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Abstract

RNA interference (RNAi) controls arbovirus infections in mosquitoes. Two different RNAi

pathways are involved in antiviral responses: the PIWI-interacting RNA (piRNA) and exoge-

nous short interfering RNA (exo-siRNA) pathways, which are characterized by the produc-

tion of virus-derived small RNAs of 25–29 and 21 nucleotides, respectively. The exo-siRNA

pathway is considered to be the key mosquito antiviral response mechanism. In Aedes

aegypti-derived cells, Zika virus (ZIKV)-specific siRNAs were produced and loaded into the

exo-siRNA pathway effector protein Argonaute 2 (Ago2); although the knockdown of Ago2

did not enhance virus replication. Enhanced ZIKV replication was observed in a Dcr2-knock-

out cell line suggesting that the exo-siRNA pathway is implicated in the antiviral response.

Although ZIKV-specific piRNA-sized small RNAs were detected, these lacked the character-

istic piRNA ping-pong signature motif and were bound to Ago3 but not Piwi5 or Piwi6.

Silencing of PIWI proteins indicated that the knockdown of Ago3, Piwi5 or Piwi6 did not

enhance ZIKV replication and only Piwi4 displayed antiviral activity. We also report that the

expression of ZIKV capsid (C) protein amplified the replication of a reporter alphavirus;

although, unlike yellow fever virus C protein, it does not inhibit the exo-siRNA pathway. Our

findings elucidate ZIKV-mosquito RNAi interactions that are important for understanding its

spread.

Author summary

The recent outbreak of Zika virus (ZIKV) in the Americas has resulted in a severe threat

to public health. ZIKV is transmitted by Aedes aegypti mosquitoes, thus it is important to

understand virus-vector interactions. Analysis of ZIKV infection in mosquito cells indi-

cated that two RNA interference pathways are involved during infection: the exogenous

short-interfering (si)RNA (exo-siRNA) and PIWI-interacting (pi)RNA pathways. If Dcr2,

an enzyme responsible for cleaving dsRNA into siRNAs, is knocked out, ZIKV replication

is increased compared to control cells. However, the knockdown of Ago2 expression had

no significant enhancing effect on ZIKV replication. In the case of the PIWI pathway,
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only the Piwi4 protein was found to have significant antiviral activity. Furthermore, unlike

the capsid (C) protein of yellow fever virus, ZIKV capsid protein does not suppress the

siRNA pathway. These results suggest that ZIKV has mechanisms to evade mosquito

innate immunity and it is therefore important to understand these virus-vector interac-

tions and the implications they have on transmission.

Introduction

Zika virus (ZIKV) is an arbovirus belonging to the family Flaviviridae, genus Flavivirus. The

ZIKV genome is a single-stranded, positive-sense RNA molecule that demonstrates typical fla-

vivirus organization—with a single open reading frame encoding the structural and non-struc-

tural proteins, flanked by 5’ and 3’ non coding regions [1,2]. The emergence of the virus in the

Americas at the beginning of 2015, in addition to its links to Guillain-Barré syndrome as well

as microcephaly, placed the virus firmly in the spotlight [3–5].

Arboviruses infect arthropod vectors and induce antiviral responses that control their repli-

cation. The most prominent of these are the RNA interference (RNAi) pathways [6,7]. In

Aedes aegypti mosquitoes, known to be the key vector for ZIKV transmission [8], there are two

RNAi pathways associated with antiviral responses: the exogenous small interfering (si)RNA

(exo-siRNA) and the PIWI-interacting (pi)RNA (piRNA) pathway. Much of our understand-

ing of mosquito antiviral RNAi is based on comparisons with the Drosophila melanogaster
model. Virus RNA replication results in the synthesis of double-stranded RNA (dsRNA) repli-

cation intermediates that are cleaved into 21 nucleotide (nt) long virus-specific siRNAs (vsiR-

NAs) by Dicer 2 (Dcr2). In turn, vsiRNAs are loaded into the Argonaute 2 (Ago2) protein,

which is part of the RNA-induced silencing complex (RISC). It is presumed that one strand of

the vsiRNA duplex is degraded and the remaining strand guides Ago2 to complementary viral

RNA, resulting in the cleavage and degradation of the target [9–20]. The production of vsiR-

NAs has been identified in arbovirus infected mosquitoes as well as in their derived cell lines

[21–30].

Virus-specific piRNAs (vpiRNA) have also been described in arbovirus infected mosquitoes

and derived cell lines [20–22,24,28,31,32]. These are 25–29 nt in length and are produced

through a so-called ‘‘ping-pong” amplification loop which gives the vpiRNAs specific molecu-

lar signatures: primary-type piRNAs have a uridine at position 1 [U1] and secondary piRNAs

have an adenine at position 10 [A10]. The Ae. aegypti genome encodes seven PIWI proteins

(Piwi1-7) and a single Ago3 protein involved in this pathway [24,33,34]. The role of piRNAs in

the control of arbovirus infection is enigmatic and although piRNAs have been suggested to be

antiviral, this has not been directly demonstrated. The only PIWI protein with antiviral activity

in Ae. aegypti is Piwi4. However, Piwi4 does not bind piRNAs, nor is it involved in the produc-

tion of virus-specific piRNAs [24,34,35]. Previous studies have shown that Ago2 silencing in

mosquito-derived cells or mosquitoes increased replication of arboviruses of the Togaviridae
(genus Alphavirus), Flaviviridae and Bunyaviridae (genus Orthobunyavirus) families

[23,24,31,35–37] following pioneering work on this RNAi effector protein in D. melanogaster
[38]. Silencing of Piwi4 has only been shown to result in the upregulation of the replication of

the alphavirus Semliki Forest virus (SFV) and the bunyaviruses Bunyamwera virus (BUNV)

and Rift Valley fever virus (RVFV) [24,31,39].

Here we studied ZIKV interactions with the RNAi response of Ae. aegypti mosquito cells.

We found that ZIKV induced the production of both virus-specific siRNAs and piRNAs,

although vpiRNAs lack the specific signature expected of such small RNAs. Furthermore, our

RNAi responses to Zika virus
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findings indicate that although vsiRNAs were loaded into Ago2, silencing of this protein did

not enhance virus replication. Indeed, increased replication in Dcr2 knockout cell lines was

the main indicator for an antiviral role of the exo-siRNA pathway. With the exception of

Piwi4, the knockdown of PIWI proteins also did not enhance virus replication. Moreover,

ZIKV capsid protein (C) amplified the replication of an alphavirus-based reporter system but

did not display exo-siRNA pathway inhibition, unlike that of another flavivirus, yellow fever

virus (YFV) [40]. These findings are important in understanding this specific arbovirus-vector

interaction and may support efforts to understand the rapid spread of this virus.

Materials and methods

Plasmids

V5-tagged proteins were expressed under the control of the Ae. aegypti polyubiquitin pro-

moter in stably transfected cell lines and the plasmids pIZ-Fluc and pAc1-Rluc have been

described previously [41]. Plasmid, pCMV-SFV6(3H)-RLuc-2SG, containing reporter virus

cDNA based on SFV strain 6 [42] was used for cloning purposes. The reporter virus expresses

Renilla luciferase from a duplicated nsP2 cleavage site located between nsP3 and nsP4 proteins.

It also contains a duplicated subgenomic promoter allowing it to also express either the tom-

busvirus RNAi inhibitor p19, ZIKV capsid protein C or eGFP. The infectious clone-containing

plasmids are referred to as pCMV-SFV6(3H)-RLuc-2SG-p19, pCMV-SFV6(3H)-RLuc-

2SG-ZIKV_C or pCMV-SFV6(3H)-RLuc-2SG-eGFP, respectively. Firefly luciferase-express-

ing reporter virus SFV(3H)-FFLuc has been previously used and is based of SFV strain 4 [41].

Rescue of SFV from cDNA and titration have been previously described [41,43].

Cells and ZIKV

Ae. aegypti-derived Aag2 cells [31] (received from P. Eggleston, Keele University, UK), were

grown in L-15+Glutamax (Life Technologies) supplemented with 10% Tryptose Phosphate

Broth (TPB, Life Technologies), 10% fetal bovine serum (FBS, Life Technologies), and penicil-

lin-streptomycin (final concentration 100 units/mL, 100 μg/mL respectively, Life Technolo-

gies). Ae. aegypti-derived Dcr2 KO cells AF319 and their parental cell line, AF5 (produced

previously by the authors, see [41]) were grown in same conditions as Aag2 cells. The media

for growing Aag2-based cell lines expressing V5-tagged proteins (established previously by the

authors, see [41]) also included zeocin (final concentration of 100 μg/ml). A549/BVDV-Npro

cells (stably expressing Npro protein of bovine viral diarrhea virus, which induces degradation

of IRF3 and thus optimized for virus growth; provided by R. E. Randall, University of St

Andrews, UK) [44] were grown in DMEM (Life Technologies) supplemented with 10% FBS,

puromycin (2 μg/ml) and penicillin-streptomycin (final concentration 100 units/mL, 100 μg/

mL, respectively) at 37˚C/ 5% CO2; these cells were used for plaque titration of ZIKV. The Bra-

zilian ZIKV strain PE243 used in the study has been described previously by the authors [45].

Protein immunoprecipitation

For small RNA capture assays, 1x107 cells stably expressing V5-eGFP, V5-Ago2 or V5-Piwi4

were infected with ZIKV PE243 at MOI 1. At 48 hpi the cells were scraped and washed with

PBS. A detailed protocol has been described previously [41]. In short, cells were resuspended in

lysis buffer (150mM NaCl, 5mM MgCl2, 20mM Hepes (pH 7.4), 0.5% Triton X-100, protease

inhibitor cocktail [Roche]) and kept on ice for 20 min, followed by centrifugation at 15000 x g

at 4˚C for 25 min. The supernatant was then transferred into fresh tubes on ice and mouse anti-

V5 antibody (at 1:500; ab27671 Abcam) added. Tubes were rotated for 2 h at 4˚C. Following

RNAi responses to Zika virus
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this, protein G magnetic beads (Dynabeads Protein G, Life Technologies) equilibrated with cold

washing buffer (150mM NaCl, 5mM MgCl2, 20mM Hepes (pH 7.4), 0.5% Triton X-100) were

added. Tubes were again rotated for 1 h at 4˚C. The beads were then washed 4 times with wash-

ing buffer. Washed beads were finally resuspended in 100 μl washing buffer and 1/20 of the vol-

ume was subjected to western blot analysis while the remainder was used for RNA extraction.

Extraction of protein-bound small RNA from beads

5 μl of proteinase K (20mg/ml) was added to magnetic beads resuspended in washing buffer

and samples were placed into a water bath at 37˚C for 30 min. Following this, 1 ml of Trizol

reagent (Life Technologies) was added to the sample and processed as per the manufacturer’s

instructions.

cDNA synthesis

250 μl Trizol was added to 1.8x105 AF5 or AF319 cells per well of a 24-well plate. Material

from two wells was then pooled and the total cellular RNA extracted as per the manufacturer’s

instructions. 1.5 μg of total RNA was used for cDNA synthesis using Superscript III (Life Tech-

nologies) and oligo(dT)15 (Promega), for quantification of mRNAs, or random primers (Pro-

mega), for quantification of ZIKV genomic RNA, according to manufacturer’s instructions.

Small RNA sequencing and sequence analysis

Trizol was added to 1x106 cells or immunoprecipitation samples and RNA was extracted

according to the manufacturer’s protocol. To increase small RNA precipitation efficiency,

glycogen was added as a carrier. Small RNAs of 15–40 nt in length were gel purified and

sequenced on an Illumina HiSeq 4000 at BGI Tech. Sequence reads were aligned to the ZIKV

reference genome (Genbank accession number: KX197192.1) using in-house BLAST guided

bioinformatics pipeline. Maximum of one mismatch was allowed in the alignments. Reads that

matched the reference genome with alignment lengths from 18bp to 36bp were extracted for

further analysis. They were separated into two groups, positive and negative based on the

reads’ alignment to genome and antigenome respectively. Size distribution of aligned small

RNAs is shown in Fig 1. See S1 Table for additional information. Small RNA sequencing data

available at Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) under accession

PRJNA396680.

qRT-PCR

Quantitative RT-PCR for ZIKV and the housekeeping gene S7 was performed using specific

primers (S2 Table), SYBR green Mastermix (Abi) and an ABI7500 Fast according to manufac-

turer’s protocol. Results were analyzed using the ΔΔCt method.

Transfection of nucleic acids

For transfections, 2 μl of Dharmafect 2 (GE Healthcare) per well of a 24 well plate was used.

For RNAi reporter assays in SFV-infected cells, 1 ng of dsRNA (Fluc specific or LacZ specific)

or 1 ng siRNA (targeting Fluc or Hygromycin B resistance gene) were co-transfected with 100

ng of pIZ-Fluc. For assessing silencing efficiency in ZIKV-infected cells, 200 ng of pIZ-Fluc

and 100 ng of pAc1-Rluc plasmids were co-transfected with 0.25 ng of dsRNA (Fluc specific or

eGFP specific) or 0.25 ng of siRNA (targeting Fluc or Hygromycin B resistance gene). To

induce mosquito host gene silencing, 300 ng of gene-specific dsRNA was used.

RNAi responses to Zika virus
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dsRNA production

T7 promoter-flanked PCR products were used for in vitro transcription. These were treated

with DNase1 and RNaseA followed by column purification of the dsRNA using the RNAi

Fig 1. ZIKV-specific small RNAs in Ae. aegypti-derived Aag2 cells. Size distribution of small RNA from

ZIKV (MOI 1, 48 hpi) infected cells. (A) Sequences mapping to viral genome (red) and antigenome (green).

Distribution of 21 nt (B) or 27 nt (C) long small RNAs along the ZIKV genome (red, positive numbers on Y-

axis) or antigenome (green, negative numbers on Y-axis), the number next to peak indicates the location of

piRNAs. Results shown are for one representative experiment, out of two performed. (D) Partial alignment of

DENV and ZIKV genomes is shown, green boxes indicate positions 9985–9990 (starting locations for most

predominant DENV-derived piRNAs) or positions 10094–10098 (starting locations of ZIKV-specific piRNAs).

https://doi.org/10.1371/journal.pntd.0006010.g001
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Megascript kit (Life Technologies) as per the manufacturer’s instructions. For silencing pur-

poses, previously described and verified dsRNAs were used [24,31,36].

Luciferase assays

Aag2, AF5 and AF319 cells were seeded at 1.5x105 cells per well in 24 well plates and infected

with either SFV(3H)-FFLuc, SFV6(3H)-RLuc-2SG-p19, SFV6(3H)-RLuc-2SG-ZIKA_C, SFV6

(3H)-RLuc-2SG-eGFP. Cells were lysed with passive lysis buffer (Promega). Luciferase Assay

System (Promega) was used to measure firefly luciferase activity only. To measure Renilla
activity, the Renilla luciferase Assay (Promega) system was used. For measuring both activities

the Dual Luciferase Reporter Assay System (Promega) was utilized.

Protein sequence comparison

To determine the similarity between the capsid protein of different flaviviruses, Needleman-

Wunsch algorithm was used (http://www.ebi.ac.uk/Tools/psa/emboss_needle/). The Genbank

access numbers are as follows: KX197192.1 (ZIKV), KM204118.1 (dengue virus [DENV]),

KF769016.1 (YFV).

Results

ZIKV infection induces the production of virus-derived small RNAs in Ae.

aegypti-derived mosquito cells

To assess the production of virus-derived small RNAs Aag2 cells were infected with a Brazilian

ZIKV isolate, PE243 [45] at a multiplicity of infection (MOI) of 1. RNA was isolated at 48

hours post-infection (hpi) and small RNA pools were sequenced and analyzed. ZIKV-specific

21 nt long siRNAs (vsiRNAs) were found to be produced in infected cells (Fig 1A). Further-

more, the number of vsiRNAs mapping to the ZIKV genome were found to be roughly equal

to those mapping to the antigenome with the vsiRNAs being distributed across the genome

and antigenome (Fig 1B). Small RNAs in the size range of ZIKV-specific vpiRNAs (25–29 nts)

were also detected. Positional mapping indicated that one region near the 3’ end of the genome

gave rise to the majority of vpiRNAs as their 5’ ends mapped to positions 10094–10098 (Fig

1C), a region in the NS5-encoding region. Furthermore, these vpiRNAs were exclusively of

positive polarity. Additional sequencing analysis of these putative vpiRNAs molecules showed

a lack of the typical piRNA ping-pong signature, i.e. the absence of U1/ A10 predominance in

the small RNA sequences. Intriguingly, DENV-specific vpiRNAs also mapped to a small num-

ber of locations on the genome [35]. Comparative analysis showed that the most predominant

piRNA sequences of DENV (piRNA 5’ ends mapping to position 9985–9990) overlap with this

ZIKV-specific, piRNA-like small RNA generating region (Fig 1D).

Analysis of the interactions between virus-derived RNAs and RNAi

effector proteins

We analyzed whether virus-derived small RNAs are loaded into RNAi effector proteins and

determined which of these would be crucial for mediating antiviral activities. Ago2-bound

small RNAs were investigated using a previously developed Aag2 cell line which stably expresses

V5-tagged Ago2 [41]. Ago2 was immunoprecipitated (S1 Fig) at 48 hpi following infection with

ZIKV (MOI 1) and the captured small RNAs were sequenced. Samples from cells expressing

V5-tagged eGFP were used as control. Small RNA analysis showed that Ago2 bound 21 nt small

RNAs (Fig 2) and these ZIKV-specific vsiRNAs were distributed along both genomic and anti-

genome strands. This indicates that dsRNA-derived vsiRNAs were successfully loaded into

RNAi responses to Zika virus
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Ago2. Similar experiments were conducted to determine which RNAs were bound by Ago3,

Piwi4, Piwi5 or Piwi6 proteins (Fig 2, S2 Fig), which are involved in the piRNA ping-pong

amplification loop in Ae. aegypti [34,46]. Sequence analysis revealed Ago3-bound ZIKV genome

vpiRNAs mapped specifically to positions 10094–10098 of the viral genome (Fig 2B), while the

read numbers for other potential vpiRNAs were too low for further analysis. However, no

ZIKV-specific piRNA molecules were found to be associated with either Piwi5 or Piwi6 (S2

Fig), although small amounts of 18 nt and 19 nt small ZIKV-specific RNAs were found to be

associated with these proteins. In the case of Piwi4, relatively low amounts of ZIKV-specific

vsiRNA and vpiRNA-like small RNAs were detected (S2 Fig). However, these may not be

bound by Piwi4 directly as other RNAi pathway proteins (Ago2, Dcr2, Ago3, Piwi5 and Piwi6)

can interact with Piwi4, as previously shown [34,41], and this will require further investigations.

Several flaviviruses are known to produce miRNA-like small RNAs (22–24 nt) and thereby reg-

ulate host gene expression [47]. However, our data indicated that the majority of small RNAs in

the size range of 22–24 nt could be mapped to positions 10094–10098 (S3 Fig) and these mole-

cules were bound by Ago3, suggesting that these small RNAs were related to vpiRNAs rather

than miRNAs.

The effect of RNAi effector knockdown on ZIKV replication

We previously showed that the knockdown of Ago2 and Piwi4 enhanced replication of the

alphavirus SFV and the orthobunyavirus BUNV in Aag2 cells [24,31]. Similarly, others have

Fig 2. Characterization of ZIKV-specific small RNAs bound by Ago2 or Ago3. Aag2 cells expressing V5-Ago2 or V5-Ago3 were infected with ZIKV

(MOI 1). At 48 hpi V5-tagged protein was immunoprecipitated followed by the isolation of small RNAs bound to these proteins. Analysis of Ago2 (left

panels) and Ago3 (right panels) associated small RNAs are shown. (A) Size distribution of small RNAs mapping to ZIKV genome (red) or antigenome

(green). (B) Distribution of Ago2 and Ago3 bound small RNAs (21 nt and 27 nt, respectively) along the ZIKV genome (red, positive numbers on Y-axis)

or antigenome (green, negative numbers on Y-axis). Two independent experiments were carried out and the results of one representative experiment

are shown here.

https://doi.org/10.1371/journal.pntd.0006010.g002
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shown that silencing of Ago2 in Ae. aegypti-derived cells or Ae. aegypti mosquitoes enhances

Sindbis virus (SINV; genus Alphavirus) and dengue virus (DENV, a flavivirus related to ZIKV)

replication [23,35,48]. However, in the case of DENV this was not found to be statistically sig-

nificant. In order to assess the antiviral roles of these known RNAi effectors on ZIKV, cells

were first transfected with previously validated dsRNAs (see Materials and Methods) targeting

RNAi effector proteins (Fig 3A) followed by infection with ZIKV at MOI 0.1 24 h later. For

validation of the assay, Firefly luciferase (FFLuc) expressing SFV vector SFV(3H)-FFLuc was

used. Surprisingly, we found that the knockdown of Ago2 had no effect on ZIKV titer at 72 hpi

or 120 hpi (Fig 3B and 3C). However, the knockdown of Piwi4 significantly increased virus

titers as measured at 72 hpi and 120 hpi time points. Additionally, silencing of Ago3 also

resulted in decreased ZIKV titers at 120 hpi while silencing of Piwi5 or Piwi6 had no major

effect on ZIKV production. However, in the case of SFV(3H)-FFLuc luciferase readings at 48

hpi indicated that Ago2 and Piwi4 were antiviral, as luciferase expression was 25 and 8 fold

higher respectively (Fig 3D). Similarly, at 72 hpi, where the reads were 12 and 6 fold higher for

Ago2 and Piwi4 respectively (Fig 3E). Silencing of Ago3, Piwi5 or Piwi6 had no major effect

on luciferase levels, as expected [24] (Fig 3D and 3E).

The effect of the knockdown of RNAi effector proteins on ZIKV replication was also

assessed by quantifying the levels of viral genomic RNA present in infected cells. This was

achieved by qRT-PCR which indicated that, surprisingly, silencing of Ago2 resulted in lower

levels of viral genomic RNA (Fig 3F). Knockdown of Piwi4 was found to enhance virus replica-

tion while silencing of Ago3 had an inhibitory effect, suggesting that Ago3 has proviral activity.

These data correlated with virus titers (Fig 3). The unexpected failure of Ago2 silencing to per-

mit increased ZIKV replication led us to verify the role of the exo-siRNA pathway through the

use of Dcr2 knockout cells. AF5 cells are derived from a single clone of Aag2 cells which pos-

sess functional Dcr2 activity and subsequent siRNA production. Conversely, CRISPR-Cas9

technology was used to produce the Dcr2-deficient AF5 derivative cell line, AF319, which does

not generate siRNAs, as described previously [41]. A comparison between the replication of

ZIKV in both AF5 and AF319 cell lines showed higher virus production in AF319 at 72 and

120 hpi (Fig 4A). Moreover, the results of the qRT-PCR experiment to measure viral genomic

RNA levels showed that the lack of Dcr2 benefits virus replication (Fig 4B). This indicated that

Dcr2 can recognize and cleave ZIKV-derived dsRNA and the exo-siRNA pathway does play

an antiviral role against ZIKV.

Since insect and plant viruses can inhibit RNAi pathways [49], we assessed if ZIKV can

interfere with siRNA-based silencing. For this, pIZ-Fluc and pAc1-Rluc plasmids were co-

transfected together with dsRNAs targeting firefly luciferase or eGFP (control) into mock- or

ZIKV- infected (MOI 1) Aag2 cells at 96 hpi. In mock-infected and ZIKV-infected cells the

silencing was 5-fold, which indicates that ZIKV infection did not reduce silencing efficiency

(Fig 5A). Similarly, by using siRNAs targeting firefly luciferase or Hygromycin B resistance

gene (negative control), we observed the same outcome as siRNAs targeting Fluc functioned

as efficiently in mock and ZIKV-infected cells (Fig 5B). These data indicated that ZIKV did

not inhibit the siRNA pathway.

Effect of ZIKV capsid (C) protein on antiviral RNAi

A recent report has determined that the expression of the C protein of the related mosquito-

borne flavivirus, YFV, can enhance the replication of SINV. It was shown to bind viral dsRNA

and protect nucleic acid from cleavage by human dicer [40]. The replication-enhancing effect

was found to be common for the C protein of other flaviviruses, including ZIKV. However, no
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Fig 3. Effect of RNAi effector knockdown on ZIKV replication. (A) Aag2 cells were transfected with dsRNAs targeting Ago2 (dsAgo2), Piwi4

(dsPiwi4), Ago3 (dsAgo3), Piwi5 (dsPiwi5), Piwi6 (dsPiwi6) or eGFP (dseGFP, control). After 24 h the total cellular RNA was isolated and subjected

to cDNA synthesis. Using gene-specific primers the knockdown efficiency was assessed by qRT-PCR. The mean values of relative RNA levels

from three independent experiments together with standard error are shown. (B, C) Aag2 cells transfected with dsRNAs were infected with ZIKV

(MOI 0.1), samples were collected for titration at 72 hpi (B) or 120 hpi (C). When samples were collected at 120 hpi, the infected cells were re-

transfected with dsRNAs at 48 hpi. The mean values from 6 independent experiments together with standard error are shown. (D, E) Transfected

cells were infected firefly luciferase-expressing SFV(3H)-FFLuc virus (depicted above) at MOI 0.01 and cells were lysed at 48 hpi (D) or 72 hpi (E)

to measure luciferase activities. The relative mean firefly luciferase amounts with error of the mean, from two independent experiments conducted

in quadruplicate are shown. (F) Mean relative ZIKV genomic RNA levels from three independent experiments (using ribosomal S7 as a

housekeeping gene) in dsRNA treated cells at 72 hpi, transfection conducted as described in panel B. Error bars show error of mean. For statistical

analysis, to reduce the heterogeneity, log-transformation (B, C, E) or 1/x-transformation (D, F) was conducted; Dunnett’s test was used for multiple

comparisons purposes; * indicates significance by p<0.05.

https://doi.org/10.1371/journal.pntd.0006010.g003
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further studies were conducted with these. The sequence similarity between ZIKV and YFV

capsid is only 47.2% (identity 24.8%), as determined by the Needleman-Wunsch algorithm.

Despite that we could not detect that ZIKV infection affects dsRNA or siRNA-mediated

silencing in a plasmid-based assay (see above, Fig 5), we decided to assess the hypothetical pos-

sibility that ZIKV C protein could also, similar to YFV, inhibit the antiviral siRNA response.

We started by cloning the full length ZIKV C (amino acid residues 1–122) under the dupli-

cated subgenomic promoter of SFV. Recombinant SFV expressing either tombusvirus siRNA-

binding p19 [50] or eGFP were used as positive and negative controls, respectively. In addi-

tion, these viruses expressed Renilla luciferase reporter inserted into duplicated nsP2 cleavage

sites situated between non-structural nsP3 and nsP4 (Fig 6A). Infection of AF5 or (Dcr2 KO)

Fig 4. Replication of ZIKV in Dcr2 knockout mosquito cells. AF319 (Dcr2 deficient) cells or their parental cells AF5 (derived from Aag2 cells) were

infected with ZIKV (MOI 0.1) and virus in supernatant titrated at 72 hpi and 120 hpi (A). The mean values of 6 independent experiments together with

error of mean are given. Alternatively, relative viral genome copy numbers in the cells were measured by qRT-PCR using the S7 gene as a

housekeeping gene. Obtained values were normalised to those in AF5 cells at 72 hpi (B). The mean values of three independent experiment together

with error of mean are shown. * indicates significance by two-tailed Student t-test assuming unequal variance, p<0.05.

https://doi.org/10.1371/journal.pntd.0006010.g004

Fig 5. Effect of ZIKV infection on gene silencing. Aag2 cells were either mock-infected or infected with ZIKV at MOI 1. (A) At 96

hpi firefly luciferase (Fluc) and Renilla luciferase (Rluc) expressing vectors were co-transfected with dsRNA targeting Fluc (dsFluc)

or as control, eGFP (dseGFP); relative luciferase levels are shown on the Y- axis (with Fluc/Rluc ratio in dsLacZ transfected cells

set to 1). (B) Alternatively, siRNAs against Fluc (siFluc) or Hygromycin B resistance gene (siHyg) as a control were used in co-

transfection; cells were lysed at 24 h post-transfection. Mean values with standard error are shown for three independent

experiment conducted in triplicate. * indicates significance p<0.05, according to two-way ANOVA.

https://doi.org/10.1371/journal.pntd.0006010.g005
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Fig 6. ZIKV capsid C enhances replication of a reporter SFV but does not affect the exo-siRNA pathway. (A) Design

of Rluc reporter SFV expressing eGFP, p19 or ZIKV C protein from a duplicated subgenomic (2SG) promoter: SFV6(3H)-

RLuc-2SG-eGFP, SFV6(3H)-RLuc-2SG-p19 or SFV6(3H)-RLuc-2SG-ZIKV_C respectively. These viruses were used to

infect AF5 or AF319 cells at either MOI 0.01 (B) or MOI 0.001 (C). Experiments were performed three (B) or four (C) times

in quadruplicate. Replication and/or spread was determined by Renilla luciferase activity. The mean relative luciferase

activity values (compared to the levels measured at 24 hpi) are given on the Y-axis and the error bars indicate the error of

the mean. (D) At 24 hpi, Fluc-expressing reporter plasmid was co-transfected with dsRNAs (against Fluc, dsFluc; or LacZ,

dsLacZ) or siRNAs (against Fluc, siFluc; or Hygromycin B resistance gene, siHyg) into cells infected with viruses described

under (A) at MOI 1. Cells were lysed at 24 h post-transfection. The relative mean Fluc activity values, together with error of

the mean, from three experiments conducted in quadruplicate are shown. * indicates significance, p<0.05. For panels B

and C, Student t-test (two-tailed, assuming unequal variance); for D, two-way ANOVA.

https://doi.org/10.1371/journal.pntd.0006010.g006
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AF319 cell lines at low MOI (0.01) was carried out to monitor virus replication and/or spread

by determining Renilla luciferase activity. Although the replication of SFV expressing ZIKV C

was enhanced in AF5 cells as expected (Fig 6A), surprisingly, enhanced replication was also

observed in Dcr2 deficient AF319 cells. This contrasts to results with p19 where its enhancing

effect in AF319 cells compared to AF5 cells is lost (Fig 6B). The effect of the expression of

ZIKV C was found to be even more prominent and evident at lower a MOI (0.001) (Fig 6C).

Both ZIKV C and p19 benefitted SFV replication in AF5 cells, with the former promoting

greater virus replication compared to p19. Similarly, in AF319, the effect of Zika C on SFV rep-

lication was strong and Rluc levels were again significantly higher compared to viruses

expressing p19 or eGFP. These results indicated that the ZIKV C protein could help to over-

come inhibitory antiviral processes and enhance SFV replication and/or spread more effi-

ciently than p19, even in the absence of a functioning exo-siRNA pathway.

To determine whether the ZIKV C protein could inhibit the exo-siRNA pathway, Aag2

cells were infected (MOI 1) with recombinant SFV expressing ZIKV C, p19 or eGFP as

described above. At 24 hpi cells were transfected with a firefly luciferase (Fluc)-expressing plas-

mid along with Fluc-specific (or negative control) dsRNAs/siRNAs. When dsRNAs were

transfected, determination of Fluc activity at 24 h post-transfection showed that neither the

expression of ZIKV C nor p19 affected the silencing efficiency, as compared to eGFP (Fig 6D).

Conversely, p19 expression led to reduced siRNA-mediated silencing activity, as expected, as

approximately 20% luciferase activity in p19 was observed versus 5% activity in eGFP express-

ing cells. However, the expression of the ZIKV C protein had only a minor effect with 7%

activity of Fluc remaining. Thus, this suggested that the ZIKV C protein has no effect on small

RNA pathway-mediated gene silencing, which correlates well with the notion that in ZIKV

infected cells no general siRNA pathway inhibition occurs (Fig 5).

Discussion

The production of virus-specific siRNAs and piRNA-like molecules in infected mosquitoes or

mosquito-derived cells has been demonstrated for viruses from all of the major arbovirus fami-

lies: Flaviviridae, Togaviridae and Bunyaviridae [6,7]. Here we demonstrated that ZIKV also

induces the production of 21 nt vsiRNAs as well as small RNAs of the size expected for piR-

NAs; although these do not display the molecular signature of typical piRNAs. We found that

ZIKV-specific vsiRNAs were loaded into Ago2 and thus, in principle, can target viral RNA

and mediate degradation. Surprisingly however, the knockdown of Ago2 was not sufficient to

increase ZIKV replication and only the knockout of Dcr2 led to an increase in virus replica-

tion. This suggests that the exo-siRNA pathway does mediate antiviral activity against this

virus; however, its replication may be protected from Ago2 mediated activity through a yet

unknown virus-mediated resistance mechanism. This may not be so exceptional as it has pre-

viously been observed that the knockdown of Ago2 only resulted in an approximately 2-fold

(statistically non-significant) increase in DENV genomic RNA in Aag2 cells [35]. Similarly,

Ago2 silencing was only found to be marginally beneficial (20%) for BUNV replication [31],

but another orthobunyavirus -Schmallenberg virus- showed a 7-fold increase in viral RNA lev-

els. Perhaps direct dicing of viral dsRNA is more relevant in this context than RISC-mediated

antiviral effects. It is also known that flavivirus replication is coupled to viral packaging [51].

Our data could suggest that the packaging of ZIKV RNA occurs rapidly which prevents the

recognition of genomic RNA by Ago2 loaded with specific siRNAs. ZIKV is known to heavily

modify the ER and form replication factories in mammalian cells [52]. Importantly in the con-

text of RNAi, West Nile Virus (WNV) was shown to become resistant to siRNAs after infection

of vertebrate cells following transfection but not electroporation, suggesting that evasion of
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silencing was taking place [53]. Thus, it could be expected that similar membrane modifica-

tions occur in insect cells and such replication factories could shield ZIKV genome from Dcr2

and/or Ago2 detection. This is also relevant from a comparative point of view, as alphavirus

replication (despite also occurring in cytoplasmic, membranous structures) is generally

increased by Ago2 silencing. How RNAi effectors target viral replication complexes is there-

fore an intriguing question and localization studies are required to shed light on these pro-

cesses and differences between virus families. Thus, there are common points and differences

between arbovirus families with regards to RNAi responses in mosquito vectors, and the func-

tional relevance of these need to be further assessed in comparative studies.

To our knowledge, no study has shown that vpiRNAs directly inhibit virus replication and

the role of PIWI proteins remains enigmatic. Indeed, only the Piwi4 protein has consistently

shown antiviral activity against bunyaviruses and alphaviruses [24,31]. However, the antiviral

effector mechanism of Piwi4 is unknown. It may interact with piRNA-like small RNAs or 21

nt small RNAs directly, or this association may occur via Piwi4 interaction partners Ago3,

Piwi5, Piwi6 and Ago2. Moreover, Piwi4 is not required for the production of virus-specific

piRNAs, at least in the case of alphaviruses and DENV [24,35]. Although we could detect the

production of ZIKV-specific piRNA-sized small RNAs, these could be mapped to a single site

on the viral genomic strand and lacked the characteristic piRNA signature. Those piRNA-like

molecules or vpiRNAs were found to be bound by Ago3; although, intriguingly the knock-

down of Ago3 decreased ZIKV replication slightly. Similarly in the case of DENV, vpiRNAs

mapped to a few discrete sites on the genome and Ago3 was also found to be proviral [35]. In

another study, Piwi5, a key protein involved in piRNA production, was found to positively

affect BUNV virus [31], which further questions the antiviral role of piRNAs, at least during

the acute phase of infection. Intriguingly, a recent study [54] assessed the induction of virus-

derived small RNAs following infection of Ae. aegypti by ZIKV up to 14 days post-infection

and, similarly, virus-specific piRNA-like molecules did not display the ping-pong signature.

However, over time piRNAs could be mapped on more locations on the ZIKV genome. The

relevance of these observations needs to be experimentally assessed, especially as a study in

Aag2 cells infected with mosquito-borne RVFV also showed an increase in vpiRNAs (with the

ping-pong signature) especially from the S and M genome segments over time [21]. The role

and activity of the piRNA pathway may be delayed compared to the exo-siRNA pathway.

Since flaviviruses encode miRNAs to control host cell gene expression [47], it is possible

that ZIKV, or flaviviruses in general, use piRNAs for this purpose, although this needs further

experimental verification. Regardless, the direct role of vpiRNAs remains to be elucidated and

the function of Piwi4 in this or other pathways remains perplexing, despite its consistent anti-

viral activity.

The ability of the flavivirus C protein to inhibit small RNA-based antiviral responses is

intriguing. The YFV C protein was found to bind both single-stranded RNA and dsRNA, and

prevented cleavage of the latter [40] in an in vitro experiment with human Dicer. Furthermore,

expression of the C protein from other flaviviruses (WNV, Rio Bravo virus, ZIKV, DENV)

enhanced SINV replication. However, the lengths (or specific amino acid residues) of the

expressed flavivirus C proteins were not indicated in the published study and so it was not pos-

sible to determine if longer, membrane-bound or shorter, cleaved C proteins were mediating

the observed effects [55]. As shown here, the full length ZIKV C protein could also enhance

the replication of another alphavirus, SFV. However, this also occurred in cells lacking Dcr2,

which suggests that the ZIKV C protein inhibits antiviral processes other than the exo-siRNA

pathway (Fig 5). YFV is phylogenetically more distant than DENV to ZIKV, and although the

general topology of the C protein is conserved among the three viruses [55], the sequence simi-

larity between YFV and ZIKV C proteins is low (24.8%). Thus, it is likely that their proviral
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mode of action is different. Moreover, in ZIKV-infected cells no reduction in the efficiency of

siRNAs or dsRNAs to silence gene expression could be detected, which also suggests that the

ZIKV C protein acts in a manner that does not involve the counteraction of Dcr2.

Understanding of virus-vector relations provides further insights into the spread of disease.

Recent studies by us and others indicate a complex interplay between arboviruses and mos-

quito host responses. Viruses have adopted countermeasures against the immune system,

which in turn results in selective pressures on the vector. It is highly possible that relative resis-

tance to the antiviral effect of Ago2 is a result of this process. Future work on flaviviruses, such

as ZIKV, will need to identify whether any direct targeting of this effector takes place, but also

why vpiRNA characteristics are different to other arbovirus families. This is likely to give

important clues relating to how different arboviruses are spread by mosquitoes and whether

family-specific weaknesses can be exploited.
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