyme.
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DISCUSSION

To find the susceptible genotype and peripheral blood
biomarkers of cognitive deficits in diabetic patients, our
previous studies focused on the insulin-related pathway (Huang
et al., 2015) and the glucose toxicity pathway (Wang et al., 2016)
during the early and mild stages of cognitive impairment among
diabetic patients. ACE is one of the key components of RAS,
and it converts angiotensin I to angiotensin II (Tiret et al., 1998;
Dhar et al., 2012). Ang II may lead to reduction in cerebral blood
flow because of vasoconstriction (Inaba et al., 2009) or oxidative
stress (Tota et al., 2012). Besides, angiotensin II inhibits the
release of acetylcholine from the human temporal cortex (Barnes
et al., 1990) and has a pro-inflammatory effect (Kehoe, 2009).
Cholinergic system in the hippocampus plays an important
role in memory formation and retrieval (Popik et al., 1994).
Animal and in vitro studies both have shown that ACE plays an
important role in the metabolism of Aβ (Hu et al., 2001; Oba
et al., 2005). High levels of angiotensin II have been reported to
possibly play a key role in regulating glucose and insulin and
may increase the risk of diabetes (Zhou et al., 2012). ACE is
likely to play a role in diabetic cognitive impairment via vascular
factors (Pernomian et al., 2014). Therefore, this study aims to
investigate the roles of ACE in diabetic cognitive impairment
and the relationship of its polymorphism with the disease.

The most striking finding is that both serum ACE level
and activity have been determined to be significantly higher in
diabetic MCI patients than in the healthy-cognition controls.
The serum ACE activity of diabetic MCI patients was negatively
correlated with their LMT scores, which represented logical
memory, and was iterated via multiple stepwise regressions. ACE

TABLE 5 | Comparison of serum ACE level between genotypic subgroups.

Group Genotype p-valuea

DD ID II

DM 216.66± 8.87 169.93± 10.16 154.91± 14.25 <0.001

DM with MCI 232.75± 12.07 175.94± 14.93 174.45± 20.69 0.006

DM without MCI 196.55± 12.52 162.42± 13.32 132.11± 18.42 0.014

Data are presented as mean ± SEM.
aAnalysis of variance (ANOVA) for comparison of serum level of ACE between different

genotypes. Abbreviations: MCI, mild cognitive impairment; ACE, angiotensin-converting

enzyme.

serum level did not correlate with any of the behavioral scores.
The ACE activity of the DD genotype was significantly higher
than that of ID and II genotypes in diabetic patients with MCI,
which is consistent with previous results (Rigat et al., 1990;
Lehmann et al., 2005; Biller et al., 2006; Zhang et al., 2010,
2011). Nevertheless, no significant association between ACE I/D
polymorphism and MCI was observed in T2DM patients.

Our study found that serum ACE level and activity were both
increased in T2DMpatients withMCI, which was consistent with
previous results in rats with early-onset diabetes (Yamaleyeva
et al., 2012). We noticed that our MCI patients had higher levels
of HbA1C, which indicated poor glucose control. Hyperglycemia
has been shown to increase serum ACE level and activity
(Härdtner et al., 2013). In addition, elevated ACE activity
could reduce the release of neprilysin (NEP) which acts as
an Aβ-degrading enzyme in the brain (Carson and Turner,
2002). This finding can probably be applied to diabetic patients
with cognitive impairment. Aβ accumulation is regarded as a
predictive factor of cognitive deficits among diabetic patients
(Sato et al., 2010) and is detected during their early stage of
cognitive impairment (Yang and Song, 2013). However, the
accurate content of Aβ in the brain is extremely difficult to be
detected in vivo. Nevertheless, various risk factors of diabetic
cognition deficits, such as serum lipids (Kohlstedt et al., 2011),
oxidative stress (Tota et al., 2012), and inflammation (Gadelha
et al., 2015), could affect either the serum level or activity of
ACE to a certain extent, and thus, we were unable to deduce
from our data that none of these factors was significant in the
early prediction of cognitive decline, except that ACE activity was
related to logical memory.

Hyperglycemia and Aβ accumulation also play important
roles in the memory ability of diabetic patients (Capiotti et al.,
2014; Ding and Huang, 2014; Sato and Morishita, 2014). In
our study, AVLT immediate recall and delayed recall tests were
used to measure verbal learning and memory. The LMT test
was used to measure logical memory (Gao et al., 2015), and our
patients mainly exhibited logical memory disorders. Thus, this
study suggests that serum ACE activity may be a more useful
index for manifesting the adverse effect of hyperglycemia or Aβ

accumulation on logical memory in diabetic patients. Increased
ACE activity will elevate the level of angiotensin II, which will
lead to oxidative stress and a reduction in cerebral blood flow that
may induce memory dysfunction (Efimova et al., 2014; Nealon
et al., 2016), particularly logical memory. No literature evidence
is available to suggest that serum ACE level will affect memory

TABLE 6 | Comparison of serum ACE activity between genotypic subgroups.

Group Genotype p-valuea

DD ID II

DM 46.70 (31.50–85.48) 35.20 (22.05–65.80) 30.20 (20.60–71.50) 0.003

DM with MCI 68.05 (34.83–95.60) 36.70 (22.15–70.35) 32.10 (17.95–83.45) 0.005

DM without MCI 37.20 (28.30–53.25) 30.55 (21.55–50.80) 28.85 (22.40–50.75) 0.407

Data are presented as median (interquartile range).
aKruskal-wallis H(k) test for comparison of serum activity of ACE between different genotypes. Abbreviations: MCI, mild cognitive impairment; ACE, angiotensin-converting enzyme.
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FIGURE 1 | Comparison of serum ACE level between genotypic

subgroups. Analysis of variance (ANOVA) is used for comparison of serum

level of ACE between different genotypes. In the MCI group, further statistical

analysis showed that serum ACE level was significantly greater in the DD group

than in the ID and II groups. The error bars represent the SEM. *p < 0.05.

FIGURE 2 | Comparison of serum ACE activity between genotypic

subgroups. Kruskal-wallis H(k) test is used for comparison of serum activity of

ACE between different genotypes. In the MCI group, further statistical analysis

showed that serum ACE activity was significantly greater in the DD group than

in the ID and II groups. The super and lower horizontal line represent the 25th-

and 75th- percentile values (P25 and P75). The median line represents the

50th- percentile value (median, P50). *p < 0.05.

function. Further research is necessary to elucidate the detailed
mechanism and to predict the diagnosis value.

We compared the distribution of the genotype and allele
frequencies of ACE I/D polymorphism between the T2DM
patients withMCI and the healthy control subjects. No significant
association was found between ACE I/D polymorphism andMCI
in our diabetic subjects. However, our results showed that the
frequency of D-allele was higher than that of I-allele in the two
groups, which is consistent with Miller’s research in patients with

early diabetes (Miller et al., 1997). Besides, serum ACE level and
activity were both significantly greater in the DD group than in
the ID and II groups (p < 0.05) of T2DM patients with MCI,
and the LMT score decreased with the increase in ACE activity.
Furthermore, diabetic patients that carry the D-allele tended to
develop MCI in contrast with the control group, although no
statistical significance was found. Thus, we hypothesized that
the D-allele was a candidate gene for memory deterioration.
However, this hypothesis requires further research to be proven.
In contrast to our result, previous findings showed that the D-
allele was associated with reduced risk for AD (Elkins et al.,
2004; Lehmann et al., 2005). Several conditions may explain these
negative findings. The differences may be attributed to the small
sample size and the possibility of different races, which were also
reported in another study (Mathew et al., 2001). The formation
of MCI may be influenced by several genes, and the ACE gene
contributes only a slight effect (Vardy et al., 2012; Achouri-
Rassas et al., 2016). ACE I/D polymorphism can be in a linkage
disequilibrium with the true variants (McCrimmon et al., 2012).
Gene–environment interactions may also lead to discrepancies
(Achouri-Rassas et al., 2016).

Certain limitations of this study should be noted. The small
sample, sample composition, and unknown cerebral blood flow
(Steffener et al., 2013) limited the persuasion of our results
to a certain degree. Moreover, ACE activity was tested via
ultraviolet spectrophotometry, which is influenced by various
factors, such as light source and the pH value of the solution.
Long time and progressive mild visual or hearing loss are possible
factors to induce cognitive deficit. We had difficulties to examine
and compare the specific visual acuity/auditory ability. ACE
inhibitors have been shown to inhibit the ability of ACE and
prevent the formation of angiotensin II. Angiotensin receptor
blockers inhibit the renin–angiotensin system by specifically
blocking angiotensin II from mediating its actions through its
receptors. In this study, there were no statistically significant
differences in the proportion of hypertension prevalence and
the use of ACEI or ARB between T2DM patients with MCI
and the control groups. We roughly ignored the effects of ACEI
or ARB on the results. But ACE activity might be affected by
other drugs, such as calcium channel blockers (Konoshita et al.,
2010), aldosterone receptor antagonist, renin inhibitors, and
neural endopeptase−ACE (Regamey et al., 2002; Brown, 2003;
Srinivasan et al., 2005).

Despite the aforementioned limitations, this study indicates
that ACE activity can better predict memory dysfunction in
diabetic patients than its serum level. The D-allele is probably a
candidate gene in the memory deterioration of diabetic patients.
Further studies on large population sizes are necessary to confirm
this observed association and to determine whether serum ACE
activity can be used as an effective biomarker for the early
diagnosis of diabetic MCI.
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