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ABSTRACT
Aims/Introduction: We investigated associations between glucose tolerance and b-cell
function using a series of estimation methods in a population-based study.
Materials and Methods: Data from the Dynamics of Lifestyle and Neighborhood
Community on Health Study were analyzed. A total of 489 participants (263 women) were
divided into three groups: normal glucose tolerance (NGT), prediabetes (PDM) and dia-
betes group. We estimated b-cell function by the homeostasis model assessment of b-cell
function, proinsulin level (PI), C-peptide index, proinsulin-to-C-peptide ratio (PI/CPR) and
proinsulin-to-insulin ratio. Because data on all five parameters of b-cell function showed
skewed distributions, the values of these parameters were normalized by natural logarith-
mic (ln) transformation. Next, the association between glucose tolerance and b-cell func-
tion among participants without diabetes was examined. In this analysis, glucose tolerance
was assessed based on glycated hemoglobin levels.
Results: In the crude analysis, ln(PI) and ln(PI/CPR) were significantly higher in the dia-
betes group than those in the PDM and NGT groups, and these parameters were signifi-
cantly higher in the PDM group than in the NGT group. Only ln(PI) in the PDM group
was significantly higher compared with that in the NGT group after adjustment for age,
sex and body mass index (ln[PI]: PDM group 2.38 pmol/L, 95% confidence interval 2.29–
2.47 pmol/L; NGT group 2.17 pmol/L, 95% confidence interval 2.12–2.22 pmol/L; P < 0.05).
In addition, ln(PI) levels were significantly and positively correlated with glycated hemoglo-
bin quartile in participants without diabetes.
Conclusions: Our results showed that PI was the most sensitive to reflect glucose
intolerance.

INTRODUCTION
Previous studies have shown that deterioration of pancreatic b-
cell function or mass becomes apparent before a diagnosis of
type 2 diabetes1–6. Focusing on the natural history of type 2
diabetes progression, insulin secretion initially increases to com-
pensate for peripheral insulin resistance. However, this increase
in insulin secretion represents a relative shortage of insulin, and
this impaired b-cell function leads to the development of predi-
abetes and progression to frank type 2 diabetes4. Taken

together, establishment of an evaluation method for estimating
b-cell function, which could show a strong association with glu-
cose tolerance, would be expected.
Among several methods for estimating b-cell function,

assessment using parameters from fasting blood samples would
be simple and clinically useful. However, it has not been clari-
fied which parameters could show a strong association with
glucose tolerance. The objective of the present population-based
study was to investigate associations between glucose tolerance
and b-cell function, as evaluated by five estimation methods, in
a general Japanese population.
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METHODS
Study participants
In the present cross-sectional study, we analyzed data from the
Dynamics of Lifestyle and Neighborhood Community on Health
Study (DOSANCO Health Study), as described previously7. In
short, a total of 545 residents (300 women) in the town of Suttu,
Hokkaido, Japan, aged 35–79 years, provided their basic informa-
tion, including age, sex, medical history, anthropometric mea-
surements and fasting blood samples. Of these 545 participants,
those who had missing data on insulin levels (n = 3) or were
using antidiabetic agents (n = 53) were excluded. The remaining
489 individuals (263 women) were considered as eligible study
participants and included in the subsequent analyses. The study
design was reviewed by the ethics board of Hokkaido University
School of Medicine (15-002 and 17-015), and signed informed
consent was obtained from all participants.

Data collection
The weight and height of the participants were measured using
a calibrated scale after they had removed their shoes and any
heavy clothing. Body mass index (BMI) was calculated as
weight in kilograms divided by height in meters squared.
Venous blood samples were collected at rest in the morning
after an overnight fast to measure levels of fasting plasma glu-
cose (FPG), insulin, C-peptide (CPR) and glycated hemoglobin
(HbA1c). These parameters were measured using standard
techniques. Proinsulin (PI) concentrations (pmol/L) were mea-
sured using a radioimmunoassay (Millipore Corporation Inc.,
Burlington MA, USA).

Statistical analysis
Initially, glucose tolerance was categorized into the following
three groups: normal glucose tolerance (NGT), prediabetes
(PDM) and diabetes (DM). NGT was defined as
FPG <110 mg/dL and HbA1c <5.7%, and PDM was defined as
FPG 110–125 mg/dL or HbA1c 5.7–6.4%, or both8,9. Partici-
pants were considered to have diabetes if they had a previous
history of diabetes, FPG ≥126 mg/dL or HbA1c ≥6.5%8. b-Cell
function was estimated by homeostasis model assessment of
b-cell function (HOMA-b%); PI; C-peptide index (CPI),
according to the formula 100 9 fasting – CPR / FPG; ratio of
PI-to-CPR (PI/CPR); and ratio of PI-to-insulin (PI/I)10–12.
Anthropometric and biochemical characteristics were crudely

compared among the three groups regarding glucose tolerance,
using one-way analysis of variance, the Kruskal–Wallis test or
the v2-test. Because data on all five parameters of b-cell func-
tion showed skewed distributions, the values were normalized
by natural logarithmic (ln) transformation. Comparisons of
these log-transformed parameters among the groups were
assessed by analysis of covariance, followed by Tukey’s honestly
significant difference test for multiple post-hoc comparisons.
The model incorporated the following covariates: age (years, as
a continuous variable), sex (male or female) and BMI (kg/m2,
as a continuous variable).

Next, to explore a potential marker of early pancreatic b-cell
dysfunction, we examined the association between glucose toler-
ance and b-cell function among participants without diabetes.
In this analysis, glucose tolerance was assessed based on HbA1c
levels. We compared anthropometric and biochemical charac-
teristics in the participants grouped according to quartiles of
HbA1c, using statistical methods the same as those used in the
first analysis.
All tests were two-sided, and P < 0.05 was considered statis-

tically significant. Statistical analysis was carried out using JMP
10 (SAS Institute Inc., Cary, NC, USA).

RESULTS
A total of 489 participants (263 women) were divided into
three groups: NGT (n = 328), PDM (n = 113) and diabetes
(n = 48) groups. Anthropometric and biochemical characteris-
tics of the participants are shown in Table 1. Age, proportion
of women, BMI, waist circumference, and levels of insulin and
CPR were positively associated with glucose intolerance.
Table 2 shows b-cell function, as evaluated by the five estima-
tion methods, for each glucose tolerance group. In the crude
analysis (model 1), ln(HOMA-b%) was significantly lower in
the diabetes group, but not in the PDM group, compared with
the NGT group; ln(CPI) did not differ significantly among the
three groups. Compared with the NGT group, ln(PI/I) was sig-
nificantly higher in the diabetes group, but not in the PDM
group. Of note, ln(PI) and ln(PI/CPR) were significantly higher
in the diabetes group than in the PDM and NGT groups, and
these parameters were significantly higher in the PDM group
than in the NGT group. Similar results were observed for ln
(PI) and ln(PI/CPR) after adjustment for age and sex (model
2). Only ln(PI) in the PDM group was significantly higher
compared with that in the NGT group after adjustment for
age, sex and BMI (model 3).
As shown in Table 3, age, BMI, waist circumference, and

levels of insulin and CPR were positively correlated with
HbA1c quartile among the participants without diabetes. In the
crude analysis (model 1), ln(PI) and ln(PI/CPR) were signifi-
cantly and positively associated with HbA1c quartile, and the
results were similar after adjustment for age and sex (model 2;
Table 4). Only ln(PI) was significantly and positively correlated
with HbA1c quartile in participants without diabetes, after
adjustment for age, sex and BMI (model 3; Table 4).

DISCUSSION
The present results showed that, of the five estimation methods,
fasting PI was the strongest associated with glucose tolerance.
Increased PI might be caused by an intrinsic defect in proin-
sulin processing or an increased secretory demand on b-cells13.
Indeed, consistent with the present results, fasting PI levels are
significantly elevated not only in individuals with diabetes, but
also in those with impaired fasting glucose and impaired glu-
cose tolerance compared with those with NGT14,15. Although
PI/I and HOMA-b% are known surrogate markers of b-cell
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function16, we did not detect any significant differences in these
markers between the NGT and PDM groups. It has been
reported that PI/I might be affected by hepatic insulin clear-
ance12,15, and that HOMA-b% could underestimate the magni-
tude of the b-cell defect across declining glucose tolerance
status, especially for impaired glucose tolerance17. CPI is mainly
used as an index of endogenous insulin secretion to select the

appropriate treatment for patients with type 2 diabetes 11. From
the present results, however, it might not be useful for estimat-
ing b-cell function in individuals with NGT, PDM or early
type 2 diabetes. Therefore, fasting PI was the most sensitive to
reflect glucose intolerance.
One limitation of the present study was that glucose toler-

ance was classified based on FPG and HbA1c levels.

Table 1 | Anthropometric and biochemical characteristics of 489 study participants

Total participants Glucose tolerance P-value

NGT group PDM group DM group

n 489 328 113 48
Age (years) 58.0 – 12.5 55.2 – 12.7 63.7 – 10.0 63.4 – 9.9 <0.001
No. women (%) 263 (53.8) 186 (56.7) 62 (54.9) 15 (31.3) 0.004
BMI (kg/m2) 23.7 – 3.6 23.3 – 3.4 24.4 – 4.0 24.4 – 3.9 0.008
Waist circumference (cm) 81.6 – 10.4 80.2 – 9.9 83.7 – 10.7 86.3 – 11.5 <0.001
FPG (mg/dL) 93 (86–100) 90 (84–96) 99 (92–108) 128 (112–141) <0.001
HbA1c (%) 5.4 (5.2–5.7) 5.3 (5.1–5.4) 5.8 (5.7–6.0) 6.5 (6.0–6.9) <0.001
Ιnsulin (lU/mL) 4.3 (2.8–6.5) 4.0 (2.8–5.8) 5.2 (2.9–7.3) 6.0 (4.2–9.9) <0.001
C-peptide (ng/mL) 1.2 (0.9–1.7) 1.1 (0.9–1.5) 1.4 (1.0–1.9) 1.8 (1.2–2.5) <0.001

Data are presented for the entire group and for participants grouped by their glucose tolerance. Values are expressed as mean – standard devia-
tion, median (interquartile range) or the number (%) of participants in that category. One-way analysis of variance, Kruskal–Wallis test or v2-test were
used to compare each parameter among the three glucose tolerance groups. BMI, body mass index; DM, diabetes; FPG, fasting plasma glucose;
HbA1c, glycated hemoglobin; NGT, normal glucose tolerance; PDM, prediabetes.

Table 2 | b-Cell function evaluated by five estimation methods

Glucose tolerance P value

NGT group PDM group DM group NGT vs PDM NGT vs DM PDM vs DM

Model 1
ln (HOMA-b%) 4.00 (3.93–4.06) 3.91 (3.79–4.02) 3.54 (3.36–3.72) * *
ln (PI) 2.13 (2.07–2.19) 2.43 (2.32–2.53) 3.02 (2.86–3.18) * * *
ln (CPI) 0.26 (0.22–0.30) 0.34 (0.26–0.41) 0.29 (0.18–0.40)
ln (PI/CPR) 1.98 (1.94–2.03) 2.10 (2.02–2.17) 2.46 (2.34–2.57) * * *
ln (PI/I) 0.77 (0.72–0.83) 0.84 (0.74–0.93) 1.20 (1.05–1.34) * *

Model 2
ln (HOMA-b%) 3.97 (3.90–4.04) 3.96 (3.84–4.07) 3.58 (3.40–3.76) * *
ln (PI) 2.15 (2.09–2.21) 2.44 (2.34–2.54) 2.98 (2.82–3.14) * * *
ln (CPI) 0.26 (0.22–0.31) 0.35 (0.28–0.43) 0.27 (0.16–0.38)
ln (PI/CPR) 1.99 (1.94–2.03) 2.10 (2.02–2.18) 2.45 (2.33–2.57) * * *
ln (PI/I) 0.79 (0.73–0.84) 0.82 (0.73–0.92) 1.16 (1.02–1.31) * *

Model 3
ln (HOMA-b%) 4.00 (3.93–4.06) 3.88 (3.78–3.99) 3.53 (3.38–3.69) * *
ln (PI) 2.17 (2.12–2.22) 2.38 (2.29–2.47) 2.94 (2.80–3.08) * * *
ln (CPI) 0.28 (0.24–0.32) 0.31 (0.24–0.37) 0.24 (0.14–0.33)
ln (PI/CPR) 1.99 (1.94–2.04) 2.09 (2.01–2.16) 2.44 (2.32–2.56) * *
ln (PI/I) 0.78 (0.72–0.83) 0.85 (0.75–0.94) 1.18 (1.03–1.32) * *

Data are presented for participants grouped according to their glucose tolerance. Values are normalized by natural logarithmic transformation and
expressed as least squares means (95% confidence interval). Analysis of covariance and Tukey’s honestly significant difference test were used to
compare each parameter among the three groups. Model 1, crude; model 2, adjustment for age and sex; model 3, adjustment for age, sex and
body mass index. *P < 0.05. CPI, C-peptide index; DM, diabetes; HOMA-b%, homeostasis model assessment of b-cell function; ln, natural logarithm;
PI, proinsulin; PI/CPR, proinsulin-to-C-peptide ratio; NGT, normal glucose tolerance; PDM, prediabetes; PI/I, proinsulin-to-insulin ratio.
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Prediabetes includes impaired fasting glucose and impaired glu-
cose tolerance, which present with a different pathophysiol-
ogy18. Thus, further studies are required to examine the
usefulness of fasting PI as a marker to discriminate these condi-
tions. Another limitation is that, because of its cross-sectional
design, the present study yielded no evidence on the time
course of these parameters across various stages of glucose tol-
erance. Third, all participants in our study were Japanese, so

whether our results are applicable to non-Japanese populations
remains unclear. Ethnic differences in the pathophysiological
mechanisms of diabetes, including the degree of obesity and
the insulin secretion capacity, have been documented between
Japanese and Caucasians19,20.
In conclusion, the present community-based study showed

that fasting PI was the strongest associated with glucose toler-
ance among the five estimation methods of b-cell function.

Table 3 | Anthropometric and biochemical characteristics of 441 participants without diabetes

Total participants HbA1c quartile P-value

1st Quartile 2nd Quartile 3rd Quartile 4th Quartile

n 441 151 100 81 109
Age (years) 57.4 – 12.6 52.2 – 12.8 56.5 – 12.5 59.4 – 11.4 63.8 – 9.9 <0.001
No. women (%) 248 (56.2) 78 (51.7) 57 (57.0) 52 (64.2) 61 (56.0) 0.334
BMI (kg/m2) 23.6 – 3.6 22.7 – 3.0 23.9 – 3.7 24.0 – 3.8 24.3 – 3.8 0.002
Waist circumference (cm) 81.1 – 10.2 78.5 – 9.0 81.3 – 10.8 82.3 – 10.2 83.5 – 10.6 0.001
FPG (mg/dL) 92 (85–98) 87 (83–94) 89 (85– 94) 95 (90–100) 98 (92–105) <0.001
HbA1c (%) 5.4 (5.2–5.6) 5.1 (4.9–5.2) 5.4 (5.3–5.4) 5.5 (5.5–5.6) 5.9 (5.7–6.0) <0.001
Ιnsulin (lU/mL) 4.1 (2.8–6.1) 3.8 (2.5–5.6) 4.0 (3.0–6.5) 4.2 (3.0–5.9) 5.2 (2.9–7.3) 0.012
C-peptide (ng/mL) 1.1 (0.9–1.6) 1.0 (0.9–1.4) 1.1 (0.9–1.6) 1.1 (1.0–1.6) 1.4 (1.0–1.9) 0.002

Data are presented for the entire group and for participants grouped according to their glycated hemoglobin (HbA1c) levels. Values are expressed
as mean – standard deviation, median (interquartile range) or the number (%) of participants in that category. One-way analysis of variance, Kruskal
–Wallis test or v2-test were used to compare each parameter among the four groups. BMI, body mass index; FPG, fasting plasma glucose.

Table 4 | b-Cell function evaluated by five estimation methods

HbA1c quartile

1st Quartile 2nd Quartile 3rd Quartile 4th Quartile

Model 1
ln(HOMA-b%) 4.00 (3.91–4.10) 4.06 (3.94–4.17) 3.93 (3.80–4.06) 3.89 (3.78–4.00)
ln(PI) 2.05 (1.97–2.14) 2.19 (2.08–2.29) 2.25 (2.13–2.36)* 2.41 (2.31–2.51)*,**
ln(CPI) 0.24 (0.18–0.30) 0.30 (0.22–0.37) 0.28 (0.19–0.36) 0.32 (0.25–0.39)
ln(PI/CPR) 1.95 (1.88–2.01) 2.00 (1.92–2.07) 2.03 (1.94–2.11) 2.10 (2.03–2.18)*
ln(PI/I) 0.76 (0.68–0.84) 0.76 (0.66–0.86) 0.77 (0.66–0.88) 0.86 (0.76–0.95)

Model 2
ln(HOMA-b%) 3.96 (3.86–4.06) 4.05 (3.93–4.17) 3.95 (3.81–4.08) 3.94 (3.83–4.06)
ln(PI) 2.06 (1.98–2.15) 2.20 (2.10–2.31) 2.28 (2.17–2.39)* 2.42 (2.32–2.52)*,**
ln(CPI) 0.23 (0.17–0.29) 0.31 (0.23–0.38) 0.30 (0.22–0.38) 0.35 (0.27–0.42)
ln(PI/CPR) 1.96 (1.89–2.02) 2.00 (1.93–2.08) 2.03 (1.94–2.11) 2.09 (2.02–2.17)*
ln(PI/I) 0.79 (0.71–0.88) 0.77 (0.67–0.87) 0.77 (0.66–0.88) 0.83 (0.73–0.93)

Model 3
ln(HOMA-b%) 4.04 (3.95–4.13) 4.02 (3.91–4.12) 3.89 (3.78–4.01) 3.87 (3.77–3.97)
ln(PI) 2.13 (2.05–2.20) 2.18 (2.09–2.27) 2.24 (2.14–2.34) 2.36 (2.27–2.45)*,**
ln(CPI) 0.28 (0.23–0.33) 0.29 (0.22–0.35) 0.27 (0.20–0.34) 0.30 (0.24–0.36)
ln(PI/CPR) 1.97 (1.90–2.03) 2.00 (1.92–2.08) 2.02 (1.94–2.11) 2.09 (2.01–2.16)
ln(PI/I) 0.76 (0.68–0.84) 0.78 (0.69–0.88) 0.79 (0.68–0.90) 0.86 (0.76–0.95)

Data are presented for participants grouped by glycated hemoglobin (HbA1c) level. Values are normalized by natural logarithmic transformation
and expressed as least squares means (95% confidence interval). Analysis of covariance and Tukey’s honestly significant difference test were used to
compare each parameter among the four HbA1c quartiles. Model 1, crude; model 2, adjustment for age and sex; model 3, adjustment for age, sex
and body mass index. *P < 0.05 versus 1st Quartile, and **P < 0.05 versus 2nd Quartile. CPI, C-peptide index; HOMA-b%, homeostasis model
assessment of b-cell function; ln, natural logarithm; PI, proinsulin; PI/CPR, proinsulin-to-C-peptide ratio; PI/I, proinsulin-to-insulin ratio.
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Considering that fasting PI levels were increased in participants
with PDM, fasting PI is the most sensitive to reflect glucose
intolerance.
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