
ONCOLOGY LETTERS  20:  2420-2434,  20202420

Abstract. Clear cell renal cell carcinoma (ccRCC) is the 
most prevalent type of RCC; however, prognostic predic-
tion tools for ccRCC are scant. Developing mRNA or 
long non-coding RNA (lncRNA)-based risk assessment 
tools may improve the prognosis in patients with ccRCC. 
RNA-sequencing and prognostic data from patients with 
ccRCC were downloaded from The Cancer Genome Atlas 
and the European Bioinformatics Institute Array database 
at the National Center for Biotechnology Information. 

Differentially expressed (DE) RNAs (DERs) and prognostic 
DERs were screened between less favorable and favor-
able prognoses using the limma package in R 3.4.1, and 
analyzed using univariate and multivariate Cox regression 
analyses, respectively. Risk score models were constructed 
using optimal combinations of DEmRNAs and DElncRNAs 
identified using the Least Absolute Shrinkage And Selection 
Operator Cox regression model of the penalized package. 
Associations between risk score models and overall survival 
time were evaluated. Independent prognostic clinical factors 
were screened using univariate and multivariate Cox regres-
sion analyses, and nomogram models were constructed. 
Gene Ontology biological processes and Kyoto Encyclopedia 
of Genes and Genomes pathway enrichment analyses were 
conducted using the clusterProfiler package in R3.4.1. A total 
of 451 DERs were identified, including 404 mRNAs and 47 
lncRNAs, between less favorable and favorable prognoses, 
and 269 DERs, including 233 mRNAs and 36 lncRNAs, were 
identified as independent prognostic factors. Optimal combi-
nations including 10 DEmRNAs or 10 DElncRNAs were 
screened using four risk score models based on the status or 
expression levels of the 10 DEmRNAs or 10 DElncRNAs. The 
model based on the expression levels of the 10 DEmRNAs had 
the highest prognostic power. These prognostic DEmRNAs 
may be involved in biological processes associated with the 
inflammatory response, complement and coagulation cascades 
and neuroactive ligand-receptor interaction pathways. The 
present validated risk assessment tool based on the expression 
levels of these 10 DEmRNAs may help to identify patients 
with ccRCC at a high risk of mortality. These 10 DEmRNAs 
in optimal combinations may serve as prognostic biomarkers 
and help to elucidate the pathogenesis of ccRCC.

Introduction

Clear cell renal cell carcinoma (ccRCC) accounts for 70‑80% 
of all RCC and it is closely associated with von Hippel-Lindau 
tumor suppressor gene mutations (1,2). RCC comprises of a 
wide group of chemotherapy-resistant diseases that can be 
distinguished by histopathological features and underlying 
gene mutations (2); however, the variable biological behavior 
of early ccRCC usually leads to a failed diagnosis (3). The 
molecular pathogenesis of ccRCC also remains unclear. It is of 
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great clinical importance to fully understand the pathogenesis 
of ccRCC, at this would lead to the identification of reliable 
prognostic biomarkers and appropriate treatment selection.

The aberrant expression of coding genes and long 
non-coding RNAs (lncRNA) is usually associated with the 
emergence and development of various types of cancers, such 
as lung adenocarcinoma, ovarian cancer and ccRCC, and 
lncRNAs could serve as potential diagnostic markers (4‑8). It 
is well known that ccRCC is associated with the following: 
Dysregulated oxidative phosphorylation, amino acid 
metabolism and oncogenic metabolism, such as the down-
regulation of genes involved in the tricarboxylic acid cycle, 
decreased AMP‑activated kinase and levels of PTEN protein, 
upregulation of the pentose phosphate pathway and gluta-
mine transporter genes and increased acetyl-Coenzyme A 
carboxylase protein levels (2,9,10). lncRNAs are non-coding 
RNAs of >200 nucleotides in length, and numerous 
ccRCC‑associated lncRNAs have been identified and applied 
as potential prognostic and diagnostic biomarkers, such as 
metastasis-associated lung adenocarcinoma transcript 1 and 
nuclear paraspeckle assembly transcript 1 (11-13). Despite 
considerable progress, the prognostic roles of coding genes 
and lncRNAs in ccRCC, and the underlying mechanisms 
remain poorly understood. Further functional investigation 
is required to explore more ccRCC-associated coding genes 
and lncRNAs, and to verify their functional mechanisms with 
respect to the prognosis in patients with ccRCC. 

Disease progression is usually mediated by multiple rele-
vant genes rather than by a single gene (14). It would be useful 
for both healthcare providers and patients to develop risk 
assessment tools that could detect populations at high risk of a 
disease and inform clinical decisions regarding treatment (15). 
Compared with the extensive application of risk assessment 
tools for various types of cancer, such as gastric cancer, 
hepatocellular carcinoma and prostate cancer (15‑17), risk 
assessment tools for ccRCC remain scant. The disease-free 
survival of patients with localized ccRCC has mostly been 
predicted using an immunohistochemistry-based molecular 
signature of five markers, including Ki‑67, p53, endothelial 
vascular endothelial growth factor receptor (VEGFR)-1, 
epithelial VEGFR-1, and epithelial vascular endothelial 
growth factor (VEGF)‑D (18), and prognosis in patients with 
ccRCC has been assessed using expression-based mRNA and 
non-coding RNA signatures (11,19-21). Therefore, further risk 
assessment tools for ccRCC are required. 

The present study analyzed large quantities of gene 
expression and corresponding clinical data of patients with 
ccRCC downloaded from The Cancer Genome Atlas (TCGA) 
and European Bioinformatics Institute (EBI) Array databases 
in the public domain. Differentially expressed RNAs (DERs) 
were identified  and an optimal prognosis prediction model 
was constructed after comparing models based on the expres-
sion levels or status of prognostic DERs. The reliability of the 
prognostic prediction model was validated in two independent 
datasets. Furthermore, possible biological functions of the 
prognostic DERs in the pathogenesis of ccRCC were analyzed 
using Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis. The present study aimed to 
identify potential clinical diagnostic markers for ccRCC and 
to determine the possible pathogenesis of ccRCC.

Materials and methods

Data sources and preprocessing. The RNA expression 
profiles of ccRCC samples downloaded on April 5, 2019, from 
TCGA database (https://gdc‑portal.nci.nih.gov/) were gener-
ated on an Illumina HiSeq 2000 RNA Sequencing platform. 
A total of 526 ccRCC tumor samples accompanied by relevant 
information about clinical survival were randomly assigned 
to either a training or validation set (n=263 in each). Table I 
shows the clinicopathological characteristics and prognostic 
information about the samples in the training, validation and 
training + validation (entire) sets. A gene expression dataset 
of patients with ccRCC (E‑TABM‑3267) (22), assessed on 22 
January 2015 and last updated on 27 September 2018, was 
downloaded from the EBI Array database (https://www.ebi.
ac.uk/arrayexpress/) (23) based on an Affymetrix GeneChip 
Human Gene 1.0 ST Array platform. The E‑TABM‑3267 
dataset included 53 ccRCC tumor tissue samples with accom-
panying survival information, and served as an independent 
validation dataset.

Screening DERs in ccRCC samples
Annotation and identification of lncRNAs and mRNAs. 
According to probe location and ID provided in the downloaded 
annotation platform, lncRNAs and mRNAs in TCGA and EBI 
sets were annotated and identified from the Human Genome 
Organization Gene Nomenclature Committee (HGNC) data-
base (http://www.genenames.org/), which comprises of 4,112 
lncRNAs and 19,201 protein-encoding genes (24). 

Screening of significant DERs. The 263 patients in the 
training set were classified as having a less favorable (overall 
survival time , <36 months) or a favorable (overall survival 
time, >60 months) prognosis. Significant DERs between 
the two prognostic groups in the training set were screened 
using the limma package (v3.34.7; https://bioconductor.
org/packages/release/bioc/html/limma.html) (25) in R 
language (26) (v3.4.1). A false discovery rate (FDR) <0.05 
and log 2-fold change (log2FC) >0.5 were set as thresholds 
for determining significant DERs. Volcano plots of the DERs 
were created using the ggplot2 (27) package (v2.2.1) in R 
3.4.1. Subsequently, pheatmap (v1.0.8; https: //cran.r‑project.
org/web/packages/pheatmap/index.html) (28) in R 3.4.1 was 
used to analyze two-way hierarchical clustering of samples 
with a centered Pearson correlation algorithm based on DER 
expression.

Construction of prognostic model
Screening prognostic DERs. Based on the DERs screened 
in the aforementioned step, overall survival time in the 
training set was assessed via univariate and multivariate 
Cox regression analyses using a survival package (v2.41-1; 
http://bioconductor.org/packages/survivalr/) (29) in R 3.4.1 
to identify DEmRNAs and DElncRNAs with independent 
prognostic values, with log-rank P<0.05 as the cutoff of 
significance.

Screening optimal DER combinations. The Least Absolute 
Shrinkage And Selection Operator (LASSO) Cox regres-
sion model (30) of penalized package v0.9.50 (31) 
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(https://cran.r‑project.org/web/packages/penalized/index.
html) in R 3.4.1 was used to uncover the optimal combina-
tions of the aforementioned prognostic DEmRNAs and 
DElncRNAs. The optimized parameter ‘lambda’ was 
generated via the cross-validation likelihood (cvl) of 1,000 
measurements.

Diverse risk assessment models constructed based on optimal 
mRNAs or lncRNAs. Two categories of risk assessment 
models were constructed using multivariate Cox regression 
coefficients of the optimal combinations of DEmRNAs or 
DElncRNAs.

Risk prediction models based on mRNA or lncRNA status. 
The cut-off values for amounts of optimal DEmRNA 
and DElncRNA expression were calculated using the 
X‑Tile Bio‑Information Tool (32) (https://medicine.yale.
edu/lab/rimm/research/software.aspx). The Monte‑Carlo 
value P<0.05 was set as the criterion to determine the optimal 
cut-off for RNA expression. The status of RNA expression 
in the samples was defined according to the cut‑off for each 
RNA; RNA expression > cut‑off or < cut‑off was defined as 
status 1 or 0, respectively. Two risk assessment models of 
status risk score were established using a linear combination 
of expression status of the optimal mRNAs or lncRNAs, 
weighted by regression coefficients to calculate status risk 
scores for each sample according to the following formula: 
βRNAn x StatusRNAn, where βRNAn and StatusRNAn represent the 
regression coefficient and status variable of RNAn, respec-
tively.

Risk prediction models based on expression levels of mRNAs 
or lncRNAs. Two risk prediction models of expression risk 
score were constructed based on the expression levels of 
optimal mRNA or lncRNA, and expression risk scores for all 
samples were calculated as follows: ∑βRNAn x ExpressionRNAn, 
where βRNAn and ExpressionRNAn represent the regression coef-
ficient and the amount of RNAn expression, respectively. 

Evaluation and comparison of diverse risk prediction models. 
Samples in the training set were divided into high- and 
low-risk groups for each of the four prognosis prediction 
models, with the median risk score as the demarcation point. 
Associations between risk models and overall survival time 
were evaluated using Kaplan‑Meier curves in the survival 
package (v2.41‑1) in R 3.4.1. The sensitivity and specificity 
of risk scores to predict the overall survival time of patients 
were evaluated using receiver operating characteristic (ROC) 
curves. The predictive capability of these models was authen-
ticated using the validation, entire and independent validation 
(E‑TABM‑3267) datasets. The optimal model was that with 
the greatest power to predict the prognosis in patients with 
ccRCC.

Establishment of a survival nomogram based on independent 
prognostic factors and the fittest risk score model
Screening independent prognostic clinical factors. Independent 
prognostic clinical factors were screened in samples in the 
training, validation and entire sets via univariate and multi-
variate Cox regression analysis using the survival package 
(v2.41-1) in R3.4.1. Log-rank values with P<0.05 were chosen 
as thresholds for identifying significant prognostic clinical 
factors. Pathological stage of ccRCC was defined according to 
the 1997 TNM staging system (33). The tumors were graded 
following the Fuhrman nuclear grading system (34). Normal 
platelet count was defined as 100‑300x109/l; elevated platelet 
count, >300x109/l; low platelet count, <300x109/l. Normal 
serum calcium levels are 2.25‑2.75 mmol/l, elevated levels, 
>2.75 mmol/l and low levels <2.25 mmol/l. Normal white 
cell count was defined as 4.0‑10.0x109/l, elevated count was 
>10.0x109/l and low count was <4.0x109/l.

Construction of nomograms for 3‑ and 5‑year survival 
probability. Associations between independent prognostic 
factors and prognosis were further analyzed as follows. Risk 
scores from the optimal prognostic prediction model were 
combined with the identified independent prognostic factors, 

Table Ⅰ. Clinical information of the samples in the training (n=263), validation (n=263) and entire sets (n=526).

Clinical characteristics Training set Testing set Entire set

Age, mean ± SD 60.84±11.73 60.24±12.52 60.54±12.12
Sex, male/female 171/92 171/92 342/184
Pathological M, M0/M1/‑ 213/35/15 207/42/14 420/77/29
Pathological N, N0/N1/‑ 118/8/137 120/8/135 238/16/272
Pathological T, T1/T2/T3/T4 141/31/87/4 128/38/90/7 269/69/177/11
Pathological stage, I/II/III/IV 137/26/61/39 126/31/62/44 263/57/123/83
Pathological grade, G1/G2/G3/G4/‑ 8/110/104/37/4 5/116/101/37/4 13/226/205/74/8
Platelet count elevated/low/normal/‑ 17/25/169/52 19/20/186/38 36/45/355/90
Serum calcium, elevated/low/normal/‑ 4/96/75/88 6/107/72/78 10/203/147/166
White cell count, elevated/low/normal/‑ 79/5/124/55 83/3/139/38 162/8/263/93
Death, dead/alive 86/177 86/177 172/354
Overall survival time, months ± SD 44.88±32.63 45.41±33.05 45.15±32.81

T, tumor; N, node; M, metastasis.
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and nomograms were constructed for 3- and 5-year survival 
probability using the rms package (v5.1-2) (35,36) in R 3.4.1 
(https://cran.r‑project.org/web/packages/rms/index.html). 
Nomograms enable the visualization of regression equations. 
Scoring criteria are formulated by the magnitude of the 

regression coefficients of all independent variables. Scales of 
each independent variable are scored, and a total score can be 
estimated for each sample. The probability and outcome for 
each sample can then be calculated using a conversion func-
tion between the score and the probability that the outcome 

Figure 1. Identification and clustering of DERs. (A) Left panel presents the volcano map of DERs between less favorable and favorable prognoses. Pink dots 
represent DERs. Black dots represent non-DERs.Red horizontal and two vertical dashed lines represent FDR <0.05 and log2FC >0.5, respectively. Right panel 
presents the composition of DERs with the types and ratios on the horizontal and vertical axes, respectively. Blue and pink columns represent proportions 
of down- and upregulated RNAs, respectively. (B) Two-way hierarchical clustering heatmap based on the expression levels of DERs. The black and white 
bars represent less favorable and favorable prognostic groups, respectively. The color key (green to red) exhibits z-score of normalized and log2 transformed 
expression values of DEGs. The Z-score represents the number of median absolute deviation away from the median. DERs, differentially expressed RNAs; 
lncRNA, long non-coding RNA; FDR, false discovery rate; FC, fold change.
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will occur (37). Probabilities derived from nomograms were 
used to evaluate and predict associations between independent 
prognostic factors and the prognosis of targets.

Functional analysis of DE genes (DEGs) in high‑and 
low‑risk groups in the entire set. Samples in the entire set 
were divided into high- and low-risk groups according to 
risk scores obtained from the fittest prognostic prediction 
model. Differences in the expression matrix of genes between 
the high- and low-risk groups were investigated using the 
limma package (v3.34.7) in R 3.4.1. FDR <0.05 and log2FC 
>0.263 were set as the threshold for identifying DEGs, and 
a volcano plot of significant DEGs was created using the 
ggplot2 package in R 3.4.1. Gene Ontology (GO) of biological 
processes and KEGG pathway enrichment analysis of the 
identified DEGs were performed using the clusterProfiler 
package (v3.6.0) in R 3.4.1 language (38) (http:// bioconductor.
org/packages/release/bioc/html/clusterProfiler.html). P<0.05 
was considered to indicate a statistically significant differ-
ence.

Results

Identification of DERs
Annotation of lncRNAs and mRNAs. According to probe loca-
tion provided in the downloaded platforms, 19,021 mRNAs 
and 376 lncRNAs were annotated in TCGA set, and 18,007 
mRNAs and 402 lncRNAs were annotated in E‑TABM‑3267 
using the HGNC database. After removing the mRNAs and 
lncRNAs with a value of 0 in all samples, the two datasets 

had 17,097 mRNAs and 376 lncRNAs in common (data not 
shown).

Screening DERs. The RNA expression profiles of 526 ccRCC 
tumor samples were downloaded from TCGA database with 
corresponding clinical data. These samples were randomly 
and equally divided into training (n=263) and testing (n=263) 
sets. Among the 263 ccRCC cancer samples in the training 
set, the prognosis of 53 samples was defined as less favorable 
and that of 63 samples was defined as favorable. A total of 
451 significant DERs with FDR <0.05 and log2FC >0.5 were 
identified between the two prognoses groups from the volcano 
plot generated using the limma package (Fig. 1A). These 
DERs comprised 404 (22 downregulated and 382 upregulated) 
mRNAs and 47 (three downregulated and 44 upregulated) 
lncRNAs (Fig. 1A). Two-way hierarchical clustering heatmaps 
showed that the samples clustered into two groups (Fig. 1B).

Construction of prognostic models
Screening independent prognostic DER. Univariate Cox 
regression analysis was used to screen 269 prognostic DERs, 
including 233 mRNAs and 36 lncRNAs from the 451 DERs 
identified according to the overall survival time of patients in 
the aforementioned step. Multivariate Cox regression analysis 
then selected 44 mRNAs and 15 lncRNAs as independent 
prognostic factors (data not shown).

Screening optimal DER combinations. Using the expres-
sion values of the identified 44 mRNAs and 15 lncRNAs of 
independent prognostic values as input, the combination of 

Figure 2. Screening curves of lambda parameters and distribution graphs of coefficients of the optimal combination of (A) lncRNAs and (B) mRNAs via 
the Cox-PH model based on the L1-penalized regularized regression algorithm. Horizontal and vertical axes in upper graphs indicate lambda and cvl values, 
respectively. prof stands for profL1 function, and $ indicates the absolute reference. Intersection of red dotted lines indicate the value of lambda when cvl is 
maximal. When maximal cvl values were ‑491.8333 and ‑490.4969, lambda values were 17.3155 for mRNA and 65.3960 for lncRNA, respectively. lncRNA, 
long non-coding RNA; cvl, cross-validation likelihood.
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predictive mRNAs or lncRNAs was further optimized and 
identified using the Cox regression model based on LASSO 
regularization regression algorithm in the penalized package. 
When the maximum value of cvl was ‑491.8333, the lambda 
value was 17.3155, obtaining an optimal combination of 
10 mRNAs comprising anterior gradient homolog 3 (AGR3), 
granulocyte-macrophage colony-stimulating factor (CSF2), 
galactose 3-O-sulfotransferase (GAL3ST2), immunoglobulin 
λ-like polypeptide 1 (IGLL1), plasminogen (PLG), serum 
amyloid A1 (SAA1), suprabasin (SBSN), SRY‑type HMG box 
transcription factor 2 (SOX2), whey acidic protein (WAP) 
four‑disulfide core domain protein (WFDC13) and zinc finger 
of the cerebellum family member 2 (ZIC2) (Fig. 2A). When 
the cvl reached the maximum value of -490.4969, lambda was 
65.3960, and an optimal combination of 10 significant lncRNAs 
was retrieved, comprising of collagen 18A1 antisense RNA 
1 (COL18A1‑AS1), elongation of very long‑chain fatty acid 2 
antisense RNA 1 (ELOVL2-AS1), long intergenic non-protein 
coding RNA 189 (LINC00189), LINC00470, LINC00652, 
LINC00896, microRNA 205 host gene (MIR205HG), T cell 
leukemia/lymphoma 6 (TCL6), transcription factor AP‑2 α 
antisense RNA (TFAP2A-AS1) and uroplakin 1A antisense 
RNA 1 (UPK1A-AS1) (Fig. 2B). Regression coefficients, 

P‑values, hazard ratios (HRs) and 95% CIs of the 10 significant 
lncRNAs and 10 significant mRNAs derived from the LASSO 
Cox regression model are listed in Table II. P-values of all the 
10 lncRNAs and 10 mRNAs were all <0.05. 

Construction of risk prediction models based on optimal 
combinations of 10 mRNAs or 10 lncRNAs. Various types 
of risk prediction models were constructed based on the 
regression coefficients of the optimal combinations of the 
aforementioned 10 prognostic mRNAs or lncRNAs (Table II).

Risk prediction models based on mRNA expression status (I). 
Associations between expression levels of the identified 
combinations of 10 DElncRNAs or 10 DEmRNAs in samples 
and overall survival time were analyzed in the training set 
using the X‑Tile Bio‑Informatics Tool. Table Ⅱ shows the 
cut-off values for the expression levels of each DElncRNA or 
DEmRNA.

According to the cut-off value of each RNA, the status 
of samples with lower and higher expression was set to 0 
and 1, respectively. Consequently, the following prediction 
model based on the status of 10 mRNAs or 10 lncRNAs was 
constructed: mRNA Status risk score = 0.0148287 x StatusAGR3 

Table Ⅱ. Detailed information of the optimal combinations of 10 DElncRNAs or 10 DEmRNAs. 

RNA Coefficient P‑value HR 95% CI Cut‑off

mRNA     
  AGR3 0.0148287 9.65x10-3 1.2059 1.0465‑1.3895  ‑0.13 
  CSF2 0.0042776 9.22x10-5 1.4426 1.2005‑1.7334  0.40 
  GAL3ST2 0.0076842 1.69x10-2 1.3308 1.0527‑1.6822  0.51 
  IGLL1 0.0045121 2.50x10-3 1.2333 1.0765‑1.4130  0.41 
  PLG ‑0.008533 1.88x10-3 0.7408 0.6131‑0.8951  ‑0.67 
  SAA1 0.0193154 1.28x10-4 1.8849 1.3629‑2.6068  0.62 
  SBSN 0.0155634 9.34x10-3 1.2852 1.0636‑1.5528  0.55 
  SOX2 0.0011085 2.76x10-4 1.3625 1.1533‑1.6097  0.28 
  WFDC13 0.0011551 2.06x10-4 1.3922 1.1690‑1.6581  0.65 
  ZIC2 0.0358394 1.43x10-2 1.2846 1.0512‑1.5698  0.42 
lncRNA     
  COL18A1‑AS1 ‑0.058594 2.02x10-3 0.8678 0.7790‑0.9668  0.07 
  ELOVL2‑AS1 0.0155223 2.75x10-2 1.0463 1.0056-1.1106  -0.06 
  LINC00189 0.0112113 1.61x10-2 1.0769 1.0011‑1.1701  ‑0.02 
  LINC00470 0.036526 3.48x10-2 1.0574 1.0056‑1.1461  ‑0.23 
  LINC00652 0.0190087 4.50x10-2 1.1313 1.0927‑1.3806  0.07 
  LINC00896 0.0707072 2.65x10-2 1.0775 1.0060‑1.1875  0.83 
  MIR205HG 0.0209242 4.94x10-2 1.0344 1.0019-1.0952  0.04 
  TCL6 ‑0.081477 1.39x10-2 0.9224 0.8453‑0.9964  ‑0.13 
  TFAP2A‑AS1 0.0910578 9.28x10-3 1.1224 1.0019‑1.2574  0.46 
  UPK1A‑AS1 0.015775 1.66x10-2 1.0481 1.0039‑1.1053  0.20 

DElncRNA, differentially expressed long non-coding RNA; HR, hazard ratio; AGR3, anterior gradient 3; CSF2, colony stimulating factor 2; 
GAL3ST2, galactose-3-O-sulfotransferase 2; IGLL1, immunoglobulin lambda like polypeptide 1; PLG, plasminogen; SAA1, serum amyloid 
A1; SBSN, suprabasin; SOX2, SRY‑box transcription factor 2;WFDC13, WAP four‑disulfide core domain 13; ZIC2, Zic family member 2; 
COL18A1‑AS1, collagen antisense RNA 1; ELOVL2‑AS1, elongation of very long‑chain fatty acid 2 antisense RNA 1; LINC, long intergenic 
non‑protein coding RNA; MIR205HG, microRNA 205 host gene; TCL6, T cell leukemia/lymphoma 6; TFAP2A‑AS1, transcription factor 
AP-2 alpha antisense RNA 1; UPK1A-AS1, uroplakin 1A antisense RNA 1.
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+ (0.0042776) x StatusCSF2 + (0.0076842) x StatusGAL3ST2+ 
(0.0045121) x StatusIGLL1 + (‑0.008533) x StatusPLG + 
(0.0193154) x StatusSAA1 + (0.0155634) x StatusSBSN + 
(0.0011085) x Status SOX2 + (0.0011551) x StatusWFDC13 

+ (0.0358394) x StatusZIC2; lncRNA Status risk score = 
‑0.058594 x StatusCOL18A1‑AS1 + (0.0155223) x StatusELOVL2-AS1 
+ (0.0112113) x StatusLINC00189 + (0.036526) x StatusLINC00470 + 
(0.0190087) x StatusLINC00652 + (0.0707072) x StatusLINC00896 
+ (0.0209242) x Status MIR205HG + (‑0.081477) x StatusTCL6+ 
(0.0910578) x StatusTFAP2A-AS1+ (0.015775) x StatusUPK1A-AS1.

Risk prediction models based on expression levels (II). The 
following prediction models were created based on expression 

levels (Exprs) of the mRNAs or lncRNAs in the aforementioned 
step: mRNA Expression risk score = 0.0148287 x ExprsAGR3 
+ (0.0042776) x ExprsCSF2 + (0.0076842) x ExprsGAL3ST2 
+ (0.0045121) x ExprsIGLL1 + (‑0.008533) x ExprsPLG + 
(0.0193154) x ExprsSAA1 + (0.0155634) x ExprsSBSN + 
(0.0011085) x ExprsSOX2 + (0.0011551) x ExprsWFDC13 
+ (0.0358394) x ExprsZIC2; lncRNA Expression risk 
score = ‑0.058594 x ExprsCOL18A1‑AS1 + (0.0155223)
x ExprsELOVL2‑AS1 + (0.0112113) x ExprsLINC00189 + 
(0.036526) x ExprsLINC00470 + (0.0190087) x ExprsLINC00652 
+ (0.0707072)x ExprsLINC00896 + (0.0209242) x 
ExprsMIR205HG + (‑0.081477) x ExprsTCL6 + (0.0910578) x 
ExprsTFAP2A‑AS1+ (0.015775) x ExprsPK1A‑AS1.

Figure 4. Kaplan‑Meier curves for overall survival time and ROC analysis of risk score models based on the expression levels of (A) 10 lncRNAs and 
(B) 10 mRNAs in the training, validation, entire and EBI‑validation sets. Green/blue and red/purple curves represent the low and high risk groups, respectively. 
In the ROC curves, the black, red, green and blue lines indicate the training, validation, entire and EBI-validation sets, respectively. lncRNA, long non-coding 
RNA; EBI, European Bioinformatics Institute; ROC, receiver operating characteristic; AUC, area under the curve; HR, hazard ratio; Exprs, expression levels.

Figure 3. Kaplan‑Meier overall survival time and ROC curves of risk score models based on the status of (A) 10 lncRNAs and (B) 10 mRNAs in the 
training, validation, entire and EBI‑validation sets. Green/blue and red/purple curves represent low and high risk groups, respectively. In the ROC curves, the 
black, red, green and blue lines indicate the training, validation, entire and EBI-validation sets, respectively. lncRNA, long non-coding RNA; EBI, European 
Bioinformatics Institute; ROC, receiver operating characteristic; AUC, area under the curve; HR, hazard ratio.
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Table Ⅲ. Independent prognostic clinical factors identified by univariate and multivariate Cox regression analysis.

A, Training set (n=263)

 Univariate analysis Multivariate analysis
 ------------------------------------------------------------------- -----------------------------------------------------------------
Clinical characteristics HR (95% CI) P‑value HR (95% CI) P‑value

Age, <60/≥60 years 1.028 (1.009‑1.047) 3.12x10-3 1.026 (1.0032‑1.049) 2.48x10-2

Sex, male/female 1.186 (0.755‑1.862) 4.59x10-1                           - -
Pathological M, M0/M1/‑ 4.396 (0.782‑6.945) 4.25x10-1                           - -
Pathological N, N0/N1/‑ 3.007 (0.779‑7.670) 1.55x10-1                           - -
Pathological T, T1/T2/T3/T4 2.170 (1.701‑2.767) 1.71x10-11 1.761 (0.952‑ 2.279) 3.02x10-1

Pathological stage, I/II/III/IV/‑ 1.995 (1.657‑2.403) 2.44x10-15 1.759 (1.179‑2.627) 5.69x10-3

Neoplasm histologic grade, G1/G2/G3/G4/‑ 2.536 (1.893‑3.397) 1.28x10-10 1.361 (0.952‑1.945) 9.07x10-2

Platelet count, elevated/low/normal/‑ 0.629 (0.517‑0.765) 1.10x10-6 0.832 (0.679‑1.017) 7.30x10-2

Serum calcium, elevated/low/normal/‑ 1.179 (0.738‑1.884) 4.90x10-1                           - -
White cell count, elevated/low/normal/‑ 1.159 (0.899‑1.496) 2.54x10-1                           - -
mRNA expression model 
Risk score status, high/low 4.315 (2.611‑7.132) 5.37x10-10 2.626 (1.426‑4.838) 1.95x10-3

B, Validation set (n=263)

 Univariate analysis Multivariate analysis
 ----------------------------------------------------------------- -----------------------------------------------------------------
Clinical characteristics HR (95% CI) P‑value HR (95% CI) P‑value

Age, <60/≥60 years 1.028 (1.011‑1.046) 1.41x10-3 1.034 (1.013-1.055) 1.35x10-3

Sex, male/female 0.755 (0.491‑1.162) 2.00x10-1 - -
Pathological M, M0/M1/‑ 4.189 (2.710‑6.475) 5.41x10-2 - -
Pathological N, N0/N1/‑ 3.947 (1.649‑9.450) 8.72x10-2 - -
Pathological T, T1/T2/T3/T4 1.725 (1.375‑2.164) 1.1‑x10-6 0.716 (0.474‑1.082) 1.13x10-1

Pathological stage, I/II/III/IV/‑ 1.786 (1.481‑2.154) 1.31x10-10 2.006 (1.424‑2.825) 6.84x10-5

Neoplasm histologic grade, G1/G2/G3/G4/‑ 2.075 (1.557‑2.765) 3.37x10‑7 1.245 ( 0.906‑1.712) 1.76x10-1

Platelet qualitative, elevated/low/normal/‑ 0.602 (0.453‑0.8001) 3.07x10-4 0.749 (0.560‑1.001) 5.04x10-2

Serum calcium, elevated/low/normal/‑ 0.752 (0.477‑1.186) 2.20x10-1 - -
White cell count, elevated/low/normal/‑ 1.116 (0.879‑1.416) 3.68x10-1 - -
mRNA expression model 
Risk score status, high/low 2.816 (1.746‑4.542) 9.17x10-6 1.986 (1.168‑.379) 1.14x10-2

C, Entire set (n=526)

 Univariate analysis Multivariate analysis
 ------------------------------------------------------------------- -----------------------------------------------------------------
Clinical characteristics HR (95% CI) P‑value HR (95% CI) P‑value

Age, <60/≥60 years 1.028 (1.015‑1.041) 1.25x10-5 1.022 (1.001-1.0429) 3.59x10-2

Sex, male/female 0.943 (0.692‑1.287) 7.13x10-1                          - -
Pathological M, M0/M1/‑ 4.270 (0.919‑5.845) 6.32x10-2                          - -
Pathological N, N0/N1/‑ 3.461 (1.836‑6.526) 4.38x10-5 1.007 (0.429‑2.361) 9.87x10-1

Pathological T, T1/T2/T3/T4 1.914 (1.624‑2.255 4.44x10-16 0.703 (0.451‑1.098) 1.22x10-1

Pathological stage, I/II/III/IV/‑ 1.884 (1.652‑2.15) 2.00x10-16 1.815 (1.278‑2.577) 8.68x10-4

Neoplasm histological grade, G1/G2/G3/G4/‑ 2.285 (1.863‑2.802) 3.33x10-16 1.359 (0.9591.926) 8.39x10-2

Platelet qualitative, elevated/low/normal/‑ 0.648 (0.552‑0.763) 1.02x10‑7 0.746 (0.594‑0.936) 1.12x10-2

Serum calcium levels, elevated/low/normal/‑ 0.938 (0.677‑1.298) 6.98x10-1                          - -
White cell count, elevated/low/normal/‑ 1.135 (0.954‑1.351) 1.53x10-1                          - -
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Effectiveness evaluation and comparison of prognosis 
prediction models. The predictive abilities of the four models 
were evaluated and compared among the training, valida-
tion, entire and E‑MTAB‑3267 (independent validation) sets 
(Figs. 3 and 4). The training [lncRNAs-based status risk score: 
log‑rank P=4.07x10-9; HR (95% CI), 3.885 (2.388‑6.321); 
mRNAs-based status risk score: log-rank P=1.04x10-10; HR 
(95% CI), 4.653 (2.757‑7.553)], validation [lncRNAs‑based 
status risk score:log‑rank P=9.58x10-4; HR (95% CI), 2.087 
(1.329‑3.278); mRNAs‑based status risk score: log‑rank 
P=2.27x10-5; HR (95% CI), 2.637 (1.654‑4.203)] and entire 
[lncRNAs-based status risk score:log-rank P=5.41x10-11; 
HR (95% CI), 2.869 (2.064‑3.989); mRNAs‑based status 
risk score: log‑rank P=2.73x10-13; HR (95% CI), 3.270 
(2.336‑4.578)] sets were separated into a high‑risk group 
(shorter overall survival time) and a low-risk group (longer 

overall survival time) using the status model based on the 10 
lncRNAs or 10 mRNAs, respectively (Fig. 3). However, the 
two status models could not dichotomize the E‑MTAB‑3267 
set into two risk groups with significantly different overall 
survival time (log-rank P=5.14x10-1 for lncRNA and 6.20x10-2 

for mRNA; Fig. 3; Table III). Furthermore, all four datasets 
exhibited significantly different overall survival time between 
the high- and low-risk groups determined using the 10 
lncRNA expression model (Fig. 4A): training set, log-rank 
P=6.33x10‑8; HR (95% CI), 3.454 (2.145‑5.563); validation 
set, log‑rank P=7.41x10-9; HR (95% CI), 3.947 (2.389‑6.521); 
entire set, log‑rank P=1.37x10-14; HR (95% CI), 3.521 
(2.503‑4.955); E‑MTAB‑3267, log‑rank P=3.83x10-2; HR 
(95% CI), 1.942 (1.025‑3.678). Similar results were obtained 
using the 10 mRNA expression model (Fig. 4B): training 
set, log‑rank P=5.37x10-10; HR (95% CI), 4.315 (2.611‑7.132); 

Table III. Continued.

C, Entire set (n=526)

 Univariate analysis Multivariate analysis
 ------------------------------------------------------------------- -----------------------------------------------------------------
Clinical characteristics HR (95% CI) P‑value HR (95% CI) P‑value

mRNA expression model 
Risk score status, high/low 3.513 (2.486‑4.964) 3.04x10-14 2.943 (1.666-5.200) 2.02x10-4

HR, hazard ratio; T, tumor; N, node; M, metastasis.

Figure 5. Kaplan‑Meier overall survival curves for training (left), validation (middle) and entire (right) sets by (A) age and (B) pathologic stage. (A) Black and 
red curves indicate <60 and ≥60 years, respectively. (B) Black, red, blue and purple curves represent stages I, II, III and IV, respectively. HR, hazard ratio.
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validation set, log‑rank P=9.17x10-6; HR (95% CI), 2.816 
(1.746‑4.542); entire set, log‑rank P=3.04x10-14; HR (95% CI), 
3.513 (2.486‑4.964); E‑MTAB‑3267, log‑rank P=6.89x10-3; 
HR (95% CI), 2.404 (1.248‑4.628). Additionally, Figs. 3 and 4 
show the ROC curves and areas under the ROC curves (AUC) 
of the four models for the training, validation, entire and 
E‑MTAB‑3267 sets. The aforementioned results suggested 
that the risk assessment model based on the expression levels 
of the 10 mRNAs yielded more significant or similar log‑rank 
P-values, and higher or similar AUC values compared with the 
other three models in the four datasets. Therefore, this model 
was selected as the best prognostic model and was applied in 
further analyses.

Establishment of nomogram survival model with indepen‑
dent prognostic clinical factors and 10 DEmRNA expression 
risk scores. Independent clinical prognostic factors for 
ccRCC were analyzed using univariate and multivariate Cox 
regression analyses of the samples. Table Ⅲ shows that age, 

pathological stage and mRNA expression model risk score 
status were identified as independent prognostic factors in the 
training, validation and entire sets (P<0.05). Fig. 5 shows the 
Kaplan‑Meier curves of age and pathological stage in these 
three sets. The prognoses of younger patients (<60 years) 
and of patients at earlier pathological stages of ccRCC 
were significantly improved compared with those of older 
patients (≥60 years) (training set, P=3.69x10-3; validation set, 
P=3.90x10-2; entire set, P=4.24x10-4) and of patients with later 
pathological stages (training set, P=2.44x10-15; validation set, 
P=1.31x10-10; entire set, P=2.00x10-16), respectively, which was 
consistent with current clinical practice (39).

Establishment of nomogram survival model integrating 
10 mRNA expression risk scores with independent prognostic 
factors. A composite nomogram was constructed using the 
entire set to further assess associations between prognosis 
and age, pathological stage and mRNA expression. Fig. 6A 
shows the nomogram of combined age, pathological stage 
and mRNA expression model risk score status to predict the 
survival of patients with ccRCC as the ‘total points’ axis of 
the sixth row. Total points represent the total account of points 
of age, pathological stage and mRNA expression model risk 
score. Calibration curves revealed good consistency between 
the 3- and 5-year survival probabilities of all patients of the 
entire set and those predicted by the nomogram survival 
model (Fig. 6B).

Identification and pathway enrichment analysis of DEG 
in high‑and low‑risk groups of entire set. The present 
study aimed to resolve the possible functional roles of the 
10 prognostic mRNAs in ccRCC. Samples in the entire set 
were divided into high- and low-risk groups by applying the 
optimal risk score prediction model dependent on the expres-
sion levels of the 10 DEmRNAs. A total of 400 significant 
DEGs (including 19 downregulated and 381 upregulated 
genes) with FDR <0.05 and log2FC >0.263 were identified 
using the limma package (Fig. 7A). An expression heatmap 
of the DEGs revealed distinctive expression patterns of 
DEGs with high and low risk scores (Fig. 7B). Subsequently, 
enrichment analyses of GO biological processes and 
KEGG signaling pathways for these DEGs were conducted. 
The results revealed that 11 biological processes, such as 
‘inflammatory response’, ‘neuron differentiation’ and ‘acute 
inflammatory response’, and six KEGG signaling pathways, 
including ‘complement and coagulation cascades’ and 
‘neuroactive ligand‑receptor interactions’, were significantly 
enriched within these DEGs (Table Ⅳ).

Discussion

Considering that aberrant expression levels of mRNAs 
and lncRNAs are usually associated with the occurrence 
and development of ccRCC (2,9-13,20), exploring further 
lncRNA/mRNA‑based signatures to predict the prognosis 
in patients with ccRCC should be important. In the present 
study, a large quantity of RNA-sequencing and survival data of 
patients with ccRCC was downloaded, and DERs were screened 
between samples of patients with less favorable and favorable 
prognoses using models that could predict prognosis. Among 

Figure 6. Nomogram of independent prognostic factors and mRNA expres-
sion risk scores, and calibration plots for predicting 3- and 5-year survival 
probabilities. (A) Nomogram of independent prognostic factors and mRNA 
expression risk scores. Points for each variable (age, pathological stage 
and mRNA expression risk score) were determined in the nomogram by 
drawing a vertical line from the values of each variable to the ‘points’ line. 
Summed points for all variables were plotted on the ‘Total Points’ line and 
a vertical line was drawn to read the corresponding 3- and 5-year survival 
probabilities. (B) Calibration plots for predicting 3- and 5-year survival 
probabilities. Horizontal and vertical axes indicate predicted and actual 3- 
and 5-year probabilities of overall survival time, respectively. Red and black 
lines indicate predicted 3- and 5-year probabilities of overall survival time, 
respectively. Round points on lines represent the average survival prob-
ability at corresponding time points with upper and lower bars indicating 
upper and lower standard deviations. Grey line represents ideal agreement 
between predicted and actual probabilities of overall survival time. exprs, 
expression; RS status, risk score status.
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the 451 DERs obtained from the training set, 404 and 47 were 
mRNAs and lncRNAs, respectively. Univariate and multivariate 
Cox regression analyses selected 44 mRNAs and 15 lncRNAs 
as independent prognostic factors. Furthermore, optimal 
combinations of 10 DEmRNAs (AGR3, CSF2, GAL3ST2, 
IGLL1, PLG, SAA1, SBSN, SOX2, WFDC13 and ZIC2) and 

10 DElncRNAs (COL18A1‑AS1, ELOVL2‑AS1, LINC00189, 
LINC00470, LINC00652, LINC00896, MIR205HG, TCL6, 
TFAP2A-AS1 and UPK1A-AS1) were screened out based on 
the findings of the LASSO Cox regression model.

Given the important roles of risk assessment tools in 
estimating the probability of risk factors and detecting 

Table Ⅳ. GO biological processes and KEGG pathways significantly enriched by the differentially expressed genes.

Term Count P-value

Biological processes  
  GO:0006953 acute-phase response 11 5.25x10-9

  GO:0007586 digestion 13 3.08x10‑7

  GO:0002526 acute inflammatory response 13 6.99x10‑7

  GO:0030182 neuron differentiation 27 1.08x10-6

  GO:0035270 endocrine system development 10 1.04x10-5

  GO:0051606 detection of stimulus 11 1.49x10-4

  GO:0007398 ectoderm development 14 2.25x10-4

  GO:0030900 forebrain development 12 2.85x10-4

  GO:0006954 inflammatory response 18 3.73x10-4

  GO:0032101 regulation of response to external stimulus 12 4.19x10-4

  GO:0009611 response to wounding 24 5.40x10-4

KEGG pathways  
  hsa04080: Neuroactive ligand‑receptor interaction 17 1.07x10-5

  hsa00590: Arachidonic acid metabolism 5 1.80x10-2

  hsa00591: Linoleic acid metabolism 4 1.35x10-2

  hsa04060: Cytokine-cytokine receptor interaction 10 4.62x10-2

  hsa00592: alpha-Linolenic acid metabolism 3 4.11x10-2

  hsa04610: Complement and coagulation cascades 5 3.55x10-2

‘Count’ represents the number of genes significantly enriched in a biological process or pathway. GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.

Figure 7. Volcano plot and expression heatmap of DEGs between high and low risk in the entire set. (A) Volcano plot of log2FC vs. ‑log10FDR. Pink and 
black dots represent significant and non‑significant DEGs, respectively. Two vertical dashed lines indicate log2FC 0.263; horizontal dashed line indicates 
FDR =0.05. (B) Expression heatmap of DEGs with high or low risk scores. Colored bar (green to red) on right margin indicates z-score of normalized and 
log2 transformed expression values of DEGs. The Z-score represents for the number of median absolute deviations away from the median. DEG, differentially 
expressed genes; FDR, false discovery rate; FC, fold change.
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high‑risk populations for disease entities (14‑17), the present 
study constructed four prognostic prediction models based 
on the status or expression levels of the 10 DElncRNAs or 
10 DEmRNAs in optimal combinations. The predictive value 
of the four models for ccRCC was assessed, and the results 
revealed that the risk score model based on the expression 
levels of the 10 DEmRNAs was the best predictor. Although 
risk assessment tools have been widely applied to the clinical 
prediction of various types of cancer, such as gastric cancer, 
hepatocellular carcinoma and prostate cancer, few are available 
for ccRCC (11,18‑21). The present study created a potential risk 
assessment tool with which to predict the prognosis in patients 
with ccRCC, and to explore the possible pathogenesis of ccRCC. 

According to the association with different types of cancer, 
especially ccRCC, the 10 DEmRNAs in the optimal combina-
tion can be  divided into three groups. AGR3, CSF2, GAL3ST2, 
SAA1, SBSN, SOX2 and ZIC2 in the first group are all associ-
ated with human tumors. AGR3 was originally identified as 
a membrane protein from breast cancer cell lines, and it has 
been implicated in the growth, differentiation, metastasis and 
survival of breast, prostate and ovarian cancer (40-43). CSF2 is 
an important survival, proliferation and differentiation factor 
of neutrophil and macrophage progenitors (44). CSF2 overex-
pression is associated with a poor prognosis in patients with 
urothelial carcinoma, suggesting that CSF2 may serve as an 
important prognosticator and a potential therapeutic target for 
urothelial carcinoma (45). GAL3ST2 functions in regulating 
adhesion capacity and may be associated with tumor metastasis 
in lung giant cells and hepatoma cancer cells, where elevated 
GAL3ST2 expression is be associated with higher metastatic 
potential (46). Previous studies have identified GAL3ST2 
expression in a normal murine mammary gland and in two 
human breast cancer cell lines, and elevated expression levels 
in metastatic tumors (47,48). SAA is an acute phase protein that 
may be the precursor of amyloid fibrils in reactive systemic 
amyloidosis (49) and function in cancer pathogenesis (50). 
SAA1 may be a negative prognostic factor for patients with 
melanoma and further studies should assess these associations 
in other types of cancer (51). SAA1 is overexpressed in plasma 
from patients with non‑small cell lung cancer who experience 
short overall survival after treatment with epidermal growth 
factor receptor tyrosine‑kinase inhibitors (52). SBSN is an 
epidermal differentiation marker that is detectable in several 
types of tumor endothelial cells (53,54). SBSN expression is 
associated with the growth, proliferation and invasiveness 
of salivary gland adenoid cystic and normal small cell lung 
carcinoma cells, as well as glioblastoma (55‑58). SOX2, a 
transcription factor expressed in various types of embryonic 
and adult stem cells, is significantly upregulated in cancer 
stem cells of squamous skin tumors in mice (59). Furthermore, 
SOX2 establishes a continuum between tumor initiation and 
progression in primary skin tumors (59), and its expression 
is required for the proliferation and anchorage-independent 
growth of lung and esophageal cell lines (60,61). ZIC2 belongs 
to a gene family that was originally identified by homology 
with odd-paired genes in Drosophila, and functions during 
neural development (62). ZIC2 has oncogenic features and its 
overexpression is closely associated with the progression of 
cervical, epithelial ovarian and liver cancer (63-65). Although 
the seven genes in the first group are all associated with human 

tumors, their involvement in ccRCC is unknown. The second 
group contains only one gene, WFDC13. WAP domains are 
widely distributed and highly conserved in vertebrates and 
invertebrates, and they participate in diverse physiological 
processes, such as calcium transport, proteinase inhibition 
and bacterial killing (66). The WFDC proteins contain WAP 
domains and are found in vertebrates and invertebrates (66). 
WFDC2 is frequently overexpressed in epithelial ovarian 
cancer cells and may have potential as a therapeutic target (67). 
However, the biological function of WFDC13 in tumor 
progression remains unclear. The third group contains IGLL1 
and PLG, which have unknown functions.

The present findings suggested that the 10 DElncRNAs of 
the optimal combination may be involved in the pathogenesis 
of ccRCC. Among the 10 DElncRNAs, COL18A1‑AS1 (68,69), 
TCL6 (70) and TFAP2A‑AS1 (71) are associated with a 
worse survival of patients with ccRCC, in accordance with 
the results of the present study. Furthermore, ELOVL2-AS1, 
LINC00189, LINC00470, LINC00896 and MIR205HG may 
be associated with tumors other than ccRCC. For instance, 
ELOVL2-AS1 may be a progression-associated prognostic 
biomarker for lung squamous cell carcinoma (72). LINC00189 
is associated with cervical cancer recurrence and may be 
used as a potential prognostic biomarker (73). Upregulated 
LINC00470 expression promotes the development of gastric 
cancer (74). LINC00896 expression is upregulated in human 
lung adenocarcinoma (75) and MIR205HG is differentially 
expressed in papillary renal cell carcinoma (76). However, 
few studies have investigated the functions of LINC00652 
and UPK1A-AS1 in tumors. Despite considerable effort to 
determine the underlying mechanisms of lncRNAs in cancer, 
how they regulate gene expression remains elusive. Further 
studies are required to verify these prognostic DElncRNAs in 
ccRCC.

Functional annotations of the significant DEGs between 
the high- and low-risk groups of the entire set determined 
by the 10 DEmRNA expression risk scores according to the 
GO and KEGG databases may provide an ample number of 
candidate genes and further information regarding the patho-
genesis of ccRCC. GO functional analyses of 400 DEGs were 
conducted, and 11 GO terms and 5 KEGG signaling pathways 
validated the significant enrichment of these DEGs. These 
genes were significantly associated with biological processes, 
such as ‘inflammatory response’, ‘neuron differentiation’ and 
‘acute inflammatory response’, and participated in signaling 
pathways, such as ‘complement and coagulation cascades’ and 
‘neuroactive ligand-receptor interaction’, suggesting potential 
functions for the 10 prognostic DEmRNAs in ccRCC. Further 
investigation of these genes may help to further clarify the 
pathogenesis of ccRCC. Since the present extensive bioin-
formatics study was based on published data, the results of 
the present study should be further validated in vitro and/or 
in vivo. Expression of these genes in ccRCC can be detected 
using reverse transcription PCR or the protein levels could be 
examined using western blotting.

In conclusion, the present study constructed risk score models 
based on the status or expression levels of 10 DElncRNAs 
or 10 DEmRNAs to predict the prognosis of patients with 
ccRCC, revealing that the prognostic performance of the model 
based on the expression levels of the 10 DEmRNAs was the 
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most effective. The 10 prognostic DEmRNAs were mainly 
associated with inflammatory response‑associated biological 
processes, complement and coagulation cascades and neuroac-
tive ligand-receptor interaction pathways. The 10 DEmRNAs in 
the optimal combination may be used as potential therapeutic 
targets, and the present results may provide novel insights into 
the pathogenesis of ccRCC.
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