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Introduction
Age-related macular degeneration (AMD) is the leading 
cause of blindness in people 60 years and older in developed 
countries.1 A recent systematic review and meta-analysis has 
shown that 8.7% of the worldwide population has AMD, and 
with the increase of lifespan the projected number of people 
with the disease will be at about 196 million in 2020,  reaching 
288 million in 2040.2 About 1.75 million Americans are 
affected by AMD, and this number is expected to grow to 
almost 3 million by 2020.3 AMD is a complex multifactorial 
disease that occurs over time and is characterized by degene-
ration of the retinal photoreceptors, retinal pigment epithe-
lium (RPE), and choroidal neovascularization (CNV). AMD 
can be classified into two broad groups: dry (nonvascular or 
atrophic) affects 80%–90% of AMD patients and wet (neo-
vascular or exudative) affects 10%–15%, but is responsible for 
approximately 90% of AMD-related vision loss.4 There is no 
cure, but AMD treatments may prevent severe vision loss or 
slow the progression of the disease considerably. Several treat-
ment options are available, including anti-VEGF therapy, 
laser surgery, photodynamic therapy, vitamins, and nutritional 
supplements.5–8 The etiology of AMD is complex and includes 
both genetic and nongenetic factors. Genome-wide associa-
tion studies (GWAS) have revealed common genetic variants 
at a number of loci. Alterations in genes of the complement 
 system and inflammatory pathways, as well as variations in 
genes related to oxidative stress, have been associated with 

AMD.9–12 Among the nongenetic factors, aging, smoking, 
hypertension, and diet significantly contribute to an increase in 
the AMD risk.13 There is ample evidence that oxidative stress 
is involved in AMD pathogenesis and progression.14,15 Oxida-
tive stress and reactive oxygen species (ROS) have been impli-
cated in the activation of various signaling pathways, including 
the mitogen-activated protein kinases (MAPKs).16,17 MAPKs 
are important mediators of signal transduction and play a key 
role in the regulation of many cellular processes, such as cell 
growth and proliferation, differentiation, and apoptosis.18 
Several studies suggest that MAPKs are involved in oxida-
tive stress-induced RPE degeneration,19–22 which is described 
in more detail in the “AMD and MAPK signaling” section. 
Findings have revealed activation of the MAPK signaling 
pathways extracellular signal-regulated kinase (ERK), c-Jun 
N-terminal kinase (JNK), and p38 MAPK in model systems, 
including human RPE cell cultures and murine models of 
AMD.23–28 In addition, linkage disequilibrium-independent 
genomic-enrichment analysis demonstrated association of 
AMD with genes encoding the MAPK  signaling pathway 
(JNK, p38, ERK1/2, and ERK5).29 Moreover, a new soft-
ware “AMD Medicine” was used to compare the transcrip-
tomes of normal human RPE-choroid and AMD-affected 
RPE- choroid samples.30 The results demonstrated activa-
tion of several signaling pathways, including ERK in RPE-
 choroid AMD phenotypes. These data clearly suggest that 
MAPK signaling is involved in AMD  pathogenesis, and 
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MAPK  inhibitors could provide a novel therapeutic strategy 
for  prevention or treatment of AMD.

AMd: Pathology, Genetics, and current treatments
AMD is the leading cause of blindness in the elderly that 
 damages the central region of the retina (macula). Early stage 
of the disease is characterized by the presence of medium-
sized drusen, which are extracellular deposits containing pro-
teins, lipids, and inflammatory mediators.31 As the disease 
progresses, it can develop into intermediate and late AMD. 
There are two types of late AMD: geographic atrophy and 
neovascular, or wet AMD. Early and intermediate, as well as 
geographic atrophy, are generally referred to as dry AMD. Dry 
AMD is characterized by RPE senescence and geographic 
RPE loss, while wet AMD is characterized by degene ration 
of RPE and abnormal growth of pathologic choroidal  vessels. 
Dry AMD is a chronic disease that usually causes some degree 
of visual impairment, whereas wet AMD could rapidly pro-
gress to blindness if left untreated.

AMD is a complex, multifactorial disease of aging. In 
the aging retina, oxidative stress and ROS have been widely 
acknowledged to play a major role in the pathophysiology of 
disease.14,32 The retina is highly susceptible to oxidative stress 
because of its high consumption of oxygen, high metabolic 
activity, and exposure to light. Excessive ROS levels can 
damage lipids, proteins, and nucleic acids. This process sub-
sequently leads to cell death unless it is neutralized by the 
oxidant defense system. Retinas of patients with AMD show 
increased oxidative damage and drusen contain high amounts 
of oxidized proteins, as well as increased content of redox-
sensitive proteins.33–35 A growing body of evidence indicates 
that inflammation plays an important role in both dry and 
wet AMD.11,36,37 This includes not only mild infiltration of 
macro phages and accumulation of microglia but also the pre-
sence of inflammatory components such as the complement 
pathway, cytokines, and chemokines. A longitudinal popu-
lation study provides further support for the role of oxida-
tive stress and inflammation in the pathogenesis of AMD.38 
Angiogenesis, the process of forming new blood vessels, is a 
hallmark in the pathology of wet AMD. Among the angio-
genic factors investigated, the vascular endothelial growth 
factor (VEGF) has been shown to be a key factor in animal 
models and AMD patients. Animal models have provided 
evidence for a relationship between VEGF expression and 
the development of CNV.39,40 Increased expression of VEGF 
was found in surgically excited CNV membranes41,42 and 
increased levels of VEGF were detected in vitreous samples 
from AMD patients.43 Although AMD risk involves many 
factors, it is well recognized that there is a strong genetic con-
tribution, as evidenced by recent GWAS studies. This includes 
genes associated with the complementary pathway (CFH, 
CFI, C2/CFB, C3), lipoprotein metabolism (APOE, CETP, 
LIPC), angiogenesis (VEGFA, TGFBR1),  extracellular 
matrix (TIMP3, COL8A1/FILIP1L, COL10A1), cell death 

(IER3/DDR1, TNFRSF10A), glucose and lactate transport 
(SLC16A8, B3GALTL), DNA repair (RAD51B), cleavage of 
proteoglycans and inhibition of angiogenesis (ADAMTS9/
MIR548A2), and mitochondrial gene ARMS2, whose func-
tion remains unknown.12 In addition to the 19 candidate 
genes based on GWAS, polymorphism in genes encoding 
chemo kines and cytokines have been associated with the risk 
of AMD development and progression. For greater detail, the 
reader is referred to the excellent and comprehensive reviews 
on the genetic component of the disease.9–12

There is no cure for AMD, but several treatment options 
are available that can prevent severe vision loss or slow the 
progression of the disease considerably. Currently, three 
VEGF antagonists such as ranibizumab (Lucentis), beva-
cizumab (Avastin), and aflibercept (Eylea) are used as the 
standard treatment for wet AMD.44 All agents are injected 
intravitreously and require proper treatment schedule. 
Another VEGF antagonist, pegaptanib (Macugen) was the 
first drug approved for wet AMD by the United States Food 
and Drug Adminis tration in 2004. However, pegaptanib is 
hardly used anymore because of its limited efficacy compared 
to the other three drugs, and it is no longer available in some 
countries. Although the VEGF antagonists are the current 
standard therapy for wet AMD, they have limitations due to 
the costs of these drugs, their need for frequent injections, 
and possible systemic adverse events and ocular complica-
tions with repeated high dosages of anti-VEGF compounds.45 
Other treatments for wet AMD include photodynamic ther-
apy, which is less common than anti-VEGF injections and is 
used mostly in combination with them for specific forms of 
wet AMD.5,6,44 Thermal laser photocoagulation and macular 
surgery are less common than other treatments.5,6 In addition, 
many potential therapeutic strategies focusing on inhibition of 
the complement pathway are in preclinical trials.46 In contrast 
to wet AMD, there is no approved therapy for dry AMD, 
although a few are now in clinical trials. Current clinical  trials 
are investigating multiple modalities, including drugs that 
decrease oxidative stress, treatments targeting complement 
pathway and inflammation, the visual cycle, neuroprotection, 
and cell replacement therapy.47 Dry AMD management con-
sists of lifestyle modifications such as quitting smoking and 
healthy diet supplemented by zinc and antioxidant vitamins 
(vitamin C, vitamin E, and beta-carotene).

MAPK signaling
MAPKs are a family of evolutionary well-conserved protein 
kinases that are expressed in all eukaryotic cells. Members of 
the MAPK family play a critical role in many cellular processes, 
including proliferation, differentiation, apoptosis, and survival, 
among others. In mammals, the MAPK signaling pathways 
fall into four distinct groups: ERK1/2, JNK1/2/3, p38 (α, β, 
γ, and δ), and ERK5.48 They are activated by diverse extra-
cellular stimuli such as growth factors, cytokines, mitogens, 
hormones, and various cellular stresses including  oxidative 

http://www.la-press.com
http://www.la-press.com/journal-ophthalmology-and-eye-diseases-j146


Targeting MAPK signaling in AMD

25OphthalmOlOgy and EyE disEasEs 2016:8

stress, heat shock, ultraviolet (UV) irradiation, hypoxia, 
 ischemia, and DNA-damaging agents via receptor-dependent 
and -independent mechanisms.49 Each group of MAPKs con-
tains a three-tiered kinase signaling cascade: MAPK kinase 
kinase (MAPKKK), MAPK kinase (MAPKK), and MAPK 
(Fig. 1). MAPKKKs are Ser/Thr protein kinases that are acti-
vated through phosphorylation, which, in turn, leads to phos-
phorylation and activation of MAPKKs, which then stimulate 
MAPK activity through dual phosphorylation on Thr and Tyr 
residues within a conserved Thr-X-Tyr motif located in the 
activation loop of the kinase domain.50 For example, ERK1/2 
and ERK5 have the dual phosphorylation motif Thr-Glu-Tyr, 
JNK has Thr-Pro-Tyr, and the Thr-Gly-Tyr motif is present 
in p38 MAPK.51 Once activated, MAPKs phosphorylate and 
activate an array of transcription factors present in the cyto-
plasm and nucleus, leading to the expression of target genes 
and resulting in a biological response.

The ERK pathway is the first MAPK cascade  elucidated 
and the best characterized.52 ERK1/2 are stimulated in mam-
malian cells via tyrosine kinase receptors and G- protein-coupled 
receptors through both Ras-dependent and Ras-independent 
pathways.53 They are also activated by growth factors, mitogens, 
cytokines, osmotic stress, and in response to insulin. Activated 

Ras-GTP phosphorylate Raf (isoforms A, B, and C), which 
in turn phosphorylates and activates MEK1/2 and ERK1/2. 
ERK pathway plays a central role mainly in the control of cell 
proliferation and differentiation, and also in  neuronal plastic-
ity, survival, and apoptosis.54

The first JNK family member, referred to as p54 MAP-2 
kinase, was purified from cycloheximide-treated rat liver,55 
and subsequently cloned and named JNKs because of their 
ability to phosphorylate and activate the transcription  factor 
c-Jun.56 There are currently three mammalian JNKs with 
 several isoforms, namely, JNK1, JNK2, and JNK3.57 It has 
been shown that JNKs are activated in response to various 
cellular stresses such as heat shock, ionizing radiation, oxida-
tive stress, DNA-damaging agents, cytokines through various 
receptors, including tyrosine kinase receptors, and to a lesser 
extent by some G-protein-coupled receptors.58 JNKs are acti-
vated by the Rho family of small GTPases. These proteins in 
turn activate MEKK1/4, MKK4/7, and JNK1/2/3. In addi-
tion to MEKK1/4, apoptosis signal-regulated kinase (ASK1), 
mixed lineage kinases (MLK1/3), and TGF β-activated 
kinase (TAK1) regulate the JNK pathway.59 JNK pathway 
has been shown to play important roles in the control of cell 
 proliferation, differentiation, apoptosis, and inflammation.60 
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figure 1. Simplified diagram depicting MAPK signaling. In mammals, the four major groups of MAPKs, ERK, JNK, p38, and ERK5 are activated by 
various extracellular stimuli. Once activated, mapKs phosphorylate and activate an array of transcription factors.
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p38 MAPK was first identified in Saccharomyces cerevisiae as 
a protein kinase activated by hyperosmolarity, Hog1.61 There 
are four isoformes of p38 MAPKs (α, β, γ, and δ) encoded 
from different genes.48 Different isoformes are activated by 
inflammatory cytokines and various environmental stresses 
such as oxidative stress, UV radiation, hypoxia, ischemia, and 
others. Similar to JNKs, activation of p38 MAPKs through 
either stress or cell surface receptors involves members of the 
Rho family, which can activate and phosphorylate, MLKs, 
TAK1, ASK1, and MKK3/6.48 In turn, MKK3/6 activates 
the four p38 isoformes. p38 pathway plays a critical role in 
normal immune and inflammatory responses, apoptosis, cell 
proliferation, and even survival.62 The ERK5 pathway is one 
of the lesser studied and understood members of MAPK 
 family. ERK5, also known as big MAPK (BMK1) because 
it is twice the size of other MAPKs, was initially found to 
be activated by oxidative stress and hyperosmolarity.63 Subse-
quently, it was shown that ERK5 can be activated in response 
to serum, seve ral growth factors, cytokines, and stress stimuli 
(reviewed by Drew et al).64 The ERK5 signaling acts through 
sequential phosphorylation and activation of MEKK2/3, 
MEK5, and ERK5. The mechanism of activation of this 
pathway is still poorly elucidated; however, it is believed that 
several  adaptor/scaffold proteins are involved, such as Lck-
associated adapter65 and Src.66 ERK5 has been implicated in 
cell survival, differentiation, proliferation, and motility. In 
addition, several studies have suggested that ERK5 is involved  
in angio genesis67,68 and may potentially regulate VEGF-
mediated neovascularization.69

AMd and MAPK signaling
MAPKs have been implicated in many human patholo-
gies, including neurodegenerative diseases (Alzheimer’s, 
 Parkinson’s, and amyotrophic lateral sclerosis), diabetes, 
obesity, and different cancers. Given their pivotal role in 
key cellular processes, it is not surprising that alteration 
in expression and/or function of various intermediates of 
MAPK signaling is involved in the pathogenesis of AMD. 
Oxidative stress plays a central role in AMD. Commonly 
used experimental model to study the link between oxidative 
stress and AMD involves the use of cultured human RPE 
(ARPE19) cells. UV-induced damage is known to play a 
crucial role in eye diseases, including retinal degeneration. 
Studies have demo nstrated that MAPKs ERK1/2, JNK, and 
p38 are activated in human RPE cells after UV exposure.23,70 
A recent study demonstrated the protective effect of resvera-
trol on RPE cells against UV-induced damages through 
inhibition of MAPK activation.71 Based on these results, it is 
suggested that  resveratrol may act as a suppressing agent for 
prevention of UV-induced ocular disorders.71 Furthermore, 
RPE cells exposed to the oxidant tert-butyl hydroperoxide 
(t-BHP) showed activation of ERK1/2 and several down-
stream nuclear targets.19 Inhibition of the ERK pathway was 
found to completely block t-BHP-induced apoptosis, while 

 neither JNK nor p38 MAPK  inhibition was able to  prevent 
the t-BHP-induced apoptosis in RPE cells. ERK was 
 postulated as a potential target for treating oxidative stress-
induced RPE degeneration, such as AMD.19  Cadmium, 
released from cigarette smoke and metal industrial activi-
ties, caused activation of ERK, JNK, and p38 MAPK in 
ARPE19 cells, suggesting that cadmium could be an impor-
tant factor in RPE cell death.72 Studies from this laboratory 
and others have shown that constitutive activation of ERK 
by cadmium induces authophagic cell death.73 Autophagy, 
or self-eating, is a catabolic process by which cells degrade 
and recycle  cellular components in order to maintain cellu-
lar metabolism and homeostasis.74 There is now considerable 
evidence that autophagy plays a significant role in RPE, and 
this process is less effective with aging.75 On the other hand, 
it was demonstrated that Ras/Raf/MEK/ERK signaling 
pathway is involved in serum-induced RPE cell prolifera-
tion.76 After hydrogen peroxide stimulation, ERK1/2 does 
not seem to be involved in cell death, but to be associated 
with oxidative stress-induced proliferation,77 while JNK and 
p38 activation is important for hydrogen peroxide-induced 
apoptosis in RPE cells.78 Short-term activation of ERK1/2 
is associated with cell proliferation,79 whereas persistent acti-
vation of ERK1/2 leads to cell death.80

Many efforts have been made to establish animal models 
that mimic human AMD. The mouse is a genetically well-
defined species and most of the retinal degeneration genes 
found first in mouse have been linked to a corresponding 
human retinal disease. The main drawback of using mice to 
study AMD is that the mouse retina has no macula. How-
ever, pathologic events seen in human AMD, such as drusen 
formation, thickened Bruch’s membrane, various types of 
retinal degeneration, and CNV, have all been seen in various 
mouse strains.81 It has been shown that deficient expression 
of the RNase III DICER1 leads to the accumulation of Alu 
RNA RPE of human eyes with geographic atrophy.82 Studies 
revealed that Alu RNA overexpression or DICER1 knock-
down increases the phosphorylation of ERK1/2 in mouse 
RPE in vivo, while JNK1/2 or p38 MAPK phosphorylation 
levels were unchanged.26 Similar results were obtained when 
antisense oligonucleotide-mediated knockdown of DICER1 
was used in primary human RPE cells.26 PD98059, a potent 
and selective inhibitor of MEK, inhibits ERK1/2 phosphory-
lation and blocks RPE degeneration both in RPE cell culture 
and mice.26 In addition, ERK1/2 pathway is also involved 
in experimental models of retinal and CNV.83,84 In a spe-
cific AMD model and in particular for retinal angiomatous 
prolife ration, a form of wet AMD, the very low-density lipo-
protein receptor knockout mouse (vldlr−/−), we have reported 
that ERK1/2, JNK, and p38 are elevated and a single intravit-
real injection of cerium oxide nanoparticles (nanoceria) for one 
week reduces the phosphorylation of the three MAP kinases 
to the control levels.28 A recent study demonstrates that JNK1 
deficiency or JNK inhibition leads to a decrease in apoptosis, 

http://www.la-press.com
http://www.la-press.com/journal-ophthalmology-and-eye-diseases-j146


Targeting MAPK signaling in AMD

27OphthalmOlOgy and EyE disEasEs 2016:8

ERK JNK

Oxidative stress, ROS, Hypoxia, UV, Cytokines, Inflammation, Cigarette smoke, Aging

p38

Wet AMDVEGF

Inflammasome
NLRP3
IL-18

Dry AMD

figure 2. schematic presentation depicting the role of ERK, JnK, and p38 in dry and wet amd.

VEGF expression, and reduction of CNV in a mouse model 
of wet AMD (laser-induced CNV).27

Using data from a whole-genome genotyping microar-
ray and a multilocus enrichment analysis, SanGiovanni and 
Lee have identified AMD-associated regions related to an 
∼30% change in the likelihood of having advanced AMD 
within six of 25 tested genes of JNK signaling pathway.29 
Makarev et al developed a new software AMD Medicine to 
evaluate the changes in functional pathway networks using 
changes in gene expression of single genes between AMD 
and  normal eyes.30 They discovered that several pathways 
including ERK are activated in RPE-choroid AMD phe-
notypes. The aforementioned findings indicate that MAPK 
pathways are undoubtedly involved in AMD pathology and 
are potentially attractive targets for both neovascular and 
atrophic AMD.

There is a crosstalk between MAPK signaling and 
several different pathways, such as VEGF, inflammasome, 
autophagy, and others. VEGF is known to be the major 
angiogenic  factor involved in AMD.39–43 MAPK pathways 
play an essential role in modulating VEGF. It has been 
demonstrated that constitutive activation of ERK1/2 leads 
to increased VEGF expression,85 and overexpression of p38 
and JNK leads to elevated VEGF expression.86 Inflam-
masomes play a central role in innate immune system. ROS 
serves as an important inflammasome signal that activates 
MAPK signaling.87 It has been shown that dysregulation of 
inflammasome plays a role in various pathological conditions 
including AMD.88 It was reported that NLRP3 inflam-
masome activation by drusen induces interleukin-18 (IL-18) 
secretion, which, in turn downregulates VEGF, thus reduc-
ing the excessive neoangiogenesis associated with AMD.89 
Zhang et al demonstrated that the cytokine IL-17A induced 
the activation of ERK1/2 and p38 MAPK in RPE cells.90 

Figure 2 shows a proposed model of MAPK signaling that 
leads to AMD.

MAPK Inhibitors
Although the application of anti-VEGF drugs for  treatment 
of wet AMD has significantly improved the control of  disease, 
not all patients benefited from these drugs. Undoubtedly, 
 identifying additional or alternative therapies that can improve 
the current standard treatment is of great interest.

MAPKs have become the most intensively studied pro-
tein kinases in the past two decades with a number of pharma-
cological inhibitors developed to block MAPK signaling. 
Dudley et al discovered the first small-molecule inhibitor of 
MEK1/2, the PD98059 compound.91 Subsequently, another 
potent inhibitor of MEK1/2, U0126, was identified.92 How-
ever, because of their pharmaceutical limitations, none of 
these two compounds have moved to clinical trials. However, 
PD98059 and U0126 have proven to be invaluable research 
tools to investigate the role of the ERK1/2 pathway in normal 
cell physiology and disease process. To date, several MEK1/2 
inhibitors have been tested clinically or undergoing clinical 
trials for treatment of various cancers.93,94 These include tram-
etinib (GSK1120212) for BRAF-mutated melanoma, selume-
tinib (AZD6244) for non-small cell lung cancer, binimetinib 
(MEK162, ARRY-162) for biliary tract cancer and melanoma, 
and PD0325901 for breast cancer, colon cancer, and melanoma. 
Raf inhibitors including vemurafenib, sorafenib, regorafenib, 
encorafenib (LGX818), and dabrafenib are in clinical trials 
for patients with tumor types harboring frequent mutations in 
BRAF gene and for treating renal, hepatocellular, and thyroid 
cancers.95 However, adverse drug reactions including oph-
thalmologic complications occurred in patients treated with 
some MAPK inhibitors. For example, the incidence of reti-
nal vein occlusion and retinal pigment epithelial detachments 
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in patients treated with trametinib in clinical trials is 0.2% 
and 0.8%, respectively.96 Uveitis occurred in 1% of patients 
receiving dabrafenib97 and in 2.1% of patients treated with 
vemurafenib.98 Therefore, these MAPK inhibitors cannot be 
used for treatment of AMD because of their ocular toxicity. 
The two broad spectrum inhibitors sorafenib and regorafenib 
are the most attractive drugs to target MAPK signaling in 
AMD. Both inhibitors target multiple kinases, including 
Raf, VEGF receptors 1–3, fibroblast growth factor receptor 1, 
and platelet-derived growth factor receptor, thereby inhibit-
ing tumor growth and angiogenesis.99,100 No ocular toxici-
ties were reported for sorafenib except one case of retinal tear 
possibly associated with the use of this drug.101 Regorafenib 
(Stivarga; Bayer HealthCare) eye drops have been developed 
to inhibit VEGF activity in a small group of patients with 
neovascular (wet) AMD and a phase II trial has been recently 
completed (ClinicalTrials.gov Identifier: NCT02222207), 
pending results to evaluate the safety and tolerability of these 
eye drops. Because regorafenib is a multikinase inhibitor that 
inhibits VEGF, to what extent the inhibition of Raf/MEK/
ERK signaling contributes to the clinical activity of this 
inhibitor is yet to be determined. Further understanding of 
the effects of sorafenib and regorafenib to target MAPK path-
ways in AMD is an area for research exploration. According 
to two new studies, presented as posters at the Association for 
Research in Vision and Ophthalmology 2015 Annual Meet-
ing, regorafenib showed positive results as a potential topical 
therapy in the nonhuman primate laser-induced CNV model 
and in two different rodent models of ocular neovasculari-
zation.102,103 Because currently available treatments require 
intravitreal injections, regorafenib eye drops offer an innova-
tive and noninvasive potential treatment option for wet AMD. 
However, local side effects are possible for theoretically every 
drug used in ophthalmology, which include toxicity related to 
the compound itself.

Additional pharmacological inhibitors that target p38 
MAPK have been one of the most intensively studied classes 
of therapies for the treatment of inflammation. P38 MAPK 
inhibitors that are in phase II clinical trials for patients with 
autoimmune diseases and inflammatory processes include 
pamapimod, losmapimod, dilmapimod, doramapimod, 
VF-702, BMS-582949, ARRY-797, and PH-797804.104 No 
ocular toxicities have been associated with the use of these 
inhibitors. Research into the role of p38 in AMD is an excit-
ing area in the future that will be important to determine how 
best to make use of the therapeutic potential of targeting this 
signaling pathway.

Although there are several small-molecule JNK inhibi-
tors such as SP600125, JNK-IN-8, and tanzisertib (CC-930), 
none of them proved to be effective in human tests yet.

conclusion
In recent years, we have witnessed a mounting body of data 
suggesting that MAPKs are implicated in the  pathogenesis 

of many human diseases. The evidence presented in this 
review indicates that MAPK pathways are involved in the 
development of AMD. Given the role of MAPK signaling 
in key  cellular processes, interest in protein kinases as drug 
targets has exploded in the past few years. This may shift cur-
rent research and clinical practice toward the use of MAPK 
inhibitors, alone or in combination with other therapeutics for 
treatment of AMD.
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