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Abstract

The increasing availability of extensive and accurate clinical data is rapidly shaping

cardiovascular care by improving the understanding of physiological and pathological

mechanisms of the cardiovascular system and opening new frontiers in designing ther-

apies and interventions. In this direction,mathematical andnumericalmodels providea

complementary relevant tool, able not only to reproduce patient-specific clinical indi-

cators but also to predict and explore unseen scenarios. With this goal, clinical data

are processed and provided as inputs to themathematical model, which quantitatively

describes the physical processes that occur in the cardiac tissue. In this paper, the pro-

cess of integration of clinical data and mathematical models is discussed. Some chal-

lenges and contributions in the field of cardiac electrophysiology are reported.
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1 INTRODUCTION

In the last decades, mathematical and numerical modeling of the car-

diovascular system is a research topic that has attracted remarkable

interest because of the increasing impact of cardiovascular diseases

worldwide. The aim is, on one hand, to better understand the physical

and quantitative processes governing the cardiovascular system, and,

on the other hand, the opening of new frontiers in therapeutic planning

and the design of implantable devices.

Mathematical models of cardiac electrophysiology are dynamical

systems that quantitatively describe the electrical processes occurring

in the cardiac tissue, at different scales, that is, from the cellular to

the tissue level. In each cardiac cell, the variation of the electric poten-

tial across the membrane is due to the imbalance of ionic species’ con-

centration between the extracellular and the intracellular media. Ion

channels enable the exchange of those species, causing the depolar-

ization and successive repolarization of the cells. At the macroscopic

level, the propagation of the electric signal, in the form of a transmem-

brane potential, is described by means of partial differential equations

(PDEs), suitably coupled with ordinary differential equations (ODEs)
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modeling the ionic currents in the cells. Differential equations describe

a suitable balance between relevant variables (e.g., the transmembrane

potential, the concentration of ionic species) and their rate of varia-

tion. If the latter only concerns variation in time,wewill obtain anODE,

whereas a PDE is generated when rates of variations are expressed

with respect to the timecoordinateaswell as to the spatial coordinates.

Thanks to a transmission process between different scales, the action

potential generated at the cellular level results in a travelling depolar-

ization front, followed by a second polarization front, restoring the ini-

tial condition. While the tissue is still depolarized, an extra stimulus is

unable to initiate another action potential for a given amount of time.

This timewindow, duringwhich the tissue is not re-excitable, is defined

as refractory period and plays a key role in the induction and sustain-

ment of arrhythmias.1

These mathematical models provide a flexible platform that can be

used to integrate clinical data, to create a virtual model able to repro-

duce patient-specific outputs, or to augment experimental data, by

predicting and exploring unseen scenarios through changes in model

parameters.2 Patient-specific data, such as the specific heart geomet-

rical shape, the electrical conduction properties, and other material
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properties, could be provided as input to the mathematical model

and the latter would produce outcomes, that is, the electric potential,

electrograms (EGMs), and activation maps, which represent the

solutions to the mathematical model. The accurate simulation of a

physiological process requires complete and accurate data and the

ability of translating clinical information into model inputs. This is an

extremely active research field, spanning a broad range of applications

frommolecularmedicine to heart diseases (see, e g., 3–6 and reference

therein).

Large-scale clinical data are widely used to improve clinical deci-

sions and therapy planning, providing detailed information about heart

function and dysfunctions. In addition, the availability of accurate—and

easy to acquire—clinical data has allowed the rapid development of

mathematical models for a better understanding of the complexmech-

anisms driving cardiac electrophysiology. Here are a few highlights:

∙ The study of arrhythmogenic and arrhythmic properties to iden-

tify specific indicators (biomarkers) of a pathological condition that

might support clinical decisions.7,8,9

∙ Computational pharmacologic safety tests, aiming at evaluating

whether dangerous drug side-effects, such as arrhythmias, might

occur.10

∙ Protocols for suggesting targets of ablation for ischemic and fibrotic

patients.11,12

∙ Implantable devices optimization, aiming at improving cardiac

resynchronization therapy treatments for heart failure13 and defib-

rillationmechanisms.14

∙ Non-invasive reconstruction of activation maps from body surface

potential mapping and electrocardiograms (ECGs).15

More substantial progresses are expected in the next few years:

enhanced clinical data will enable more accurate mathematical models

that will allow to capture phenomena occurring at the fine scales and

finally to provide patient-specific simulations. In this paper, we review

the main steps of this process in the context of cardiac electrophysiol-

ogy, starting from the description of themathematical models and clin-

ical data. We will then describe how to develop a possible data-model

integration pipeline for the construction of in silico subject-specific

models.

2 MATHEMATICAL MODELS

The electric potential propagation is a complex process linking

together the micro scale of the single cell ion channel to the macro-

scale represented by the whole heart tissue. A mathematical model

consists therefore of two parts: a cellular model given by a system of

ODEs, and a macroscopic model at the tissue level given by a system

of PDEs. The variables of cellular models are the ionic species con-

centrations, whose evolution in time is regulated by several detailed

membrane models involving an increasing number of ionic currents.16

Cells are typically aligned with their neighbors, forming an organized

structure of fibers and sheets, allowing the heart tissue to behave as a

continuum. For this reason, macroscopic models relying on PDEs are

derived using homogenization (a special form of differential averag-

ing) procedures; the resulting bidomain equations17 characterize the

behavior of the intra- and extra-cellular potentials, that is, their val-

ues at every spatial point of the heart muscles and at any time dur-

ing a heartbeat. Under simplifying assumptions, the bidomain system

can be replaced by the monodomain equation,18 a reaction-diffusion

model expressing the evolution of the transmembrane potential (the

difference between extra- and intra-cellular potentials). In this equa-

tion, the reaction term is defined by the cellular model, forming a two-

ways coupling between the cellular and the tissue model. Further sim-

plifications, like, for example, the eikonal model,19,20 can be introduced

if one is interested in simulating the depolarization time at every spa-

tial point of the heart tissue. The complexity of mathematical models

is directly related to its ability to reproduce complex phenomena: for

example, reentry arrhythmias require the use of the bidomain or the

monodomain model coupled with an ionic model for cellular dynamics,

and cannot be captured by the eikonal model. The choice of a model

over another also depends on the available data and the clinical ques-

tions to be answered.

2.1 Inputs

To maintain a flexible framework, able to represent different phys-

iological and pathological scenarios, mathematical models are often

expressed in terms of parameters, defining, for example, the conductiv-

ity tensor, the fiber orientation, the ionic channel coefficient, and the

applied current. This latter can encode the complex activation heart

mechanism (from the sinoatrial node to the Purkinje system) or a pac-

ing sequence. Other input parameters can locally influence activation,

recovery, and action potential duration, but their knowledge is consid-

erably limited, due to the intrinsic difficulty in carrying out in vivo and

in vitro experiments for their estimation21 and because of the multiple

sources of error in the measurements. Moreover, parameters exhibit a

spatial heterogeneity over different regions of the heart, and depend

on the choice of the cell model.

Further information is needed to identify a (unique) solution to the

mathematical models, depending on initial and boundary conditions.

A simplifying choice usually made at the boundary of the domain is

to neglect the ability of the rest of the body to conduct the electrical

signal, which is mathematically expressed by homogeneous Neumann

boundary conditions. However, different types of boundary conditions

can be imposed to take into account the electric transmission between

the heart domain and the rest of the body, by assuming this latter to act

as a passive conductor. This adds an additional PDE (Laplace equation)

with the torso potential as a further unknown.

Instead, initial conditions allow to represent the initial state of

the variables in both physiological (sinus rhythm) and pathological

regimes. The nonlinearity of the problem makes the model extremely

sensitive to these initial data: for instance in a fibrillation regime,

perturbation of initial conditions can influence the localized reentry

patterns.
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2.2 Outputs of interest

For a given choice of the input parameters, the geometry, and the ini-

tial and boundary conditions, themathematical models provide several

outputs of interest, such as:

∙ The space-time evolution of the electric potential, that is, changes

in propagation speed and refractory period depending on heart rate

and physiological/pathological conditions at both the cellular and

the tissue level.

∙ The space-time evolution of ionic species, which can take into

account drug actions andmetabolic imbalances.

∙ EGMs at any given point of the domain, and consequently activation

and voltagemaps with an arbitrary resolution.

The time window over which these quantities are evaluated might

correspond to a single heartbeat or be longer, enabling to represent

also spontaneous ectopic activation, arrhythmias induction, and sus-

tainment, that is, the formation of localized or macro-reentry circuits

and their stability.

2.3 Forward and inverse problems

The map going from the input parameters to the outputs is usually

defined as the forward problem, which consists of two steps: the deter-

mination of the problem solution and the evaluation of the outputs,

which are specific observations of the solution itself. In this frame-

work, the main goals are either (a) to evaluate the effects knowing the

causes, such as computing an activation sequence for a given pacing

protocol or (b) to quantify the propagation of input uncertainties to the

outputs (forward uncertainty quantification). An inverse problem con-

sists, instead, of estimating the input parameters from noisy observa-

tions of the output, which is the problem of finding the causes that

generate the available noisy diagnostic measurements. This task can

be expressed through either a PDE-constrained optimization problem,

yielding a deterministic estimate of the unknown inputs, or a statistical

inverse problem, whose solution is a probabilistic distribution describ-

ing the range of most likely inputs.

2.4 Numerical discretization

The computation of forward problems solution is obtained through

numerical discretization algorithms, which allow to approximate the

solution on a computational grid, that is, a finite set of points dis-

cretizing the domain over which the mathematical model is defined

(the heart tissue). These algorithms encode the original mathematical

problem into a discrete system of (nonlinear, differential) equations,

which is then solved on (super)-computers providing the values of the

solution at each vertex of the computational grid (typically, few hun-

dred thousand or even million of points). The most common methods

used in this context are the finite element method, the finite differ-

ence method, the finite volume method, or the isogeometric analysis

(see 22–24 and references therein). The numerical approximation of

the solution is usually a time-expensive task, due to time and space

constraints required by the numerical method to accurately reproduce

the electrical activity of the heart. Together with the technological

developments leading to a constant increase of computing power dur-

ing the recent years, there is a continuous development of new meth-

ods and algorithms aimed at improving the performance of numeri-

cal cardiac solvers, such as reduced-order model techniques25 among

others.

The solution of an inverse problem requires even more sophisti-

cated sampling or optimization algorithms, depending upon several

computations of the forward map for different values of the input

parameters. The ability to efficiently solve such a problem in a clini-

cal context is still challenging, as it requires accurate and extremely

efficient computational models, possibly relying on reduced order

models,25,26 machine learning emulators,27,28 or artificial intelligence

algorithms.29

3 CLINICAL DATA

The acquisition of clinical data may take place through three different

modalities: electrical recordings, imaging, and patient records.

Electrical signals can be recordered either non-invasively or inva-

sively using a mapping catheter. The conventional 12-leads ECG is a

set of bipolar and unipolar signals, characterized by the superposition

of three waves: P-wave, generated by atrial depolarization, QRS com-

plex, generated by ventricular depolarization, and T-wave, generated

by ventricular polarization. Patternmodifications of those threewaves

are used to identify electrical dysfunctions at the organ scale, with a

consequent low-resolution.

A higher resolution alternative is represented by EGMs, acquired

by a multipolar catheter close to the endocardium (and/or the epi-

cardium). EGMs are invasive, but they enable the local identification of

the electrical properties measured by the small electrodes. For clinical

procedures, suchas ablations, thosedetailed invasivedata are acquired

to identify damaged portions of tissue leading to arrhythmias.

Cardiac imaging is another possible approach to characterize tis-

sue properties. Starting from magnetic resonance and late gadolinium

enhancement (LGE) images, it is possible to reconstruct heart geome-

try and to identify structural defects in themyocardium.

4 DATA-MODEL INTEGRATION

The integration of available multiple clinical measurements and data

within mathematical models may be crucial to develop tools to sup-

port clinical practice andprocedures, and ultimately enabling personal-

ized therapies. This process ofmodel personalization consists of select-

ing/identifying those input parameters able to reproduce the electrical

behavior observed in a specific patient. Once this calibration process is

complete, the personalized model can give insights on the pathological
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F IGURE 1 Data-model integration pipeline. Heart shape is obtained from the Zygote Solid 3DHeartModel60 [Color figure can be viewed at
wileyonlinelibrary.com]

mechanism of the patient and evaluate different treatment scenarios

(e.g., testing potential ablation strategies). To trust its predictive capa-

bilities, a personalized model has to be assessed through its validation,

verification, and uncertainty quantification.30

The data-model integration framework faces however several

challenges:

∙ The limits imposed by the spatial resolution of imaging and catheter

mapping, and the possible absence or paucity of patient-specific

data (ionic properties). Thanks to technological innovation, spatial

resolution has been continuously improved in recent years, leading

to catheter equipped with 2.5/3 mm spaced electrodes and high-

resolution LGE images with a voxel size of 1.25 × 1.25 × 2.5 mm.31
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F IGURE 2 Two tetrahedral (center) and two hexahedral (bottom) meshes with different levels of refinement. Geometry was obtained from
segmentation of patient specificMRI images (top image from ref. 40) [Color figure can be viewed at wileyonlinelibrary.com]

However, these procedures are performed only on patients who

have received a diagnosis of a certain pathology. For this reason, the

data-model integration aims also to improve the diagnosis capability

using routine non-invasive exams, such as ECGs, aided by subject-

specific numerical simulations.

∙ The high intra- and inter-patient variability in the geometry, physical

coefficients, boundary conditions, and initial conditions. Consider-

ing all these sources of uncertainty might entail high computational

costs given thenumerical simulations andconsequently compromise

model personalization.

∙ The time required to process data and perform the numerical simu-

lation has to be compatible with the clinical timeline.

In recent years, several groups have faced these challenges. An

example of an integrated pipeline for the prediction of activation maps

resulting fromdifferent pacing conditions can be found in ref. 32, where

mathematical models with different levels of complexity are adopted

for estimating parameters, such as conductivities, with reduced com-

putational costs. The role of uncertainty has been taken into account

for the first time in ref. 33. Since then, the approach of combining

models of different complexity has been used to make the solution of

inverse problems and uncertainty quantification feasible.34,35,36

5 GENERATION OF A PATIENT-SPECIFIC
MODEL

The construction of a virtual patient-specific model can be obtained

by setting up a complex pipeline, whose schematic representation is

reported in Figure 1.We can identify four main steps:

1. Heart geometry reconstruction, through the segmentation of the

domain by either automatic or manual tools based on mathemati-

cal and geometric methods.
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F IGURE 3 Fiber reconstructions obtainedwith different choices
of rule-basedmodel parameters (epicardial and endocardial angles)
[Color figure can be viewed at wileyonlinelibrary.com]

2. Generation of a computational mesh, which consists of a fine parti-

tion of the heart volume in simple geometrical elements (tetrahedra

or hexahedra). Numerical solution would then be approximated on

each vertex of this computational mesh using discretization tech-

niques.

3. Definition of model input parameters using clinical data: this task

could be performed in a basic way, encoding simple mathemat-

ical relationships between clinical data and model parameters—

for example, by adjusting electrical conductivities to reproduce

conduction velocities or activation patterns, as shown in ref. 37,

and adopting rule-based fiber distributions.38,39 This approach is

not always successful, especially when considering detailed models

with highly nonlinear input-output relationships and limited exper-

imental observations. In a more rigorous way, this identification of

model parameters could be formulated as an optimization problem,

or as an inverse problem, whose solution is a probabilistic distribu-

tion describing the range of most likely inputs.

4. Numerical approximation of the problem solution (in terms of elec-

tric potential onto the computational mesh), post-processing of the

results for determining clinically relevant outputs, such as activa-

tionmaps, surface ECG, and intracardiac EGMs.

These steps allow the construction of a pipeline for the evaluation

of the forward map. As an example, we report below the construc-

tion of a sinus-rhythm simulation on a patient-specific geometry seg-

mented fromMRI images (Numerical simulationswere executed on the

iHeart cluster [Lenovo SR950 8x24-Core Intel Xeon Platinum 8160,

2100 MHz and 1.7 TB RAM] at MOX-Department of Mathematics,

PolitecnicodiMilano.Numericalmodels andmethodshavebeen imple-

mented within lifex [https://lifex.gitlab.io/lifex], a new in-house high-

performance C++ FE library mainly focused on cardiac applications

based on deal.II FE core [https://www.dealii.org].). Figure 2 displays an

example of left ventricle geometry in the end-diastolic configuration

reconstructed in ref. 40 with manual segmentation based on the com-

bination of thresholding and smoothing algorithms. The thresholding

F IGURE 4 Numerical simulation of the transmembrane potential
in sinus rhythm and activationmap obtained as a post-processing of
the numerical simulation [Color figure can be viewed at
wileyonlinelibrary.com]

process locates regions of interest by distinguishingMRI images voxels

of the object from the rest (background), whether the voxel brightness

is greater or smaller than a global threshold value. Then, smoothing fil-

ters are usually applied in order to remove artifacts or regions, such as

the papillarymuscles or the valves area.

Once the geometry is reconstructed, it is possible to generate

a mesh by partitioning the input domain in tetrahedral or hexahe-

dral cells with an arbitrary edge length (Figure 2, bottom). Tiny cells,

with an average diameter smaller than the characteristic width of the
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F IGURE 5 Localized andmacro-reentries

electric potential wavefront (range 0.2−0.7 mm41), are required to

ensure that the numerical approximation can correctly capture the

conduction velocities of the electric potential propagation, but they

inevitably increase the number of total vertices on which the solution

must be approximated. The left ventricle geometry was divided into

three consecutive regions: the endocardium (15% of LV wall), the mid-

layer of the myocardium (70% of LV wall) and the epicardium (15% of

LVwall).

To describe the model parameters, it is necessary to characterize

the material properties of the tissue, such as the electrical conductiv-

ity properties, the applied current and the refractory properties of the

tissue. Those ingredients fully characterize the ventricular activation

sequence.Conductionproperties are significantly anisotropic since the

heart is made of fibers, that is, groups of cells with the same orien-

tation. Fibers constitute a privileged direction of propagation, charac-

terized by faster conduction with respect to the cross-fiber direction.

Furthermore, the muscle cells are also organized in sheets, going from

theendocardiumto theepicardiumandcharacterizedbydifferent fiber

orientations. Fiber and sheets distributions arehardly identifiable from

standard medical images, therefore mathematical rule-based models

are usually adopted.38,39 Figure 3 shows fiber reconstruction using the

rule-based algorithm proposed in ref. 42 for different choices of the

epicardial and endocardial angles.

To mimic a physiological activation sequence (Figure 4), we follow

the approach proposed in ref. 43, which has been validated on ECG

measurements.We choose three sites of earliest activation, represent-

ing the approximate locations on the endocardium of the septal, ante-

rior and posterior fascicles. Moreover, to surrogate the Purkinje fiber

structure, we consider a maximum velocity of 1.2 m/s in the endo-

cardium,which is coherentwith the conductionvelocitymeasurements

in healthy tissue recorded in ref. 9.

Conductivity along fiber enables the approximation of conduction

velocity of 0.6 m/s in the myocardium and the epicardium. While con-

ductivities in the transverse to the fiber orientation and along the

sheet normal direction lead to a conduction velocity that is, respec-

tively, 2/3 and 1/3 of the conduction velocity longitudinal to the fiber

direction.

We adopt the monodomain model coupled with the Ten Tusscher–

Panfilov model of the human ventricle myocyte.44 Output (unipo-

lar) activation map is finally computed by post-processing the

numerical approximation of the transmembrane potential solution:

in each point of the computational mesh, the activation time is

approximated as the time at which the absolute value of the time

derivative of the transmembrane potential attains its maximum

value.

6 PATHOLOGICAL CONDITIONS

Electrical disorder phenomena, such as post-ischemic ventricular

tachycardia (VT), atrial tachycardia (AT), ventricular fibrillation (VF), or

atrial fibrillation (AF), are the result of the concurrence of a series of

structural and functional factors that lead to the formation (induction)

of re-entry circuits and subsequently to their sustainment. These cir-

cuits (Figure 5) are divided into:

∙ Macro-reentry, typical ofVTandAT, if in their path, the signal rotates

around physical obstacles (pulmonary veins or valves) or lines of

block, due to the presence of scarring tissue, forming the so-called

isthmus.

∙ Localized reentry, typical of VF and AF, if the signal rotates around

fixed anchoring points (lines of blocks or patchy fibrotic tissue) or if

the signal has a center of rotation (rotor) that dynamically changes

its position in the tissue.

Electrophysiological studies, through the acquisition of endocavi-

tary signals, aim at recognizing those arrhythmogenic regions, which

can form localized or macro-reentry circuits. Activation maps and

EGMsmorphology reveal the presence of areas of slowing (fibrotic tis-

sue) and conduction blocking (scar tissue).45,46 Themathematical anal-
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F IGURE 6 Numerical simulation of a pathological condition: localized reentry induction and sustainment on a tissue slab [Color figure can be
viewed at wileyonlinelibrary.com]

ysis of these data, in the form of biomarkers calculation, provides a

first quantitative tool in support of the electrophysiologist.9 Mathe-

matical operators, such as the spatial gradient of activation time and

the conduction velocity field divergence and rotor, provide a quantita-

tive description of the conduction speed, wavefront collision and pivot

point, respectively. Those biomarkers enable substrate characteriza-

tion and might enhance our understanding of the mechanism behind

arrhythmias.47

To simulate electrical dysfunctions, model parameterization must

be appropriately adjusted to include ectopic beats or pacing protocols,

encoded in the parametrization of the applied current, as well as mod-

ified conduction and refractory properties. These latter are encoded

by the heterogeneous diffusion tensor and the coefficients of the cell

model governing the ion channels properties, respectively.48,49,50

Figure 6 shows an example of localized reentry induction caused

by an ectopic impulse, such as the ones coming from the pulmonary
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veins described in ref. 51. In this numerical simulation, conduction

and refractory properties are randomly modified to mimic the pres-

ence of tissue fibrosis.12,52,53 These heterogeneous properties form

the substrate for the induction of a localized reentry and its sustain-

ment. In this setting, we observe the formation of an anchor point,

around which the wavefront continuously re-excite the tissue due to

the reduced head–tail interaction caused by the modified refractory

properties.47

7 PERSPECTIVES

The construction of customized cardiac models with the integration of

clinical datawill increase the ability to respond to the challenges posed

by the clinicians.

In this direction, algorithms and methodologies borrowed from

artificial intelligence are becoming more and more tools for the

analysis of clinical data and data-model integration. In this con-

text, the most adopted tool are artificial neural networks (ANNs),

which consist of an interconnected groups of nodes (neurons) able

to “learn” to perform either classification or regression tasks, after

they have been trained on a (usually, extremely large) sample of

labeled clinical data. For instance, ANNs have been already applied

to arrhythmia classification from single-lead ECG data of 53,877

patients in ref. 54, showing a performance comparable to human

experts.

ANNs might be also used as a tool for data-model integration:

physical constraints (encoded by parametrized mathematical model)

can be enforced during the training process of the network, leading

to the so-called physics-informed neural networks,55 a new genera-

tion of computational models able to solve both the forward prob-

lem, starting from observed data, and the inverse problem, identifying

unknown model parameters or incomplete data. A proof-of-concept

about their capability in reconstructing activation maps has been per-

formed in ref. 56. Finally, ANNs might also accelerate parametrized

model evaluation, by creating extremely cheap, yet accurate, reduced-

order models.57,58,59

These tools stand nowadays at the basis of the construction of

“digital twins,” which are virtual tools purposely built to continuously

integrate patient-specific clinical data acquired over time, into physics-

based or artificial intelligencemodels.3

8 CONCLUSIONS

The final objective of data-model integration is to support clinical deci-

sions and interventions. As we have discussed and shown through

examples in this paper, this process is at the beginning of its develop-

ment, but it has already proved to be effective in some relevant clini-

cal applications in cardiac electrophysiology, paving the way to tackle

more complex pathological conditions.
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