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Abstract

Hemodynamic factors such as low wall shear stress have been shown to influence endothelial healing and atherogenesis in
stent-free vessels. However, in stented vessels, a reliable quantitative analysis of such relations has not been possible due to
the lack of a suitable method for the accurate acquisition of blood flow. The objective of this work was to develop a method
for the precise reconstruction of hemodynamics and quantification of wall shear stress in stented vessels. We have
developed such a method that can be applied to vessels stented in or ex vivo and processed ex vivo. Here we stented the
coronary arteries of ex vivo porcine hearts, performed vascular corrosion casting, acquired the vessel geometry using micro-
computed tomography and reconstructed blood flow and shear stress using computational fluid dynamics. The method
yields accurate local flow information through anatomic fidelity, capturing in detail the stent geometry, arterial tissue
prolapse, radial and axial arterial deformation as well as strut malapposition. This novel compound method may serve as
a unique tool for spatially resolved analysis of the relationship between hemodynamic factors and vascular biology. It can
further be employed to optimize stent design and stenting strategies.
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Introduction

Atherosclerosis is the leading cause of death in most developed

countries, predominantly as a result of myocardial infarction due

to coronary heart disease (CHD). Percutaneous coronary in-

tervention (PCI) that generally involves the placement of a stent

has become the primary mode of CHD treatment over the past 20

years [1].

CHD is characterized by progressive atherosclerotic plaques

that narrow (stenose) the coronary artery lumen, thereby reducing

blood flow to the myocardium. PCI is used to expand the lumen

with a balloon catheter and to keep it open with a wire scaffold

(stent).

Despite stent placement, incidence of renewed stenosis of the

vessel can be as high as 30% [2,3], most commonly due to

neointimal hyperplasia (NIH) [4]. NIH is linked to both the injury

or destruction of the endothelium [5,6] and the loss of smooth

muscle cells (SMC) due to stretching of the intima during stent

deployment [7]. Expedient endothelial regeneration reduces NIH

[8,9], and endothelial regeneration itself is influenced by blood

flow. Similarly, the distribution of atherosclerotic plaques is

strongly influenced by the local wall shear stress (WSS) distribution

[10,11]. As WSS is proportional to the gradient of blood flow

velocity at the endothelium, precise knowledge of hemodynamics

is necessary to derive it. The required level of precision can

currently not be achieved clinically using phase-contrast magnetic

resonance imaging (PC-MRI) [12], Doppler ultrasound, or other

flow measurement techniques [13215. For this reason, flow field

reconstruction using computational fluid dynamics (CFD) based

on medical image data has become the state-of-the-art for

determining WSS in stent-free vessels [11,16–19].

A prerequisite for deriving WSS in stented arteries using CFD is

the precise definition of the stent geometry with feature sizes of the

order of tens of microns. However, no current clinical imaging

modality can yield a three-dimensional (3D) representation of

a deployed stent with sufficient accuracy for reliable CFD

calculations. Computed tomography (CT) [20, MRI [21], in-

travascular ultrasound [11,18,22] and digital angiography [23] do

not offer sufficient spatial resolution to capture individual stent

struts in detail, and optical coherence tomography is limited by the

opacity of the struts to the emitted light.

To circumvent these limitations, hybrid approaches have been

developed where the stent-free artery is acquired via CT, digital

angiography or MRI, and a virtual stent is placed in the generated

digital dataset prior to the calculation of WSS [24231]. Other

methods omit in vivo imaging completely [32239], for example

by performing image acquisition on explanted stented arteries

using micro-computed tomography (mCT) [32,33], or by placing

stents in artificial artery models and then proceeding with mCT
[33239].
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The individual methods have their respective strengths and

weaknesses. While some optimize processing speed and cost by

approximating the deployed stent in a computer aided design

(CAD) environment [29], others opt for slower, more expensive

but also more accurate approaches based on computational

structural mechanics simulations of stent deployment [27]. Further

methods give preference to actual rather than virtual stent

deployment, thereby sacrificing the flexibility of computational

techniques for the possibility to capture the expanded stent

geometry with higher fidelity when real arteries are used [32], or

for the possibility to investigate complex stenting procedures such

as double stenting of main vessel and side branch [35]. Some

approaches, finally, do not consider derivation of WSS [40242].

In situations where destructive processing of a stented artery is

not an issue, combination of vascular corrosion casting (VCC) with

mCT and CFD may yield detailed reconstruction of WSS

distribution. VCC, originally developed for producing anatomical

specimens, can generate negatives of entire vascular trees with sub-

micron accuracy, while mCT can be used to digitize the VCC cast

with sufficient resolution to capture stent struts in detail. LaDisa

and coworkers were the first to combine these methods by stenting

rabbit iliac arteries in vivo, sacrificing the animals after two or

three weeks, casting the artery lumen, macerating the surrounding

tissue and removing the stent with a sanding pad before acquiring

the lumen negative by mCT [43]. However, individual stent struts

could not be resolved with their technique.

Here we present a method that combines VCC, mCT and CFD

to a platform for the precise calculation of WSS in stented arteries.

This method is able to accurately resolve both the macroscopic

arrangement of stented vessels as well as the microscopic structure

of the stent struts.

Methods

An expanded methods section is provided in the supporting

information online (Appendix S1).

Heart Preparation and Stenting
Porcine hearts obtained with permission from the local

slaughterhouse (Metzegerei Angst AG, Zurich, Switzerland) were

cannulated in preparation for stenting of the LCA. Absorbable

metal scaffolds of 10 mm length and 3 mm diameter (Biotronik

AG, Bülach, Switzerland) were placed by an interventional

cardiologist under angiographic guidance using the manufactur-

er-specified inflation pressure of 12 bar.

Vascular Corrosion Casting
A 1:0.1225 by weight mixture of low-shrinkage epoxy-based

Biodur E 20 (EP20–EP22) resin (Biodur Products GmbH,

Heidelberg, Germany) and iodine-saturated methyl ethyl ketone

solvent was used as a radio-opaque casting material [44]. The

resin was injected into the stented coronary vascular tree under

physiological pressure of 90 mmHg (120 mbar) [45]. After a setting

period of 36 hours, the heart was macerated for 12 h at 55uC in

a 7.5% w/v solution of potassium hydroxide.

mCT Imaging of Stented Casts
The stented coronary arteries were first imaged using micro-

computed tomography (mCT 80, Scanco Medical AG, Brüttisel-

len, Switzerland) with an isotropic voxel size of 74 mm (energy

70 kVp, integration time 300 ms, tube current 114 mA, and two

times frame averaging) to provide the image data of the overall

coronary arterial tree geometry. Following this, the stented

sections were removed from the artery tree and re-scanned

(mCT 40, Scanco) with an isotropic voxel size of 6 mm (energy

70 kVp, integration time 300 ms, tube current 114 mA, and two

times frame averaging) in order to resolve individual stent struts

(Figure S1).

Image Processing
A constrained 3D Gauss filter was used to partly suppress noise

in the raw mCT volumes (s=1.2, s = 1.0). The coronary artery

lumen was segmented from both mCT datasets independently

using a semi-automatic, intensity-based approach in Avizo 6.2

(Visualization Sciences Group SAS, Merignac, France). The

resulting 3D geometries were registered and merged in Geomagic

Studio 12 (Geomagic, Inc., Morrisville, NC, USA) to where the

high resolution geometry represented the stented artery region and

the lower resolution one the remainder of the arterial tree (Figure

S2). The merged geometry was exported in STL format for

subsequent computational grid generation.

CFD Calculations
A computational grid consisting of approximately 48 million

tetrahedral elements was generated in the merged geometry in

ANSYS ICEM CFD (ANSYS, Inc., Canonsburg, PA, USA); see

Figure S3. To calculate flow velocity, pressure and WSS

distribution, transient and steady-state computational flow analysis

was carried out with the finite volume CFD code ANSYS CFX

using a Newtonian fluid model with constant density of 1050 kg/

m3 and dynamic viscosity of 0.0035 Pa.s [46]. Boundary

conditions were chosen as follows: No slip at the vessel wall,

blood inflow rate of 0.95 mL/s at the ostium for the steady-state

calculations [16] and time-dependent flow rate for the transient

case according to [17]. Zero relative pressure was set at the outlet

with the largest diameter and outflow rates at the remaining

outlets were determined according to Murray’s law [47]; see

Figure S4. For the transient simulations, two cardiac cycles were

calculated using a time step size of 0.01 seconds, but only the data

of the second cycle were evaluated to obtain results independent of

the initial conditions. With residual reduction to 1028 of the initial

value as convergence criterion, the steady-state calculations took

approximately two hours on 32 AMD Opteron 6174 processor

cores. The transient computations required 25 minutes per time

step with a convergence criterion of 1026 at each point in time.

Grid independence studies were performed (Appendix S1).

Results

In the following we will show on ex vivo porcine hearts that the

compound method presented herein ensures anatomic fidelity,

capturing arterial tissue prolapse, radial and axial arterial de-

formation as well as stent malapposition. We will further show how

this method yields detailed blood flow fields and wall shear stress

maps in stented coronary arteries (see Video S1), noting that it can

also be used in ex vivo human arteries with minimal change to the

protocol.

Arterial Tissue Prolapse
The commonly used stent-to-artery diameter ratio of 1.1–1.2

[48] in coronary arteries can lead in conjunction with the elasticity

of the vessel wall to tissue prolapse [49,50]. We use the term

‘prolapse’ in accordance with the biomedical engineering litera-

ture to refer to any degree of tissue protrusion between the stent

struts, noting that in the medical literature it is generally associated

with protrusion of plaque or thrombus beyond the inner stent

surface. Prolapse affects local hemodynamics, thereby altering

Hemodynamic Analysis of Stented Arteries
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WSS. Moreover, tissue prolapse is associated with increased

incidence of acute and subacute thrombosis [50].

As illustrated in Fig. 1, the method captures arterial tissue

prolapse. Panel A shows a representative mCT scan section of

a stented porcine left coronary artery corrosion cast. Both the

cured, contrast-enhanced resin in place of the artery lumen as well

as cross-sections of stent struts are clearly visible. The dark areas

between resin and struts are due to gas formed in the VCC process

through the interaction of stent with resin solution. These areas are

merged with the lumen representation in the image segmentation

step. Fig. 1B shows the reconstructed surface of a stented porcine

left coronary artery (LCA) lumen negative that was acquired using

mCT of a corrosion cast. The white arrows between the imprints of

the stent struts point to regions of prolapse. These occur most

markedly in areas without strut connectors, indicating that arterial

tissue prolapse is dependent on stent design.

Fig. 1C shows the corresponding WSS distribution. Higher

WSS is evident in regions of prolapse owing to higher velocities

near the wall compared to prolapse-free sections as illustrated by

the velocity contours in Fig. 1D. Regions of low velocity are

Figure 1. Arterial tissue prolapse between stent struts. (A) Representative micro-computed tomography (mCT) scan section of stented porcine
left coronary artery corrosion cast. (B) Reconstructed surface of arterial lumen negative obtained by mCT of a corrosion cast. The white arrows point to
prolapsed regions. (C) Wall shear stress (WSS) distribution in the same region shown in B. Higher WSS is evident in prolapsed regions compared to
regions without prolapse. Blood flow is from left to right. (D) Velocity contour plots in prolapsed (top) and prolapse-free inter-strut sections. Regions
of low velocity are evident near stent struts in both cases, with larger low-velocity regions in the prolapse-free segment. This segment also shows
lower near-wall velocity.
doi:10.1371/journal.pone.0058147.g001
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recognizable near the struts in both cases, but the size of these

regions is clearly different for the two conditions. It is thus evident

that arterial tissue prolapse influences hemodynamics and

therewith the local WSS distribution with which predictions of

plaque development can be made.

Radial Wall Deformation
Histological studies show that stent deployment changes the

circular cross-sectional shape of the artery [51]. This method

captures such deformations: Fig. 2A depicts a representative cross-

section through a stented coronary artery from a mCT image of

the lumen. The dotted circle serves as a reference for the local

deformation caused by the struts. These deformations impact

hemodynamics and WSS. Fig. 2B demonstrates the increase in

lumen diameter from the stent-free section of the artery to its

stented part, which can lead to a local decrease in both WSS and

velocity. This is seen in detail in Fig. 2C: To ensure mass

conservation, blood has to accelerate from the stented part of the

artery with a larger diameter to the stent-free section with smaller

diameter.

Axial Arterial Deformation
Stenting results in substantial axial deformation, causing

a straightening of the artery [52], which affects hemodynamics

and WSS distribution substantially.

Figure 2. Radial wall deformation of stented artery. (A) Representative micro-computed tomography cross-section of a stented porcine left
coronary artery corrosion cast. The dotted circle shows the nominal circular cross-section (B) Radial arterial enlargement caused by stenting. The
arrows indicate arterial diameter in the stented (left) and stent-free regions (C) Velocity vectors in the mid-longitudinal section plane of the stented
artery. The velocity profile along the vessel centerline from Point I to Point II is shown in (D), where the increase in velocity in the stent-free section is
visible. The vertical dashed lines mark the end of the stent and the axial locations of Points I and II shown in panel C.
doi:10.1371/journal.pone.0058147.g002

Figure 3. Axial arterial deformation due to stenting. (A) Visualization of arterial centerline change in a stented section. The solid line shows the
axis of the stent, while the dashed line approximates the centerline of the stent-free artery. (B) Wall shear stress (WSS) distribution in the same stented
artery. An extended area of low WSS is seen immediately downstream of the stent at the outer artery wall due to the change in curvature.
doi:10.1371/journal.pone.0058147.g003
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Fig. 3 shows that the herein presented compound method

captures axial arterial deformation. The dashed line in Fig. 3A

approximates the centerline of the stent-free artery. The solid line

illustrates the change of the centerline shape in the stented region.

Evaluated from left to right, the sudden straightening of the artery

in the stented segment and the abrupt return in curvature to that

of the stent-free region are evident. Fig. 3B shows that this leads to

an extended area of low WSS at the outer vessel wall. Without the

stent, the inner arterial wall would be the main location of low

WSS, atherosclerotic plaque formation and neointimal hyperplasia

(NIH) [22,46]. Consequently, axial arterial deformation due to

stent placement has to be accounted for in WSS derivations.

Stent Malapposition
Stent malapposition alters in-stent hemodynamics, causes low

WSS distally and is hypothesized to be a major factor in

thrombosis [53]. The method presented here captures malap-

posed struts: Fig. 4A and 4B show the arterial lumen surface

and WSS in malapposed and fully apposed stented regions,

respectively. The malapposed strut shown in Figs. 4C and 4D

causes tunneling of blood flow between the strut and the

endothelium, leading to high WSS and perturbation of the local

flow field. Such perturbed flow (see Video S2) is associated with

increased risk of thrombosis [54].

Figure 4. Stent malapposition and its effect on local hemodynamics. (A) Imprint of malapposed stent end section (arrow) in artery lumen
negative (top) and corresponding wall shear stress (WSS) distribution (bottom). Higher WSS can be observed in the vicinity of the malapposed strut
due to flow tunneling compared to (B), where a similar fully apposed stent end section is shown. (C) Velocity contour in axial cross-section of the
stented artery near a malapposed strut. Changes in velocity and division of blood flow can be seen. (D) Velocity vector plot in the vicinity of the
malapposed strut demonstrates the presence of vortices. These influence WSS distribution and may lead to thrombosis.
doi:10.1371/journal.pone.0058147.g004
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Reconstruction of Hemodynamic State
Both the local geometry at the vessel wall, as well as the large

scale arterial anatomy, influence WSS distribution and can be

accounted for with this method. This can be seen in Fig. 5 where

regions of low, atheroprone shear stress are present at bifurcations

and nearby individual stent struts. Interestingly, low WSS is not

only present adjacent to struts arranged perpendicular to the flow

direction, but also occurs in the vicinity of inter-strut connectors

arranged parallel to the artery’s longitudinal axis.

Figure 6 shows the distribution of oscillatory shear index (OSI),

which is a measure of temporal WSS change (see Appendix S1).

High values of OSI have been shown to correlate with

atheroprone regions of the vessel [17]. Increased values of OSI

Figure 5. Wall shear stress distribution in a porcine left coronary artery with two stents. The bottom inset shows a magnified view of the
stented segments. Wall shear stress (WSS) below 0.5 Pa is reported to correlate with sites of intimal thickening [51]. Such low WSS can be seen here to
occur mainly in the vicinity of stent struts and at bifurcations. The left inset shows low and high wall shear stress regions occurring, respectively, at
the outer and inner walls of the bifurcation (arrows).
doi:10.1371/journal.pone.0058147.g005

Figure 6. Oscillatory shear index (OSI) distribution in a porcine left coronary artery with two stents. The inset shows a magnified view of
part of the second stented segment. Elevated values of OSI have been reported to correlate with atheroprone vessel regions [17]. Areas of increased
OSI are visible near strut junctions. They contain small focal spots that reach values close close to the maximum of 0.5.
doi:10.1371/journal.pone.0058147.g006
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Figure 7. Velocity contours and secondary flow around individual stent struts in a porcine left coronary artery. Top: Overview and
close-up of reconstructed surface of arterial lumen negative obtained by mCT of a corrosion cast. The labels A to I indicate the location of the cross-
sections shown in the bottom panels. Bottom: Velocity contour plots at cross-sections A to I. To visualize secondary flow structures, streamlines are
derived from velocity vectors projected onto the respective cross-section.
doi:10.1371/journal.pone.0058147.g007
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Figure 8. Velocity profiles in a porcine left coronary artery with two stents. Results are shown for cross-sections upstream of the distal stent
(A and B), within (C, D E and F) and downstream of the stent (G and H). Top: Velocity contour plots. Bottom: Velocity projections onto axial planes. The
vertical axes are normalized to a common diameter.
doi:10.1371/journal.pone.0058147.g008
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are seen here near strut junctions, which is in agreement with

earlier observations [55].

The flow structures that lead to lowWSS are illustrated in Fig. 7.

Panel A shows velocity contours and streamlines projected axially

onto a cross-sectional plane immediately upstream of the stent.

The velocity profile is near parabolic, and there are no

recirculation areas discernible. Entering the stented vessel region

in downstream direction (Panel B), flow disturbances begin to

develop and quickly lead to the generation of recirculation zones

(Panels C to I). In addition, the parabolic velocity profile is altered

due to changes in shape of the arterial cross-section, as well as due

to the stent struts’ influence on the near-wall flow. This can be

seen in the offset of the velocity contours in Fig. 8.

Axial arterial shape change as a result of the stent placement

further affect the velocity profile as illustrated in Fig. 8. The top

panel shows an artery segment with two stents. Entering the

second stent from the upstream direction at cross-section A, the

location of peak velocity is deflected from the vessel centerline in

plane D due to the increased curvature of the vessel at the stent

edge. Effects of the stent strut as described above maintain the off-

center profile throughout the length of the stent (planes E and F).

The combined effect of local flow disturbance by the stent struts,

changes in cross-sectional area and flow deflection as a result of

axial arterial deformation is quantified in Fig. 9. There the

distribution of low (,0.5 Pa), intermediate (0.5 to 2.5 Pa) and high

(.2.5 Pa) WSS [11,56,57] is shown relative to the surface area of

selected arterial sections in a vessel with two stents. These sections

correspond to the area immediately upstream of the first stent

(labeled ‘proximal’ in the top panel), the first and second stent

(‘proximal stent’, ‘distal stent’), and the region after the second

stent (‘distal’). In the stented sections, more than 40% of the wall

surface area is exposed to low shear stress. In comparison, virtually

no low WSS is present in the sections upstream of the first stent

and downstream of the second stent. The high WSS observed after

the second stent is due to the narrowing of the artery in that area.

Discussion

As a result of the small feature sizes of stents and limited

resolution of clinical imaging modalities, alternative methods have

to be used to obtain the lumen geometry of stented arteries for

calculation of WSS. It is accepted that wall shear stress affects

vascular biology, influencing atherosclerotic plaque development

and NIH. Here we have presented a method with which WSS can

be determined by combining VCC, mCT and CFD. This method

can be used in sacrificed animals or post mortem in humans after

stenting has been performed either in vivo or ex vivo.

While similar approaches have been used before, this

compound method removes some of the prior limitations: LaDisa

et al. used VCC and mCT [43] with subsequent CFD modeling,

but could not resolve individual stent struts. Morlacchi and co-

workers stented pigs in vivo, excised the stented artery segments,

embedded these in resin, acquired the deployed stent geometry

with mCT and, in addition, performed histological analysis [32].

However, they could not acquire the lumen geometry, which had

to be approximated for subsequent CFD analysis.

Figure 9. Distribution of relative vessel wall area exposed to different levels of shear stress. Results are shown in the bottom panel as
percentage of the respective segment’s surface area in a porcine left coronary artery with two stents. Low wall shear stress: ,0.5 Pa. Moderate:
0.5,WSS,2.5). High: .2.5 Pa. Top: Corresponding reconstructed surface of the arterial lumen negative.
doi:10.1371/journal.pone.0058147.g009
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Since the presented method allows for processing stents

deployed in vivo, it is expected to yield more accurate re-

construction of the in vivo WSS distribution than other methods

that rely on mCT, but do not allow for in vivo stent deployment.

Benndorf and co-workers observed marked differences between

the WSS field obtained in a stented PTFE tube and an ex vivo

stented preserved arterial segment [33]. This indicates that the

choice of arterial wall representation can influence the derived

hemodynamic parameters substantially. While one should expect

that the preserved arterial segment mimics in vivo conditions

better than the PTFE tube, the segment still showed artifacts in the

form of circumferential creasing. Such creases are not observed

in vivo and are presumably a result of the preservation process.

For comparison with virtual stent placement approaches, one

has to consider whether these are capable of reproducing critical

features observed in vivo. Our results show that neglecting tissue

prolapse or stent malapposition may alter the reconstructed WSS

field substantially. This is in accordance with the findings of

Benndorf [33]. We further show that neglecting radial or axial

arterial deformation will change WSS distribution as observed

before by LaDisa [25,26] and Murphy [46]. Virtual stent

placement methods that cannot reproduce these critical features

may have cost and processing time advantages, but are limited in

the accuracy of WSS reconstruction. Assessment of virtual

methods that do take into account critical features is less trivial.

On the one hand, these methods are the first choice for predicting

stent deployment and WSS distribution in live humans or animals.

On the other hand, they idealize arterial wall mechanics, which is

especially then critical when diseased arteries are investigated, as

the presence of plaques and calcifications may change the wall

properties substantially in an anisotropic and heterogeneous

manner. Since the method introduced here can rely on the true

geometry of vessels stented in vivo, we expect it to yield more

accurate WSS readings than approaches based on virtual stent

deployment. Of course, a suitable study is necessary to confirm

this.

The presented method is based on three consecutively applied

tools. These can each be optimized, but the interface between the

methods has to be considered in the process. The optimal VCC

resin has no shrinkage during curing and high stiffness thereafter.

Biodur E 20 used here is a low shrinkage resin that produces rigid

casts, maintaining the 3D configuration of the artery during

maceration. The relative deviation of the cast lumen volume from

the original one is less than 2%. There are other resins such as

PU4ii that show lower shrinkage, but remain pliable after curing

[58].

The resin should ideally have an X-ray attenuation behavior

comparable to that of the stent to allow for optimal mCT imaging.

Most VCC resins, however, have a very low attenuation co-

efficient, leading to low signal-to-noise ratio [59]. To increase resin

opacity, we saturated the resin solvent, methyl ethyl ketone, with

iodine [44]. This decreases viscosity, prolonging resin hardening

time, and also increases shrinkage slightly. Alternatively, take-up of

an attenuating compound after resin curing could be used, e.g. by

bathing the cast in an aqueous solution of osmium tetroxide

[59,60]. However, this process is time consuming and only yields

low penetration depths. In addition, OsO4 is very toxic.

The choice of scanner and acquisition settings has a great

influence on the final results. The small size of the stent struts

necessitates a high scan resolution, which in most scanners

excludes the use of larger samples such as complete coronary

artery tree casts. To circumvent this problem, we acquired the

overall geometry and the stented section with two different

scanners, introducing a time consuming registration step to merge

the data. While a single step acquisition at high resolution would

allow for a more automated work flow, it would result in very large

datasets of over 30 gigabytes that are difficult to handle. In

addition, scan time would increase by at least a factor of four, and

scan cost would go up accordingly.

The quality of artery lumen reconstruction is the main

determining factor for the accuracy of the WSS distribution

calculations. Of similarly high importance is the choice of

boundary conditions. Here we used a generic volumetric inflow

rate or temporal profile, one zero pressure outlet and Murray’s law

to set flow rates at the remaining outlets [47]. More accurate

results could be obtained by applying a subject-specific inflow rate,

which requires either phase contrast magnetic resonance imaging

or invasive intravascular Doppler ultrasound measurements

in vivo [21,61,62]. Boundary conditions at the outlets would

ideally be determined by in vivo pressure or flow measurements as

well. However, measurements in the distal artery segments are less

accurate than in the larger parent vessels. Also, with increasing

number of outlets, this approach becomes impractical. Applying

Murray’s law, empirical variations thereof [63] or lower order

models of the downstream vasculature to determine the boundary

conditions at the outlets appear reasonable [29,64].

Flow disturbances introduced by the stent lead to areas of low

shear rate where blood displays non-Newtonian behavior.

Consequently, a shear rate dependent rheology model should be

used for best results. However, it is difficult to predict and to test

which of the many existing models will give the most accurate

results in stented arteries [23].

The main limitation of the presented method is that it entails

destructive procedures. It can thus not be applied to live humans

or to animals that should be kept alive. However, this does not

exclude stenting in vivo and further processing ex vivo. When the

method is applied to live animals, these can be treated without

modifications to common protocols up to the point of sacrifice,

after which VCC is started. If no in vivo acquisition of blood flow

rates is foreseen in the original protocol, it should be added to

derive realistic boundary conditions.

The method can also be used for post-mortem investigation of

stented, atherosclerotic arteries in humans for research purposes.

Processing of diseased vessels may require adaptation of individual

process parameters. In particular, the possible entrapment of

plaques and thrombi in the VCC resin and the presence of

calcifications may render the image segmentation process more

challenging [65], requiring changes in the concentration of the

contrast agent and modification of mCT parameters. In addition,

resin viscosity may need to be reduced if high grade stenoses are

present [66]. Further studies are thus required to validate the

performance of the method in diseased vessels.

Again due to the destructive nature of the method, histologic

analysis and concurrent WSS derivation on the same artery are

not possible. Consequently, a larger sample size is needed to

statistically correlate vascular biology with WSS or other

hemodynamic parameters. This adds to the comparably high cost

of the method which derives from the large number of steps

involved that each requires a high level of expertise. Next to

in vivo stenting, the main cost factors are the high resolution mCT
imaging and processing of the therewith associated large datasets.

Finally, unwanted interaction between the resin components

and the stent may occur. In the current study such interaction

resulted in gas bubbles, which were dealt with in the image

segmentation process. It cannot be excluded that with other stents

resin interaction may become a limitation.

In conclusion, the method presented herein constitutes a unique

tool for accessing WSS in stented arteries. It can be employed to
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study the effects of hemodynamics on vascular biology, to develop

stenting strategies that optimize hemodynamics and to design new

stents that minimize regions of NIH promoting WSS.

Supporting Information

Figure S1 Cross-sections of stent struts acquired at (A)
6 mm, (B) 8 mm, (C) 10 mm and (D) 12 mm scan resolu-
tion. Using the manufacturer’s production specifications as

reference, the 6 mm resolution scan was found to capture the

stent geometry with sufficient accuracy.

(TIF)

Figure S2 Registration of the high resolution surface of
a stented artery section with the lower resolution
surface of the whole arterial geometry. (A) Low resolution

surface of the whole artery (B) High resolution surface of the

stented region (C) Combined surface.

(TIF)

Figure S3 Tetrahedral mesh cross-section at a stented
artery section. The inset shows the refined computational grid

at the artery wall.

(TIF)

Figure S4 Illustration of the bifurcation mass-flow
conditions based on Murray’s law as given by Equations
S1 and S2.
(TIF)

Appendix S1 Expanded Methods.
(DOCX)

Video S1 Reconstruction of stented LCA section and
visualization of blood flow field.
(MPG)

Video S2 Visualization of flow disturbance introduced
by malapposed stent strut.
(MPG)
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