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A B S T R A C T   

Structured RNAs play crucial roles in viruses, exerting influence over both viral and host gene expression. 
However, the extensive diversity of structured RNAs and their ability to act in cis or trans positions pose chal-
lenges for predicting and assigning their functions. While comparative genomics approaches have successfully 
predicted candidate structured RNAs in microbes on a large scale, similar efforts for viruses have been lacking. In 
this study, we screened over 5 million DNA and RNA viral sequences, resulting in the prediction of 10,006 novel 
candidate structured RNAs. These predictions are widely distributed across taxonomy and ecosystem. We found 
transcriptional evidence for 206 of these candidate structured RNAs in the human fecal microbiome. These 
candidate RNAs exhibited evidence of nucleotide covariation, indicative of selective pressure maintaining the 
predicted secondary structures. Our analysis revealed a diverse repertoire of candidate structured RNAs, 
encompassing a substantial number of putative tRNAs or tRNA-like structures, Rho-independent transcription 
terminators, and potentially cis-regulatory structures consistently positioned upstream of genes. In summary, our 
findings shed light on the extensive diversity of structured RNAs in viruses, offering a valuable resource for 
further investigations into their functional roles and implications in viral gene expression and pave the way for a 
deeper understanding of the intricate interplay between viruses and their hosts at the molecular level.   

1. Introduction 

Structured RNAs have diverse cis- and trans-regulatory roles across 
all domains of life. To predict structured RNAs in sequence data, several 
high-throughput comparative genomics analyses have been imple-
mented on metagenomics data [1–4]. In summary, these strategies 
cluster intergenic regions from many organisms, predict motifs, and 
then score motifs based on nucleotide covariation. Covariation occurs 
when two base-paired sequences in a structured RNA vary together, 
suggesting there is selective pressure to preserve an underlying structure 
[5]. Thus, the observation of substantial covariation is useful to propose 
novel candidate structured RNAs (csRNAs). Viral sequences were only a 
small component of these metagenomic datasets used previously to 
predict csRNAs [1–3]; and therefore, high-throughput, large-scale ana-
lyses specifically of viral sequences have yet to be performed. Thus, 

many structured RNAs in viral genomes likely remain to be discovered. 
Growing evidence suggests that viruses regulate expression of their 

genes and host genes using virus-encoded structured RNAs [6]. For 
example, F-CphI is a cis-encoded structured RNA in S-PM2 phage that 
infects Synechococcus species. F-CphI likely translationally regulates 
psbA, a cyanophage-encoded gene that aids the host in maintaining 
photosynthetic capacity [7]. Misc_4 is a structured RNA in ΦR1–37 
phage that infects Yersinia enterocolitica, and likely targets and transla-
tionally regulates ptr, tufA, and ddrA host genes [8]. IpeX is a cis-encoded 
structured RNA in PA-2 phage that infects E. coli. Regulating IpeX 
expression affects expression of host genes ompC and ompA. No com-
plementary sequences exist between IpeX, ompC, and ompA [9,10], 
suggesting this regulation is indirect. These findings collectively suggest 
that both cis- and trans-encoded structured RNAs in phages have direct 
and indirect effects on phage and host gene expression. Phages also 
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encode their own tRNAs, perhaps to account for codons that are more 
prevalent in phage than host genomes or because amino acid usage 
differs between phage and host proteins [11,12]. Additionally, viruses 
can encode tRNA-like structures to control translation or perform other 
roles [13]. In RNA viruses, non-canonical translation has been observed 
[14,15]. Further, some tRNAs naturally form non-canonical structures 
[16], suggesting that previously unidentified tRNAs and tRNA-like 
structures likely exist in viruses. 

In recent years, substantial work has revealed novel DNA and RNA 
viruses. IMG/VR [17] now contains millions of viral sequences collected 
from a variety of datasets [18–29]. Moreover, several metatran-
scriptomics datasets have substantially increased the diversity of pre-
dicted RNA viruses [30–32]. Building csRNA models across large 
sequence spaces is computationally expensive, especially at the initial 
stage of identifying homologous sequences. To overcome this compu-
tational limitation we used all-versus-all HS-BLASTN [33] as previously 
performed [2], to identify homologous regions within these viral 

datasets. Using the wealth of viral sequences now available and this 
approach to overcome computational limitations, we mined these viral 
sequences to predict over 10 thousand novel csRNAs, substantially 
expanding upon the diversity of structured RNAs in both DNA and RNA 
viruses. 

2. Results 

2.1. Workflows to predict csRNAs 

First we downloaded IMG/VR 3.0 [17] and predicted genes along 
these contigs using MetaProdigal [34]. IMG/VR [17] included 2,377, 
994 contigs containing 48,566,528,056 base pairs (bp). From these 
contigs, we predicted 51,642,570 genes containing 35,182,970,109 
bases. Based on the positions of these genes, we then predicted 16,551, 
965 intergenic regions (each region at least 30 bp) containing 2,640, 
080,124 bp, ignoring the ends of contigs. We performed all-versus-all 
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Fig. 1. Prediction of csRNAs in viruses. (A) Workflow of csRNAs from IMG/VR. HS-BLASTN is used to identify homologous intergenic regions, which are clustered 
and scored using RNAphylo and R-scape. Only csRNAs with unique, quality hits are retained. Candidates that are already present in Rfam are excluded. 
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HS-BLASTN [33] on the intergenic regions. Homologous regions that 
were at least 30 bp long, were less than 100% identical, and contained 
bit scores between 20 and 200 were retained (Fig. 1A). While accepting 
this range of bit scores allows for a wide range of diversity in these se-
quences, a tradeoff is that some sequences may be too highly divergent 
and align poorly to the other sequences. Using overcluster2 [1], we 
clustered homologous intergenic regions, resulting in 565,438 clusters. 
For each cluster, we predicted possible structures using CMfinder 
version 0.4.1, which identified 386,777 clusters containing at least one 
alignment of a possible structure. Using RNAphylo, a tool that uses a 
phylogenetic model to score alignments, we identified 110,109 clusters 
with an RNAphylo p score of 10 or greater. Using R-scape [5], we found 
that 52,780 of these contained at least one significant covarying base. 
We used cmsearch [35] to determine which of these alignments signif-
icantly (E value < 1 × 10− 6) matched at least three unique regions in 
IMG/VR. We also removed duplicate csRNAs that matched any of the 
same regions as another csRNA by choosing the longest structure, 
resulting in 8890 csRNAs. Among these, 324 were already present in 
Rfam [36] and 71 were recently identified in human microbiomes [2], 
resulting in a finalized set of 8495 novel csRNAs (Fig. 1A). The 8495 
csRNAs predicted from IMG/VR were, on average, 67 bases long 

(median of 65 bases), ranging from 29 to 151 bases in length (Supple-
mentary Table 1, Supplementary File 1, Supplementary File 2). We 
classified 6796 csRNAs to Duplodnaviria, 351 to Varidnaviria, 71 to 
Monodnaviria, and 1 to Anelloviridae. Among these, 122 csRNAs were 
found in more than one realm. There were 1398 csRNAs identified in 
IMG/VR that could not be classified to a realm (Supplementary Table 1). 

IMG/VR is predominantly composed of DNA viruses; however, 
recent work has revealed thousands of RNA viruses from various eco-
systems that are not found in IMG/VR. To avoid overlooking RNA vi-
ruses, we downloaded data from several sources, including ssRNA 
phages [32], RNA aquatic viruses [31], all RNA virus nucleotides from 
NCBI Virus [30], and recent RNA virus discovery that expanded the 
global RNA virome by five-fold [37]. This combined set included 8,706, 
281,652 bp of RNA. Because this is a computationally manageable 
amount of data to predict csRNAs, we chose to perform all-versus-all 
HS-BLASTN [33] on all sequences, not just intergenic regions. Thus, 
we applied an identical pipeline as performed above for the DNA viruses, 
except we did not run MetaProdigal and remove predictive coding re-
gions first. We clustered homologous regions, resulting in 60,439 clus-
ters (Fig. 1B). We found that 35,340 of these clusters contained at least 
one alignment of a possible structure. Among these, 4093 clusters had an 
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Fig. 2. csRNA statistics. (A) Histogram of the distribution of lengths of csRNAs.  
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RNAphylo p score of 10 or greater, and 2827 of these contained at least 
one significant covarying base pair using R-scape. We also used 
cmsearch to determine which of these alignments significantly (E value 
< 1 × 10− 6) matched at least 3 unique regions in viral genomes. We also 
removed duplicate csRNAs, resulting in a finalized set of 1551 csRNAs. 
Among these, 40 were already present in Rfam, resulting in a finalized 
set of 1511 novel csRNAs from RNA viruses. We next determined 
whether the csRNAs were found in coding or noncoding regions. Using 
BLASTx [38], we queried the regions in which these csRNAs were found 
against the nr database. Any region with an e-value of less than 0.05 was 
considered to be likely coding (Supplementary Table 2). Additionally, 
RNAcode [39] was applied using default settings to these alignments, 
and regions with p values less than 0.05 were also classified as coding 
csRNAs. Overall, we predicted that 670 of these csRNAs were likely 
coding, while 841 were likely noncoding (Fig. 1B). The 1511 csRNAs 
predicted from RNA viruses were, on average, 65 bases long (median of 
63 bases), ranging from 30 to 130 bases in length (Supplementary 
Table 1, Supplementary File 3, Supplementary File 4, Supplementary 
File 5). 

Overall, the csRNAs predicted in this study show a wide range of 
diversity in length, prevalence, taxonomy, and ecosystem. These 10,006 
csRNAs ranged from 30 to 151 bases in length, with an average length of 
67 bases (Fig. 2 A). None of the DNA virus csRNAs were found in the 
RNA virus dataset; similarly, none of the RNA virus csRNAs were 
identified in the DNA virus dataset. The number of unique sequences 
representing each csRNA ranges from 3 to 41,253 sequences (Fig. 2B). 
These csRNAs were found across a large diversity of 14 viral phyla 
(Fig. 2 C). Specifically, 6796 csRNAs were identified in Uroviricota. 
Among the csRNAs identified in IMG/VR, 4750 were found exclusively 
in environmental ecosystems, 3018 were exclusively host-associated, 
and 378 were found in both ecosystems (Fig. 2D). 

We calculated a false discovery rate (FDR) for each of these sets of 
csRNAs. We first shuffled Clustal W 2.056 alignments using SISSlz [40], 
then performed the same scoring pipeline using shuffled sequences, 
including CMfinder, RNAphylo (p-score > 10), and R-scape (E < 0.05). 
We found that only 18 of the 8495 shuffled alignments predicted from 
DNA viruses passed these filters, suggesting an FDR of 0.0021. Addi-
tionally, we found that only 13 of the 1511 shuffled alignments pre-
dicted from RNA viruses passed these filters, suggesting an FDR of 0.009. 
When we subset these candidate structures as likely coding or non-
coding, we found that 7 of the 670 (0.01) shuffled alignments in putative 
coding regions passed filters, while 6 of the 841 (0.007) shuffled 
alignments in putative noncoding regions passed filters. Overall, this 
suggests the FDR is very low for all csRNA predictions. However, 
because we only calculated the FDR based on shuffling of the same se-
quences the csRNAs were predicted from instead of shuffling entire 
metagenomes (which would be computationally challenging), this FDR 
calculation is likely substantially underestimated. Reassuringly, we 
were also able to recreate models for 364 structures already found in 
Rfam (Supplementary Table 1). For example, we recreated a model for 
Sarbecovirus-3UTR, a structured RNA found in several species including 
SARS-CoV-2, and HIV_GSL3, which directs HIV-1 packaging of the 
genomic RNA. We named all csRNAs predicted from IMG/VR as DNA-
Virus_X, where X is a unique number. Similarly, we named all csRNAs 
predicted from RNA virus datasets as RNAVirus_Y. 

2.2. csRNAs highly expressed in the gut microbiome 

To identify highly expressed csRNAs, we analyzed metagenomic and 
small RNA-Seq data without fragment size selection performed on four 
human fecal samples from a previous study [41,42]. The metagenomic 
data was previously subjected to computational assembly, and RNA-Seq 
reads were previously aligned to these de novo assemblies. We first 
searched for the 10,006 csRNAs along these assemblies using cmsearch, 
identifying 544 csRNAs present in the assemblies. Using the aligned 
small RNA-Seq reads, we calculated the reads per kilobase million 

(RPKM) and found that 206 (37.9%) of these csRNAs were transcribed at 
a level greater than 20 RPKM (Supplementary Table 1). We highlight 
four of the most highly transcribed csRNAs in this dataset (Fig. 3). 
DNAVirus_6258 was 86 bases long and found in Caudovirales that infect 
Lachnospiraceae. DNAVirus_6565 was 76 bases long and found in Cau-
dovirales that infect Alistipes. DNAVirus_6426 was 81 bases long and 
found in Caudovirales and Imitervirales that infect Blautia. DNAVi-
rus_6425 was 64 bases long and found in Caudovirales that infect Blautia 
and Ruminococcus. All these csRNAs were exclusively found in the 
human gut microbiome and highly expressed in this small RNA-seq 
dataset. 

2.3. csRNAs likely to be tRNAs or tRNA-like structures 

To determine if any of these csRNAs may be tRNAs or rRNAs, we first 
predicted tRNAs and rRNAs across the regions in which these csRNAs 
were found. We used Aragorn [43] to predict tRNAs and Barrnap to 
predict rRNAs [44], both performed with default settings. No rRNA 
predictions overlapped with csRNAs. However, we identified five 
csRNAs that shared substantial overlap in regions that were also pre-
dicted to be tRNAs by Aragorn. DNAVirus_1423, DNAVirus_1850, 
DNAVirus_215, DNAVirus_2961, and DNAVirus_8881 overlapped pre-
dictions of tRNA-Tyr, tRNA-Asp, tRNA-Cys, tRNA-Arg, and tRNA-Cys, 
respectively (Fig. 4). DNAVirus_1850 was found 27 times in IMG/VR 
but only overlapped with a tRNA-Asp prediction at one of those regions 
(Supplementary Table 1). DNAVirus_8881 was the only csRNA among 
the five to overlap with tRNA-Cys in all 11 regions it was identified 
(Supplementary Table 1). This analysis does not prove that these csRNAs 
are tRNAs, but suggests these structures may be tRNA-like or tRNAs, 
perhaps also with non-canonical structures [13]. 

2.4. Functional analyses of csRNAs 

It is challenging to functionally characterize csRNAs; the diversity of 
possible functions among structured RNAs is immense and their regu-
latory functions can be cis- or trans-acting. csRNAs that typically occur 
immediately upstream of genes, potentially in the 5′ UTR, may be cis- 
regulatory. We inspected csRNAs that are directly upstream (within 25 
bases) of the start codon of genes. We assigned protein domains [38,45] 
to the encoded proteins of these downstream genes to link specific 
csRNAs to possible functions. We found that 879 csRNAs were found 
within 25 bp upstream of genes encoding proteins with known domains 
(Supplementary Table 3). Further validation is necessary to determine if 
these csRNAs play cis-regulatory roles of these downstream genes.Using 
RNIE [46], we predicted that 1241 of the 8495 csRNAs found in IMG/VR 
potentially contained a Rho-independent transcription terminator 
(Supplementary Table 1). Additionally, 5 of the 1511 csRNAs predicted 
from RNA virus datasets potentially contained Rho-independent tran-
scription terminators (Supplementary Table 1), which may be false 
positives. Of note, IMG/VR is enriched in phages; therefore, it makes 
sense that csRNAs in IMG/VR would be more enriched in 
Rho-independent termination, which only occurs in prokaryotes. We 
additionally found that 598 pairs of csRNAs predicted from IMG/VR and 
270 pairs of candidates predicted from RNA viruses overlapped each 
other in opposing strand orientations; for example, DNAVirus_4 and 
DNAVirus_5 overlapped but were on opposing strands. Previously 
characterized systems of overlapping csRNAs, such as RyeA and SdsR 
systems, have been previously identified [47]. Additionally, 1592 
csRNAs were predicted to overlap with themselves at least partially in 
opposing orientations. For example, DNAVirus_7368 is a palindromic 
csRNA with transcriptional evidence to support that both strands are 
expressed (Supplementary Fig. 1). DNAVirus_7368 in the forward 
orientation is 5 bases longer (112 bases in total) than DNAVirus_7368 in 
the reverse orientation, which is missing parts of the stem in some 
regions. 
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2.5. Cis-regulatory csRNAs that likely regulate GP20 

To highlight potential cis-regulatory csRNAs of interest, we observed 
six csRNAs consistently found directly upstream of GP20 genes (Fig. 5, 
Supplementary Table 3). Though GP20 is a gene of unknown function, 
two motifs, GP20-a (107 bp) and GP20-b (72 bp) have previously been 
predicted to occur upstream of GP20 [1]. Both GP20-a (RF02991) and 
GP20-b (RF03003) were predicted by our pipeline (and thus removed 
from our 8495 set). These six novel csRNAs, which were all found in 
Caudovirales, were found in a wide variety of ecosystems and hosts. For 
example, DNAVirus_3400 was primarily found in human-associated 
microbiomes, mostly in the digestive system but occasionally in the 
reproductive system and oral microbiome and was found mostly in the 
host bacterium Veillonella (Fig. 5, Supplementary Table 1). DNAVirus_56 
was found in human digestive system-associated microbiomes, mostly 
associated with host bacterium Lachnoclostridium. DNAVirus_5891 was 
found in soil, mostly associated with the host bacterium Lysinibacillus. 
DNAVirus_6837 was found in human digestive system-associated 
microbiomes. DNAVirus_7012 was found in the human digestive 
system-associated microbiomes, mostly associated with the host bacte-
rium Gemmiger. DNAVirus_8070 was found in wastewater (Fig. 5, Sup-
plementary Table 1). All six csRNAs were found within 25 bases directly 
upstream of GP20 (Supplementary Table 3); thus, we identified both the 
two known GP20 motifs as well as six additional csRNAs that likely 
regulate GP20 using our pipeline. 

2.6. Cis-regulatory csRNAs that likely regulate GP32 

We identified 12 csRNAs consistently found directly upstream of 
GP32 genes (Fig. 6, Supplementary Table 3). GP32 encodes a single- 
stranded DNA binding protein that plays essential roles in viral repli-
cation, recombination, and T4 DNA repair. It has been shown that GP32 

regulates its own translation through binding to a pseudoknot RNA [48] 
structure located directly 5′ upstream of the GP32 gene [49,50]. How-
ever, no models of this RNA structure are present in Rfam. These 12 
csRNAs may regulate GP32 translation and represent a diverse set of 
candidate structures found in a variety of ecosystems and hosts (Fig. 6, 
Supplementary Table 1). To highlight some examples, DNAVirus_6622 
was found in marine and freshwater and found in Caudovirales; DNA-
Virus_1944 was also found in Caudovirales in the host Planctomycetes. 
DNAVirus_7999 was found in aquatic sediment, marine, and freshwater 
and was found in both Caudovirales and Imitervirales. DNAVirus_8758 
was found in marine and freshwater and associated with the host 
Gammaproteobacteria (Fig. 6, Supplementary Table 1). These findings 
likely represent a diverse set of structures that regulate GP32. 

There are several other interesting structured RNAs that may be cis- 
regulatory (Supplementary Table 3). For example, we found 14 csRNAs 
consistently upstream of psiM2_ORF9, a putative large terminase. There 
were 11 candidates typically found upstream of resolvase genes. Six 
csRNAs were consistently found upstream of Podovirus_gp16, which 
controls the genome-encapsidation reaction. Six candidates were 
consistently found upstream of RusA, which resolves Holliday in-
termediates. Five candidates were typically found upstream of 
PHA00201, a major capsid protein. Four candidates were typically 
found upstream of DNA N-6-adenine-methyltransferase. These are 
among many examples of csRNAs that may play cis-regulatory roles. 

3. Discussion 

To date, no comparative genomics approaches to predict csRNAs 
have specifically focused on viruses at large scale. Our pipelines 
analyzed billions of bases from viral genomes to predict 10,006 novel 
csRNAs from diverse viruses across 14 phyla that infect various hosts 
and inhabit multiple ecosystems. We further validated transcription for 

Fig. 3. Highly expressed csRNAs. Structure diagrams and IGV visualizations of csRNAs with high RNA-Seq expression. This includes DNAVirus_6258, DNAVi-
rus_6565, DNAVirus_6426, and DNAVirus_6425. 
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206 of these csRNAs in the human fecal microbiome. We highlighted 
some interesting candidate structures from these 10,006 candidates, 
including tRNA or tRNA-like structures, potentially cis-regulatory 
csRNAs directly upstream of genes, such as GP20 and GP32, playing 
essential roles in virus physiology. 

There are several limitations to our comparative genomics approach, 
consistent with similar approaches performed previously [1–3]. First, 
this method does not validate RNA structures experimentally using 
methods like SHAPE-Seq or FragSeq for the majority of predictions [51, 
52]. Second, this approach has a high false-negative rate considering 
that we employ stringent scoring metrics based on phylogeny and 
covariation. If a structured RNA is strongly conserved or relatively rare, 
it will likely not be identified by these analyses. Third, the false-positive 
rate of our analysis is likely higher than our calculations. Random 

shuffling of alignments followed by rescoring the structures is unlikely 
to model all biological features that might increase false positive rates 
and does not represent the full metagenomic search space from which 
the structures were predicted. Fourth, we cannot truly assign functions 
to csRNAs without experimental validation and can only propose likely 
roles given genomic contexts. 

Overall, we report 8495 csRNAs predicted from IMG/VR and 1511 
csRNAs predicted from RNA virus datasets. Many different classes of 
csRNAs were identified, including likely tRNA or tRNA-like structures 
and potentially cis-regulatory structures. Predicted structure alone is not 
enough to confidently assign function to most csRNAs, thus future work 
is necessary. Computational analyses support that 879 candidates were 
found directly upstream of genes with assigned protein domains and 
1246 candidates were predicted to contain Rho-independent 

Fig. 4. csRNAs likely to be tRNA or tRNA-like. Consensus diagrams of five csRNAs that share substantial overlap with tRNAs predicted by Aragorn. DNAVirus_8881 
consistently shared overlap with tRNA in all regions predicted, while DNAVirus_1850, DNAVirus_1423, DNAVirus_2961, and DNAVirus_215 only sometimes over-
lapped tRNA predictions. 
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transcription terminators. CsRNAs can be prioritized based on expres-
sion levels in samples of interest or proximity to known genes of interest. 
Some examples of csRNAs likely to be cis-regulatory include six candi-
dates directly upstream of GP20 genes and 12 candidates directly up-
stream of GP30 genes. These 10,006 csRNAs represent a first step at 
comprehensively identifying the diversity of structured RNAs in viruses 
at large scale. We anticipate this resource will lead to functional char-
acterizations and reveal new biological mechanisms in viruses. 

4. Methods 

4.1. Data download 

All DNA virus contigs used in this study were downloaded from IMG/ 
VR [17]. The RNA virus data used in this manuscript can be accessed 
from four sources: ssRNA phages (from Supplemental files) [32], RNA 
aquatic viruses (from Supplemental files) [31], recent work mining 
diverse metatranscriptomes at large-scale [37], and all RNA virus nu-
cleotides from NCBI Virus (as of March 2021: 3,367,662 nucleotide se-
quences) [30]. The samples used for the RNA-Seq analysis can be found 
under BioProject accession no. PRJNA510123. 

4.2. Comparative genomics workflow 

We predicted genes along IMG/VR [17] contigs using MetaProdigal 
[34] with default settings. We extracted sequences that were predicted 
to be genes. Additionally, we used BEDTools complement [53] to extract 
sequences that were predicted to be intergenic and were greater than 
30 bp. In this case, we ignored the edges of contigs and required that 
these regions be between two genes to be intergenic. We performed 
all-versus-all HS-BLASTN [33] across intergenic regions using default 
settings. We removed homologous regions that were shorter than 30 
base pairs, were 100% identical to each other, were assigned bit scores 
less than 20, or were assigned bit-scores greater than 200. Subsequences 
were clustered from the HS-BLASTN results using a single-linkage 
clustering algorithm called overcluster2 (Weinberg, Z., unpublished 
open-source software, available at http://weinberg-overcluster2.sour-
ceforge.io) using default settings. For each cluster, we extracted the 
underlying RNA sequences using BEDTools [53] and structurally aligned 
the clusters using CMfinder version 0.4.1 [35]. We scored motifs using 
RNAPhylo with a p-score cutoff of at least 10. Additionally, motifs were 
scored for significant covariation (E < 0.05) using R-scape [5] with 
default settings. Using the models that met the above thresholds, we 
performed cmsearch [35] of candidate motifs against all IMG/VR [17] 

Fig. 5. csRNAs that likely regulate GP20. Consensus diagrams of six candidates that are found within 25 bases directly upstream of GP20 genes. These six models, 
DNAVirus_6837, DNAVirus_7012, DNAVirus_56, DNAVirus_80, DNAVirus_3400, and DNAVirus_5891, are structurally distinct from two existing models in Rfam also 
upstream of GP20 genes. 
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contigs and retained those models that uniquely and significantly (E 
value < 1 × 10− 6) matched at least three unique regions across the 
contigs. In other words, we ensured that the models strongly matched at 
least three of the unique regions they were created from and were thus 
unique and searchable in the way we intended. In cases in which 
CMfinder [35] proposed multiple alignments for the same region that 
met p-score and covariation cutoffs, the alignment with the highest 
p-score was chosen. We performed all-versus-all HS-BLASTN [33] across 
all RNA virus contigs using default settings, filtering out homologous 
regions that were shorter than 30 base pairs, were 100% identical to 
each other, were assigned bit scores less than 20, or were assigned 
bit-scores greater than 200. All downstream steps for these RNA viruses 
were performed identical to the workflow for DNA viruses. 

Using BEDTools [53] intersect, if any region contained an overlap 
with an Rfam structure and a csRNA, we discarded the candidates. 
Transfer RNAs were predicted by Aragorn [43], and rRNAs were pre-
dicted by Barrnap. RNA structure renderings were drawn using R2R 

[54], which was previously an output of R-scape [5]. The green high-
lighted covariation in the renderings only include covariation predicted 
to be significant by R-scape [5]. 

To determine if the csRNAs in RNA viruses were found in coding or 
noncoding regions, we assessed which structures overlapped predicted 
genes. Using BLASTx [38], we queried the regions in which these 
csRNAs were found against the nr database. Any region with an e-value 
of less than 0.05 was considered to be likely coding. Additionally, these 
regions were aligned with Clustal W 2.0 [55]. RNAcode [39] was 
applied using default settings to these alignments and regions with p 
values less than 0.05 were also classified as coding csRNAs. The steps to 
follow this workflow can be found here: https://github. 
com/bfremin-lbl/csRNAs-in-Viruses-and-Phage/tree/main. 

4.3. False discovery rate (FDR) estimates 

Clustal W 2.0 alignments were shuffled using SISSlz40we performed 

Fig. 6. csRNAs that likely regulated GP32. Consensus diagrams of 12 candidates that are found within 25 bases directly upstream of GP32 genes, including 
DNAVirus_6622, DNAVirus_1944, DNAVirus_1583, DNAVirus_1232, DNAVirus_915, DNAVirus_7999, DNAVirus_40, DNAVirus_1160, DNAVirus_3248, DNAVi-
rus_8758, DNAVirus_1921, and DNAVirus_5231. 
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the same pipeline, including CMfinder [35], RNAphylo [1], and R-scape 
[5] with the same thresholds as above. To calculate the FDR we divided 
the number of shuffled alignments that met the thresholds of a csRNA by 
the number of alignments considered. 

4.4. Taxonomic classification of RNA viruses 

We taxonomically classified the contigs on which these csRNAs were 
found using kaiju [56] with default settings. We did not classify contigs 
from IMG/VR because their taxonomic classifications were already 
provided within the database, as was information on ecosystems and 
predicted hosts. 

4.5. RNA-Seq analysis 

CsRNAs were identified along previously created metagenomic as-
semblies using cmsearch. RNA-seq reads were trimmed using trim galore 
version 0.4.0 and cutadapt 1.858,591 with parameters -q 30 and -illumia. 
These reads were mapped to their associated metagenomic assemblies 
using bowtie version 1.1.1 [57]. The number of reads mapping to each 
csRNA were identified using BEDTools, and RPKM values for each 
structure were calculated. IGV [58] was used to visualize coverage. 

4.6. Characterizing csRNAs near genes 

We determined which csRNAs occurred within 25 bp upstream of 
genes. Using RPSblast [38] against the CDD [45], we assigned protein 
domains to the encoding proteins of these downstream genes. We 
considered protein domains with assigned e-values of 0.01 or less across 
80% of the query length. Additionally, we performed RNIE [46] with 
default settings to predict which csRNAs overlapped with predicted 
Rho-independent terminators. We assessed which csRNAs were palin-
dromic or overlapping using BEDTools. 

(B) Workflow of csRNAs from RNA virus datasets. HS-BLASTN is 
used to identify homologous regions, including coding regions. Regions 
are clustered and scored using RNAphylo and R-scape. csRNAs with 
unique, quality hits are retained, and those already present in Rfam are 
excluded. 

(B) Histogram of the number of unique sequences representing the 
csRNAs. 

(C) Histogram of the number of csRNAs identified in each viral 
phylum. 

(D) Venn diagram of ecosystems in which csRNAs are found within 
IMG/VR. 
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