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1  | INTRODUC TION

IBD is a group of chronic, non- specific and diffuse inflammatory 
diseases that occur in the gastrointestinal tract.1 IBD is manifested 
by recurrent attack, poor drug efficacy, high risk of developing re-
lated complications and high disability rate.2 The conventional 
treatments for IBD include glucocorticoid, salicylazosulfapyridine/5- 
aminosalicylic acid and biological agents, which, however, have lim-
ited effectiveness because of low specificity, high prevalence of 
drug resistance and poor long- term efficacy.3 As new immunomod-
ulators, S1PR modulators could significantly reduce the localization 

of CD4 + T cells to the site of inflammation, regulate T- lymphocyte 
differentiation and resultantly ameliorate inflammatory disorders. 
A phased series of clinical trials have been carried out to evaluate 
the efficacy of S1PR modulators in patients with IBD.4- 6 However, 
because of the undesirable off- target effects of these drugs, some 
unexpected vascular complications have been observed.

With an in- depth understanding of the pathogenesis of IBD, the 
importance of blood vessel dysfunction in the intestinal mucosal le-
sions of IBD has received special attention.7,8 It has been reported 
that IBD is frequently accompanied by endothelial injury, and en-
dothelial progenitor cells, a marker for both endothelial repair and 
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Abstract
Sphingosine- 1- phosphate receptors (S1PRs) have an impact on the intestinal inflam-
mation of inflammatory bowel disease (IBD) by regulating lymphocyte migration and 
differentiation. S1PR modulators as an emerging therapeutic approach are being in-
vestigated for the treatment of IBD. However, the role of S1PRs in intestinal vessels 
has not drawn much attention. Intestinal vascular damage is one of the major patho-
physiological features of IBD, characterized by increased vascular density and im-
paired barrier function. S1PRs have pleiotropic effects on vascular endothelial cells, 
including proliferation, migration, angiogenesis and barrier homeostasis. Mounting 
evidence shows that S1PRs are abnormally expressed on intestinal vascular endothe-
lial cells in IBD. Unexpectedly, S1PR modulators may damage intestinal vasculature, 
for example increase intestinal bleeding; therefore, S1PRs are thought to be involved 
in the regulation of intestinal vascular function in IBD. However, little is understood 
about how S1PRs regulate intestinal vascular function and participate in the initiation 
and progression of IBD. In this review, we summarize the pathogenic role of S1PRs in 
and the underlying mechanisms behind the intestinal vascular injury in IBD in order 
for improving IBD practice including S1PR- targeted therapies.
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vascular healing, are significantly reduced in patients with IBD.9 
Indeed, chronic inflammation can not only damage the structure 
of blood vessels but also cause their functional disorder.10,11 More 
particularly, IBD- associated functional changes in intestinal vascu-
lature feature a diminished barrier function but increased angiogen-
esis.12,13 Moreover, impaired vasodilation and aberrant leucocyte 
adhesion resulted from inflammation are also involved in the onset 
of IBD.14 Clearly, the expression of adhesion molecules, such as 
ICAM- 1, VCAM- 1, MAdCAM- 1 and E- selectin secreted from vas-
cular endothelial cells, is significantly increased in the intestinal mi-
crovessels in active IBD.7 However, the precise mechanism behind 
intestinal vascular injury in IBD is still unclear.

Sphingosine- 1- phosphate (S1P) is an important signalling mole-
cule produced during the metabolism of sphingomyelin, an abundant 
cell membrane component. By binding to S1P receptors (S1PRs) on 
the cell membrane, S1P exerts a multitude of regulatory effects in-
cluding cell proliferation, migration, apoptosis, senescence, angio-
genesis and barrier integrity, among others, and participates in the 
pathophysiology of various diseases.15- 17 As important regulatory 
receptors during intestinal inflammation, S1PRs have been exten-
sively examined for their association with lymphocyte migration. 
In recent years, S1PRs have been found abundantly expressed on 
vascular endothelial cells and regulate their function. Therefore, it 
is possible that manipulating the S1P/S1PR signalling may produce 
off- target effects on intestinal vasculature while protecting against 
the immune disorder of IBD. We previously reported that increased 
expression of S1PR2 is closely related to the disruption of vascu-
lar endothelial cell barrier and angiogenesis, but inhibition of S1PR2 
expression can reverse the vascular endothelial cell injury.18 In line 
with this finding, more studies support the involvement of S1PRs 
in the regulation of vascular endothelial cell barrier function, vas-
cular density and leucocyte migration across vascular endothelium 
within inflame tissues.19,20 However, little is known about the spe-
cial importance of S1PRs in the intestinal vascular changes in IBD. 
Herein, we review the newly identified role and possible mechanism 
of S1PRs in intestinal vascular injury in IBD in order to help improve 
treatment options for patients with IBD.

2  | INTESTINAL VA SCUL AR INJURY IN IBD

The aetiology of IBD is more complex than previously thought of 
being closely related to environment, microorganism, heredity and 
immunity.21- 23 It seems that a combination of more than multifac-
eted factors mediates abnormal immune and inflammatory response 
in intestinal mucosa and promotes the occurrence of IBD.24,25 
Conventional drugs in the treatment of immune disorders are mainly 
anti- inflammatory. However, their long- term curative effects are 
poor due to low specificity and high prevalence of drug resistance. 
Therefore, seeking alternative therapeutic targets is gaining apprecia-
tion for improving IBD management. It has been found that vascular 
injury plays an important role in the pathogenesis of IBD. Pulse wave 
velocity, a measure of the severity of vascular injury, typically shows a 

significant increase in patients with IBD,26 suggesting that altered vas-
cular structure and function occur in patients with IBD. In intestinal 
mucosa, microvessels are the major type of blood vessels, and in the 
submucosal microcirculation, arterioles and venules are dominant.27 
As vascular endothelial cells line microvessels and small vessels that 
make them a key component of intestinal circulation, intestinal vascu-
lar endothelial cells may be required in the development of IBD.

Vascular endothelial cell injury, indicated by appreciable changes 
in endothelial cell function and/or structure, is a result of the imbal-
ance of various regulatory substances.28,29 IBD patients usually have 
a significantly reduced number of endothelial progenitor cells,9 sug-
gesting that vascular endothelial cells are damaged in these patients. 
The functional damage of vascular endothelial cells in an inflamma-
tory state primarily presents with impaired barrier function, vascular 
dysplasia, increased adhesion molecule expression, enhanced leuco-
cyte permeability and dysregulated nitric oxide (NO) secretion. The 
major cause for intestinal vascular endothelial injury is the abnormal 
secretion of inflammatory mediators such as interleukin (IL)- 1, IL- 6, 
tumour necrosis factor (TNF)- α, NO and vascular endothelial growth 
factor (VEGF) in intestinal mucosa.30,31 The increased production 
of VEGF promotes intestinal vascular endothelial cell proliferation, 
whereas the increased secretion of other inflammatory mediators 
such as TNF- α and IL- 6 can damage the structural integrity of en-
dothelial cells, leading to vascular abnormality in barrier homeosta-
sis and cell adhesion. Mechanistically, TNF- α induces endothelial 
cell damage by activating NADPH oxidase (NOX), whose activation 
results in the increased production of superoxide.32 NO can dilate 
blood vessels and inhibit the expression of inflammatory cytokines 
and adhesion molecules; however, NO has been observed signifi-
cantly decreased in the intestinal tissues of patients with IBD.33 
TNF- α can impair endothelium- dependent vasodilation by affecting 
the utilization of NO.34 In addition, leucocyte adhesion and transmi-
gration are also important steps in the inflammatory response.35,36 It 
was found that the expression levels of adhesion molecules such as 
ICAM- 1, VCAM- 1, MAdCAM- 1 and E- selectin in vascular endothe-
lial cells are significantly up- regulated in intestinal microvessels of 
IBD.7,37,38 Collectively, increased angiogenesis and impaired barrier 
function are the main causes of intestinal vascular injury in IBD.

3  | S1PRs AND INTESTINAL 
ANGIOGENESIS IN IBD

Chronic inflammation is often associated with increased angiogenesis, 
which is a key contributor to the maintenance of chronic inflamma-
tion in gastrointestinal tract.39 Blood vessels are mainly composed of 
endothelial cells and parietal cells (vascular smooth muscle cells and 
pericytes).40 Angiogenesis normally originates from the sprouting of 
endothelial cells, followed by the destruction of blood vessel walls 
and the proliferation and migration of endothelial cells.41 The angio-
genic process is tightly regulated by a wide array of angiogenic fac-
tors. For example, VEGF is a known potent angiogenic factor, which 
promotes endothelial cell proliferation, migration and angiogenesis.42 
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In inflamed IBD tissues, different types of inflammatory cells (eg mac-
rophages and lymphocytes) can produce angiogenic factors and pro-
mote pathological angiogenesis.13 Compared with patients who are 
in remission, patients with active IBD have significantly higher levels 
of serum VEGF, indicative of VEGF as a promoter of abnormal an-
giogenesis in IBD.43 Hypoxia at the intestinal inflammatory sites has 
the ability to stimulate angiogenesis by inducing the production of 
VEGF, fibroblast growth factor and TNF- α.44 In addition to VEGF, the 
expression levels of avβ3, a marker of angiogenesis, are increased in 
intestinal microvascular endothelial cells of IBD.45 Patients with IBD 
also show increased intestinal vascular density caused by vascular 
dysplasia. This increased intestinal vascular density has been con-
firmed in DSS- induced experimental enteritis.46 Consistent with this, 
anti- angiogenic therapy has been proved to be an effective approach 
for experimental enteritis. Small molecule inhibitors such as VEGF 
blocker can effectively reduce the production of inflammatory media-
tors and accordingly relieve intestinal inflammation induced by DSS.47

As a group of cell surface receptors, S1PRs are widely expressed 
on many types of cells, thus regulating cell proliferation, migration and 
angiogenesis.48,49 S1PRs are highly expressed in vascular endothelial 
cells as well and therefore influence their function. The expression 
levels of S1PR1 were observed obviously increased in the intestinal 
mucosa of patients with ulcerative colitis and were related to the 
increased intestinal mucosal blood vessel density.50 In the mouse 
chronic IBD model, the expression of S1PR1 was also increased in 
intestinal submucosa and muscular microvessels.51 Further studies 
have shown that there is a significant change in vascular density in 
the inflamed tissues of myeloid S1PR1 knockout mice.52 Additionally, 
S1PR2 is another important driver of pathological angiogenesis in 
the process of inflammation, and S1PR2 antagonists can reverse the 
increase in vascular density caused by inflammation.53 Therefore, 
S1PRs are intimately associated with the increase in intestinal vascu-
lar density in IBD, but their downstream effectors are unclear.

There are several important mechanisms governing angiogenic 
disorders, including oxidative stress, endoplasmic reticulum (ER) 
stress, abnormal glycolysis and activated VEGF signalling. In intes-
tinal mucosa of patients with IBD, significantly increased ROS levels 
were seen.54 Under basic conditions, low levels of reactive oxygen 
species (ROS) act as messenger molecules to promote angiogenesis; 
however, high levels of ROS inhibit angiogenesis.55 ER stress levels 
were also increased significantly in inflammatory state.56 Like ROS, 
ER stress is closely related to angiogenesis; low levels of ER stress 
stimulate angiogenesis, whereas high levels of ER stress inhibit an-
giogenesis 57 (Figure 1). As it is difficult to quantitatively determine 
the levels of ROS and ER, the relationship between the ROS and ER 
levels and intestinal angiogenesis in IBD needs to be further evalu-
ated. Moreover, glycolysis is known to be enhanced inflammation 
and S1P/S1PR signal pathway impacts glycolysis.58,59 It has been 
demonstrated that glycolysis intermediates (eg lactate and succi-
nate) and glycolytic enzymes (eg fructose- 6- phosphate- 2 kinase and 
fructose- 2,6- diphosphatase 3) are implicated in the regulation of 
angiogenesis.60 Besides this, S1PRs have a role in the regulation of 
VEGF- mediated angiogenesis (co- ordination function).61 Together, 
S1PRs may harbour broad effects on the intestinal angiogenesis of 
IBD by regulating ROS, ER stress, glycolysis, VEGF signal pathway 
and other processes, and hence, more understanding of their spe-
cific mechanisms is of great significance to the prevention and treat-
ment of IBD (Figure 2).

4  | S1PRs AND INTESTINAL VA SCUL AR 
BARRIER FUNC TION IN IBD

Vascular endothelium is a highly specialized monolayer epithelium 
that lines the inner surface of blood vessels and functions in regulat-
ing the transport of substances and leucocyte transmigration across 

F I G U R E  1   Low levels of ER stress/
ROS stimulate angiogenesis, whereas 
high levels of ER stress/ROS inhibit 
angiogenesis
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blood vessels.62,63 Under physiological conditions, endothelial cells 
protect against excessive vascular permeability and leucocyte ad-
hesion.64 During inflammation, vascular endothelial response leads 
to vasodilation and increased permeability, followed by structural 
changes such as endothelial cell proliferation and vascular remodel-
ling.65,66 It has been confirmed that the intestinal vascular barrier 
function is impaired in the animal model of ulcerative colitis.7 The 
disruption of vascular barrier function can be attributed to the el-
evated levels of endothelial cell oxidative stress and ER stress as well 
as other subcellular ultrastructural abnormalities. Oxidative stress in 
intestinal vascular vessels of IBD patients can damage vascular en-
dothelium and increase microvascular permeability.12 Moreover, in-
flammation exacerbates such endothelial damage by increasing ROS 
production and enhancing ER- mitochondria contact.67,68 ER stress 
impairs vascular barrier function by disturbing the endothelial cell- 
to- cell junctions.69,70 ER stress is increased in endothelial cells under 
inflammatory conditions, and inhibition of ER stress will reverse the 
impairment of barrier function.71,72 Therefore, endothelial cell oxida-
tive stress and ER stress are two key culprits in the dysfunction of 
intestinal vascular barriers in IBD, but the precise mechanisms that 
link these aspects need further clarification.

S1PRs may represent an important mechanism in the regulation 
of vascular barrier function.73 S1PR1- 3 has been proven to be re-
sponsible for this complex regulatory mechanism. S1PR1 basically 
maintains the vascular barrier function. This was demonstrated by 
deleting S1PR1 gene in IBD that resulted in increased intestinal vas-
cular permeability, indicated by increased bleeding in experimental 
enteritis.50 On the contrary, S1PR2 contributes to the impairment 
of vascular barrier function. An increased expression of S1PR2 has 
been observed in endothelial cells in the state of inflammation, 
which resulted in the impairment of endothelial cell barrier func-
tion.74 Similarly, S1PR3 is a player in the regulation of vascular bar-
rier function. Either S1PR2 gene knockout or decreased expression 

of S1PR3 can reverse the impairment of vascular barrier function 
in inflammatory state.75 The same studies showed that the expres-
sion levels of both S1PR1 and S1PR2 in vascular endothelial cells 
were increased under the condition of IBD or inflammation, indicat-
ing that these two S1PRs with opposite effects on vascular barrier 
function may control each other's regulatory magnitude. Although 
these studies have highlighted the role of S1PR2 in the impairment 
of intestinal vascular barrier function in IBD, we have reported that 
S1PR2 antagonists can reduce the production of ROS in endothelial 
cells.76 The increase in ROS is mediated by mitochondrial stress or 
ER- mitochondrial contact. In addition, ER stress is closely related to 
abnormal intercellular junctions. Therefore, S1PR2 may affect intes-
tinal vascular barrier function in IBD by increasing oxidative stress, 
ER stress or ER- mitochondrial contact (Figure 3).

5  | S1PRs AND LEUCOCY TE MIGR ATION 
ACROSS VA SCUL AR ENDOTHELIUM IN IBD

The extravasation of leucocyte from the bloodstream into inflamed 
tissues is a hallmark of inflammatory response, which involves the 
interaction between immune cells and vascular endothelial cells.77,78 
Leucocyte migration across vascular endothelium proceeds in sev-
eral steps including rolling, activation, adhesion and transport. 
Adhesion is the key step in determining whether leucocytes migrate 
to sites of inflammation. Inflammatory mediators signal vascular 
endothelial cells to express adhesion molecules and chemotactic 
cytokines to promote the adhesion of leucocytes to vascular en-
dothelial cells. The adhesion ability of leucocytes and the expression 
of adhesion molecules such as ICAM- 1 and VCAM- 1 by intestinal 
microvessels of patients with IBD are enhanced.13,63 The expression 
of fractalkine, a CX3C chemokine, is also significantly up- regulated 
in endothelial cells of patients with IBD.79 Intriguingly, there is a 

F I G U R E  2   S1PRs may mediate 
intestinal angiogenesis of IBD by 
regulating ROS, ER stress, glycolysis and 
VEGF signal pathway
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complex interplay of immune cells and angiogenesis in intestinal in-
flammation. For instance, VEGF- A can induce cAMP production and 
activate the cAMP signalling in intestinal vascular endothelial cells 
to promote leucocyte adhesion.80 On the other hand, the increased 
leucocyte migration across vascular endothelium results in increased 
intestinal inflammation, thus creating a positive feedback loop that 
exacerbates inflammatory response.4 Therefore, blockade of leuco-
cyte adhesion and migration across vascular endothelium holds the 
key to alleviating intestinal inflammation in IBD and is becoming im-
portant for an effective IBD therapeutic tactic.

As important receptors on leucocytes, S1PRs participate in the 
regulation of leucocyte transport and differentiation.4,81 Emerging 
studies have shown evidence of the active involvement of S1PRs in 
the occurrence and development of the intestinal inflammation by 
regulating endothelial function and its interaction with immune cells. 
It has been found that S1PR1 is expressed in intestinal lymphocytes 
and vascular endothelial cells of IBD. Because of this, S1PR1 mod-
ulators have been used to reduce lymphocytes in intestinal tissue 
by inhibiting lymphocyte migration, thereby alleviating intestinal 
inflammation.51 In addition, S1PR1 modulators inhibit the adhe-
sion of monocytes to endothelial cells by reducing the expression 
of VCAM- 1 in vascular endothelial cells.82 The expression of S1PR2 
in vascular endothelial cells is increased in inflammatory state.74 It 
has been found that S1PR1 and S1PR4 differentially regulate T cell 
migration and adhesion, whereas S1PR2 promotes T cell migration 
across endothelial cells by increasing endothelial cell permeability 
and VCAM- 1 expression.83 Therefore, S1PRs take part in intestinal 
inflammation of IBD by regulating leucocyte migration across vascu-
lar endothelial cells, and S1PR modulators have an inhibitory effect 
on intestinal inflammation.

6  | S1PRs AND ENDOTHELIAL NITRIC 
OXIDE SYNTHA SE IN IBD

Endothelial nitric oxide synthase (eNOS) is one of the main modula-
tors of the vascular function by promoting NO secretion, with the 
latter causing vasorelaxation and inhibiting the expression of cy-
tokines and adhesion molecules. Therefore, eNOS- mediated NO 
release from vascular endothelial cells is important in the regulation 
of vascular inflammation. There is evidence in support of eNOS as 
a key molecule in colitis by regulating the expression of adhesion 
molecules (eg AdCAM- 1).84 Considering the protective role of eNOS 
in experimental colitis, it was not surprised to observe a significant 
decrease in eNOS expression in the intestinal microvessels of IBD 
patients.85 Moreover, decreased eNOS in endothelial cells is con-
sidered a possible reason for the thickening of arteries and the in-
creased number of capillaries in IBD intestinal mucosa.85 It has been 
observed that NO deficiency in intestinal microvascular endothelial 
cells aggravates experimental colitis.86 Also, decreased NO affects 
the dilation for microvessels, which further decreases arterial perfu-
sion and delays wound healing.87 Nevertheless, excessive release of 
NO may have an opposite effect on vascular tone. Previous stud-
ies have demonstrated that excessive NO produced by the induc-
ible isoform of NOS contributes to intestinal inflammation in IBD, 
though eNOS produces NO with a far less amount, which in fact has 
a physiological role in the gut.88,89 Therefore, both the source and 
quantity of NO matter; they decide how intestinal inflammation is 
controlled in IBD.

S1PRs play a vital important role in eNOS regulation. They reg-
ulate eNOS by activating protein kinase B (AKT), which is involved 
in the regulation of endothelial cell migration and angiogenesis.90 

F I G U R E  3   S1PRs may affect the 
intestinal vascular barrier function of IBD 
by regulating mitochondrial stress, ER 
stress or ER- mitochondria contact
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However, the overexpression of eNOS may cause an injury under 
pathological conditions, for example, promote angiogenesis and 
damage barrier function. It has been proposed that S1PR2 activation 
in vascular endothelial cells enhances the expression of eNOS, and 
thus, antagonizing S1PR2 may be a new approach for the treatment 
of pathological angiogenesis.53 On the other hand, in anaphylactic 
shock S1PR2 inhibits excessive eNOS- mediated endothelial bar-
rier dysfunction by decreasing AKT.91 Therefore, more evidence is 
needed to understand the regulation of intestinal eNOS by S1PRs 
in IBD. Considering the significant role of eNOS in the regulation of 
vascular function and inflammation, it is necessary to determine the 
regulatory roles of different sources and quantities of eNOS in var-
ious disease states (Figure 4). Collectively, It is of great significance 
to clarify the regulatory effects of S1PRs on intestinal eNOS in IBD.

7  | EFFEC TS OF S1PR REGUL ATORS ON 
INTESTINAL VESSEL S OF IBD

The pathological process of IBD ranges from active stage to re-
mission stage, and an effective therapeutic strategy is to control 

the active phase of the illness.92,93 The injury of intestinal vas-
cular endothelial cells during the active stage is chiefly because 
of the sustained inflammation and oxidative stress. Therefore, 
anti- inflammatory and antioxidant therapy on IBD is very impor-
tant. For example, the anti- inflammatory treatment using TNF- α 
antagonists could largely decrease the levels of plasma biomark-
ers of endothelial dysfunction in patients with IBD.14 Targeting 
the S1P/S1PR axis is an efficacious option for IBD, leading to 
the development of S1PR modulators in recent years. As a new 
class of immunomodulators, S1PR modulators can improve in-
testinal inflammation by reducing the intestinal infiltration of 
lymphocytes and inhibiting T cell differentiation in patients with 
IBD.4,51,94 However, other studies have found that S1PR modula-
tors may have some intestinal vascular effects while suppressing 
immune responses (Figure 5). Karuppuchamy et al suggest that 
S1PR modulators may have unwanted effects on intestinal vas-
cular barrier function.51 Montrose et al found that the genetic 
deletion of S1PR1 increased intestinal vascular permeability and 
bleeding in experimental colitis.50 In addition, FTY720 produces 
anti- inflammatory effects by inhibiting the interaction between 
immune cells and vascular endothelial cells.95 Although S1PR 

F I G U R E  4   S1PRs may regulate 
vascular function by regulating the source 
and quantity of eNOS
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modulators have unexpected side effects on intestinal vessels and 
different subtypes of receptor modulators have distinct effects, 
the underlying mechanisms are not completely clear.

At present, the S1PR modulators used in IBD mainly include non- 
specific regulators such as FTY720 and specific regulators such as 
ozanimod (targeting S1PR1 and S1PR5), etrasimod (targeting S1PR1) 
and amiselimod (targeting S1PR1 and S1PR5), which have entered 
phase II or III clinical trials or approved for IBD. The expression levels 
of S1PR1, S1PR2 and S1PR4 are significantly higher in the intestinal 
mucosa of IBD, and S1PR1 is primarily present on leucocytes and 
vascular endothelial cells.51,96,97 As the up- regulated S1PR1 in lym-
phocytes mediates immune abnormalities at sites of inflammation, 
these novel regulators mainly exert influence on the immunomod-
ulatory function of S1PR1. For example, the S1PR agonist FTY720 
first activates S1PR1 on the cell surface through a high- affinity bind-
ing, but then causes the down- regulation of S1PR1, thus prevent-
ing lymphocyte infiltration.98 This regulator, which first activates 
the surface receptor and then downregulates the receptor, is often 
called a reverse agonist. Conventional S1PR inhibitors mostly work 
via a direct inhibition of the expression of cell surface receptors, but 
the S1PR reverse agonist acts through a process named receptor en-
docytosis. Under physiological conditions, the endocytosed S1PRs 
return to the cell surface through S1P lyase– mediated mechanism, 
but under continuous stimulation by the reverse agonist, endocy-
tosed S1PRs are degraded by the proteasome, resulting in complete 
inactivation of S1PR1.99 As mentioned earlier, in the intestinal tract 
of IBD, S1PR1 is mainly involved in the regulation of angiogenesis 
and barrier function, whereas S1PR2 is essential for the regulation 
of barrier function. At present, the most reported intestinal vascular 
effects of S1PR regulators are substantially attributable to the po-
tential impact of barrier function mediated by the down- regulation 
of S1PR1. However, whether the altered blood vessel density is re-
lated to S1PR1 regulators or the barrier dysfunction related to S1PR2 

regulators remains unclear. Therefore, it is necessary to explore the 
effects of S1PR modulators on intestinal vascular function, which 
may help improve or develop new S1PR modulators.

8  | CONCLUSION

S1PRs are a group of receptors expressed on the surface of vari-
ous cell types, and different subtypes have distinct regulatory 
functions. In this review, we depicted the negative role of S1PRs in 
intestinal vascular injury in IBD and their possible mechanism. So 
far, the exact mechanisms behind the biological regulation of S1PRs 
in the intestinal vascular disease are rather limited. Because of their 
vital role in lymphocytes, S1PRs have become an important target 
for immunomodulatory therapy. The application of S1PR modula-
tors in patients with IBD is a focus of this review. A series of clini-
cal trials have, however, disclosed that S1PR modulators may cause 
intestinal vascular effects. For example, S1PR1 modulators down- 
regulate S1PR1 of vascular endothelial cells while inhibiting S1PR1 
of lymphocytes, resulting in a decline in vascular barrier function. 
So, how to overcome the unwelcome side effects of S1PR modula-
tors is still a challenge. S1PRs seem to have a widespread impact on 
intestinal vascular biology, such as vascular density, barrier function 
and ultrastructural changes in vascular endothelial cells (ie ER stress, 
mitochondrial stress, ER- mitochondria contact). Further studies of 
the role of S1PRs in intestinal vessels will be of benefit in improving 
IBD care.
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F I G U R E  5   S1PR regulators have 
influences not only on lymphocytes but 
also on vascular endothelial cells
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