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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its clinical

manifestation (COVID-19; coronavirus disease 2019) have caused a worldwide health

crisis. Disruption of epithelial and endothelial barriers is a key clinical turning point

that differentiates patients who are likely to develop severe COVID-19 outcomes:

it marks a significant escalation in respiratory symptoms, loss of viral containment

and a progression toward multi-organ dysfunction. These barrier mechanisms are

independently compromised by known COVID-19 risk factors, including diabetes,

obesity and aging: thus, a synergism between these underlying conditions and

SARS-CoV-2 mechanisms may explain why these risk factors correlate with more

severe outcomes. This review examines the key cellular mechanisms that SARS-CoV-2

and its underlying risk factors utilize to disrupt barrier function. As an outlook, we

propose that glucagon-like peptide 1 (GLP-1) may be a therapeutic intervention that

can slow COVID-19 progression and improve clinical outcome following SARS-CoV-2

infection. GLP-1 signaling activates barrier-promoting processes that directly oppose

the pro-inflammatory mechanisms commandeered by SARS-CoV-2 and its underlying

risk factors.

Keywords: glucagon like peptide 1 (GLP-1), enteroendocrine, lung, immune cells, tumor necrosis factor

(TNF), tumor necrosis factor converting enzyme (TACE), endothelial barrier disruption, acute respiratory and

circulatory disruption

INTRODUCTION

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, first reported in
December 2019 inWuhan, China (1), rapidly evolved into a global pandemic. Comprehensive lock-
down measures in most affected jurisdictions have slowed down the spread of the virus, however,
in the face of the massive collateral societal and economic damage, these measures are clearly
unsustainable. The core issue at hand is the lack of specific treatments for SARS-CoV-2: several
antiviral strategies are undergoing clinical study, but thus far, efficacy is limited (2, 3); vaccines
are in development, but these will likely not be ready in time to mitigate the current wave or
prevent a second global wave. Thus, it is incumbent that we identify interventions that increase
the resilience to SARS-CoV-2 infection, particularly in populations at risk of severe responses. To
do so, a comprehensive understanding of the disease pathology and the risk factors that increase
susceptibility for severe disease progression is required.
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SARS-CoV-2 infection can be symptomless in some
individuals, while on the other end of the continuum, severe cases
elicit terminal multi-organ failure (4, 5). The majority of cases
are mild; ∼20% of cases require clinical intervention, with ∼5%
progressing to critically ill stages where mortality is high (5.8%
global case fatality ratio, ranging from 0.1 to 16% by country)
(1, 6, 7). Overall susceptibility, the likelihood of developing
severe symptoms, and mortality all correlate with several known
risk factors, including high BMI (>30) (8), diabetes (9–11),
hypertension (8, 10) and age [corrected for comorbidities
(8–10)]. In all likelihood, these risk factors compromise immune
responses and/or permit systemic viral entry and replication.
With regard to the latter, the SARS-CoV-2 virus is capable of
compromising two critical barriers: the epithelial-endothelial
barrier in lung alveoli and the vascular endothelial barrier in
the systemic circulation. Indeed, alveolar-endothelial barrier
failure is likely the key turning point differentiating patients who
will quickly worsen into severe cases, as it marks a significant
escalation in respiratory symptoms, the loss of viral containment
and a progression toward multi-organ dysfunction (12–14).

This review will focus on the key cellular mechanisms that
SARS-CoV-2 utilizes to disrupt epithelial and endothelial
barriers. These barrier mechanisms are independently
compromised by known coronavirus disease 2019 (COVID-19)
risk factors; a combination effect may explain why these risk
factors correlate with more severe outcomes. As an outlook, we
propose a therapeutic intervention that may slow COVID-19
progression and improve clinical outcome following SARS-
CoV-2 infection. In this regard, glucagon-like peptide 1 (GLP-1)
signaling activates barrier-promoting processes that directly
oppose the pro-inflammatory mechanisms commandeered by
SARS-CoV-2 and its underlying risk factors. Thus, medications
that stimulate GLP-1 signaling, e.g., exendin-4, may have
unappreciated utility for COVID-19 treatment.

INFECTION MECHANISM

The mechanisms mediating SARS-CoV-2 infection and viral
replication are already defined and will not be described in
detail in this review (15–17). Briefly, host cells must express
two components that are critical for SARS-CoV-2 infection:
(i) angiotensin converting enzyme 2 (ACE2), the surface receptor
that mediates viral attachment to the host cell, and (ii) the
transmembrane serine protease TMPRSS2, which cleaves the
viral spike protein, thereby priming viral fusion to the host
cell’s membrane (16, 18). All barrier forming cells, including
lung epithelial cells (19–21), enteric epithelial cells (22, 23) and
vascular endothelial cells (22) express ACE2 and TMPRSS2 in
high abundance and therefore, are targeted by the SARS-CoV-2
virus. An additional element, named tumor necrosis factor
converting enzyme (TACE; ADAM17), may facilitate viral entry,
although the molecular mechanisms mediating the enhanced
entry have not been defined (24, 25).

In the absence of an effective vaccine, intervention
strategies have primarily focussed on reducing (i) SARS-CoV-2
fusion/entry, (ii) SARS-CoV-2 replication and (iii) excessive

inflammation (2, 3). Obviously, preventing SARS-CoV-2
infection is more desirable than reacting to infection: thus,
targeting ACE2/SARS-CoV-2 binding and TMPRSS2 activity,
the crucial host proteins involved in viral entry, are highly
attractive therapeutic strategies. In this regard, a clinical-grade
recombinant ACE2 decoy receptor (26) and the clinically
available TMPRSS2 inhibitor camostat (18) have displayed
positive results in vitro; however, these strategies have yet
to be assessed in clinical trials and are currently a long way
from the patient’s bedside. In fact, after months of intensive
study, most medications repurposed to combat COVID-19,
including the notable candidates hydroxychloroquine (27) and
lopinavir-ritonavir (28), have failed to demonstrate benefit
in randomized placebo-controlled clinical trials. At present,
remdesivir, an adenosine nucleotide analog that hampers viral
replication (29), is the only candidate (30, 31) with an active
FDA emergency use authorization (EUA) at present. However,
remdesivir is clearly not amagic bullet intervention (31) and may
yet fail to demonstrate benefit in properly powered randomized
placebo-controlled clinical trials.

Since targeting SARS-CoV-2 viral entry and replication has
not been successful to date, “containing” the virus to the
respiratory tract is of paramount importance. Since SARS-CoV-2
is predominantly transmitted through the inhalation of airborne
droplets and aerosols, epithelial cells within the upper and lower
respiratory tract are the first barriers to be attacked. If the virus
breaches this barrier and enters the cardiovascular system, the
virus will have the opportunity to infect every organ in the body
via themicrocirculation (32). Indeed, pronounced vascular injury
in association with diffuse alveolar damage is a key feature of
SARS-CoV, a relative of SARS-CoV-2 that also targets ACE2 (33).

POSSIBLE ROUTES TO THE SYSTEMIC
CIRCULATION

In most cases, SARS-CoV-2 remains confined to the upper
respiratory tract, favoring mild symptoms. Epithelial cell
infection in the upper airways is associated with copious viral
shedding, high person-to-person transmissibility, occasional loss
of olfaction, sore throat, fever, and a characteristic dry cough.
The nasal mucosa potentially provides a highly vascularized
entry point to the systemic circulation if the virus can alter the
properties of the restrictive tight junctions in the nasopharyngeal
epithelium and underlying microvascular endothelium (34).

From the upper respiratory tract, the SARS-CoV-2 may
descend down the trachea and infect cells in the lower
respiratory tract and alveoli. At the bronchiolar level, SARS-
CoV-2 can infect epithelial goblet cells (35), resulting in airway
inflammation and mucous secretion. The inflammatory response
subsequently impairs mucociliary clearance, which hampers the
clearance of the viral particles, and elicits complications such as
bronchiectasis and bronchial wall thickening (36). At the alveolar
level, infection and subsequent disruption of the “blood-air
barrier,” which comprises alveolar epithelial cells and pulmonary
microvascular endothelial cells, is a central event in disease
progression: in essence, it is a transition point from relatively
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moderate symptoms to the severe respiratory symptoms and lung
injury observed in severe COVID-19 cases. The compromised
barrier becomes leaky, permitting alveolar fluid accumulation
(edema), and the development of pneumonia and inflammatory
cell infiltration. The resulting hypoxia and damage unleashes a
“cytokine storm” in a subset of patients that perpetuates a vicious
cycle of progressive lung injury, as the inflammatory response
further damages pulmonary cells and compromises endothelial
function and barrier integrity (37). In addition to driving severe
lung injury, the breach of the blood-air barrier permits viral entry
into the systemic circulation, where the virus can then cause
widespread multi-organ damage (12, 14).

TACE IS A KEY DRIVER OF SARS-COV-2
SEVERITY

Not all coronavirus infections elicit severe respiratory system
injury and multiorgan damage: for example, HNL63-CoV, a
coronavirus that also binds to ACE2 (38), generally causes
relatively mild common cold symptoms (39). Although HNL63-
CoV and SARS-CoV-2 bind to the same surface receptor, a
key difference between the two viruses resides in the activation
of TACE: SARS-CoV strongly activates TACE sheddase activity
(24, 25), while HNL63-CoV does not (24). This suggests that
TACE activation is a key underlying aspect of the SARS-CoV-2
disease severity.

TACE has more than 80 known substrates, including growth
factors, cytokines, cell surface receptors and adhesion molecules
(40) and hence, plays complex roles in many regulatory processes
(40): thus, it is not surprising that perturbing normal TACE
function yields a broad spectrum of deleterious effects. In the
context of the COVID-19 pathology, three particular TACE
substrates stand out: ACE2 (41), tumor necrosis factor (TNF)
(4, 42), and the endothelial protein C receptor (EPCR) (43). All
three of these proteins play important anti-inflammatory and
barrier-stabilization roles: TACE-dependent shedding of these
cell surface proteins, therefore, shifts a delicate balance in favor
of inflammation and reduced barrier integrity (Figure 1).

The physiological functions of ACE2 and the implications of
ACE2 shedding in COVID-19 have been extensively reviewed by
Gheblawi et al. (41). ACE2 is a central element in the Renin-
Angiotensin-Aldosterone System (RAAS) and therefore, has
wide ranging effects that intersect with virtually every endocrine
and inflammatory mechanism (44). At the molecular level, ACE2
converts angiotensin II into angiotensin (1-7): angiotensin II
activates the pro-inflammatory angiotensin II receptor subtype
1 (AT1R) (45), while angiotensin (1-7) preferentially activates
the anti-inflammatory angiotensin II receptor subtype 2 (AT2R)
(46) and Mas receptors (46–48). Thus, TACE-dependent ACE2
shedding (41, 49) in COVID-19 shifts RAAS signaling in favor
of the pro-inflammatory AT1 receptors (50), which favors
immune cell adhesion (51), cellular damage (51), and increased
vascular permeability (via the modulation of VE-cadherin
function) (52, 53).

Although TNF is best known as a pro-inflammatory cytokine,
TNF serves many developmental, homeostatic and reparative

functions (54–56). In pathological settings, TNF is a critical
initiating factor in the immune response; importantly, if the
initial pathogenic insult and/or tissue damage is severe, the
immune response can spiral out-of-control into the highly
damaging “cytokine storm” (54–58). At the level of the
endothelium, TNF stimulates two key homeostatic changes:
(i) the expression of immune cell adhesion molecules (e.g.,
VCAM-1 and ICAM1) (59, 60), and (ii) an increase in barrier
permeability, via cytoskeletal rearrangement (61, 62) and the
regulation of cell-to-cell adhesion junctions (63, 64). These
changes allow immune cells to bind to the endothelium at
the site of injury/infection and transmigrate into the tissue
through the paracellular junctions (54, 58). Among other notable
acute effects, TNF also simulates endothelial reactive oxygen
species generation and impairs nitric oxide production (54),
which can have significant effects on tissue damage and vascular
control mechanisms (65, 66). In COVID-19, TACE-dependent
TNF shedding favors the rapid breakdown of the endothelial-
alveolar barrier, resulting in lung edema, immune cell infiltration,
and ultimately, lung tissue damage. This barrier breakdown
also opens the gateway to the systemic circulation: once distal
endothelial cells are infected; the same inflammatory mechanism
provides a means for the virus to escape the systemic circulation
and into organ parenchymal cells.

The endothelial protein C receptor (EPCR) (67, 68) is
best known for its anti-coagulatory functions (69); however,
EPCR signaling also plays an important role in moderating
inflammation (70–72), maintaining endothelial barrier function
(73, 74) and conferring cytoprotection (75–77). EPCR binds the
zymogen protein C and cleaves it into an active protease: this
activated form of protein C remains bound to the EPCR and
subsequently (i) cleaves protease-activated receptor 1 (PAR1)
and (ii) transactivates the sphingosine-1-phosphate receptor 1
subtype (S1PR1) (67, 68). The activation of these receptors
inhibits nuclear factor-κB (NF-κB) translocation/signaling,
thereby reducing proinflammatory gene expression, the release
of cytokines, and the expression of adhesion molecules (67, 68).
In addition, activated protein C shifts PAR1 signals from RhoA-
dependent, barrier permeabilizing actions to Rac1-dependent,
barrier stabilizing actions (67, 68). In the context of COVID-
19, TACE-dependent EPCR shedding removes an important
molecular brake that dampens immune cell infiltration, edema
and tissue damage; by eliminating a barrier stabilization
mechanism, the loss of EPCR signaling also undermines viral
containment. Finally, deficient EPCR signaling, a key brake
element in the coagulation pathway, likely also contributes to
the high incidence of thrombotic complications observed in
serious COVID-19 cases, including widespread microthrombi,
pulmonary embolism, stroke and disseminated intravascular
coagulation (12, 78, 79).

In summary, the activation of TACE may significantly
augment the inflammatory response following SARS-CoV-2
infection. As a component of the inflammation, endothelial
permeability may become severely compromised, permitting
the SARS-CoV-2 virus with access to the systemic circulation.
Given the remarkably large surface area of the microvascular
endothelium (3,000-4,000 m2) and its presence in every tissue,
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FIGURE 1 | Increased TACE activity in COVID-19 shifts barrier cells toward a pro-inflammatory, pro-coagulatory and permissive state. In healthy cells, TACE is

predominantly inactive, thereby permitting anti-inflammatory signals via TACE substrates, including ACE2, TNF, and EPCR. ACE2, a key player in the RAAS system,

converts angiotensin II (AngII) into angiotensin-1-7 [Ang (1–7)]: the subsequent activation of AT2R and Mas receptors stimulates anti-inflammatory signals. When

ACE2 is cleaved, angiotensin signaling shifts from AT2R/Mas receptors to the pro-inflammatory AT1R. TNF receptors stimulate differential signals, depending on

whether the receptor is activated by the membrane-bound or soluble form of TNF: membrane bound TNF elicits important anti-inflammatory signals; in contrast,

soluble TNF mediates pro-inflammatory signals. Finally, EPCR plays a critical role in regulating coagulation by converting inactive protein C (PC) into activated protein

C (APC). Activated protein C subsequently inactivates pro-coagulatory factors; it also cleaves PAR1 and transactivates S1PR, resulting anti-inflammatory and

barrier-stabilizing signals. TACE-dependent EPCR cleavage prevents the activation of PC, leading to reduced capacity to inhibit coagulation; RhoA-dependent

signaling via uncleaved PAR1 is barrier destabilizing. TACE, tumor necrosis factor alpha converting enzyme; ACE2, angiotensin converting enzyme 2; TNF, tumor

necrosis factor; EPCR, endothelial protein C receptor; RAAS, rennin-angiotensin-aldosterone system; AT2R, angiotensin receptor 2; AT1R, angiotensin receptor 1;

PAR1, protease activated receptor 1; S1PR, sphingosine-1-phosphate receptor; TNFR, TNF receptor. Created with BioRender.com.

the failure to maintain this barrier eliminates the last line of
defense against multi-organ damage and failure.

COVID-19 RISK FACTORS THAT
COMPROMISE BARRIER FUNCTION

Several cardiovascular risk factors, including hypertension,
obesity, type 2 diabetes mellitus (T2D) and cardiovascular
disease, are common underlying conditions in COVID-19

patients (80, 81). Although these risk factors tend to associate
with more severe cases, the individual contribution of each
risk factor to COVID-19 disease severity/outcome is difficult to
define, due to the small sample size of most studies, combined
with the fact that these risk factors largely overlap [e.g., 52%
of patients with T2D are obese; and 60% of obese patients
have metabolic syndrome including hypertension as a leading
symptom (82–85)]. To add a further challenge, age is a significant
COVID-19 risk factor (86) that has generally not been taken into
account in most risk factor studies (81). According to Tadic et al.
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FIGURE 2 | Proposed mechanisms for GLP-1-mediated stabilization of alveolar epithelial and endothelial barriers in COVID-19. In COVID-19, alveolar epithelial cells

are severely damaged by direct viral attack and the immune response, leading to hyaline membrane formation, increased barrier permeability, alveolar fluid

accumulation and a loss of viral containment. Viral attack on the underlying endothelial cells leads to TACE activation that: augments pro-inflammatory signaling,

increases endothelial barrier permeability, promotes immune cell adhesion/extravasation and compromises EPCR-dependent regulation of coagulation. Notably, the

loss of endothelial barrier integrity further exacerbates alveolar fluid accumulation. GLP-1 receptor signaling directly opposes these pathological mechanisms by:

attenuating TACE expression/activity, initiating counteracting anti-inflammatory signals, promoting barrier function via increased tight junction expression and

stimulating surfactant secretion (reduces alveolar fluid accumulation by decreasing surface tension). The GLP-1 mediated attenuation of TACE activity/expression is

also expected to hinder viral entry into cells. GLP-1, glucagon like peptide 1; ACE2, angiotensin converting enzyme 2; TACE, tumor necrosis factor alpha converting

enzyme; TNF, tumor necrosis factor; EPCR, endothelial protein C receptor. Created with BioRender.com.

(81), most risk assessment studies are too small, inconsistent,
and fail to account for several confounding factors, most notably
age and obesity: consequently, they are ill-equipped to discern
important interactions between comorbidities and outcomes.
Thus, the data are more epidemiological than analytical and
should be viewed cautiously (81).

Although the precise relationships between COVID-19 risk
factors and disease severity require clarification, there are obvious
mechanistic commonalities across these risk factors that permits
speculation as to why certain common underlying conditions
appear to cluster with more severe outcomes. In this sense,
we can predict that the outcomes should be more severe,
based on deleterious mechanisms that are already activated
prior to infection. As a prime example, metabolic conditions
such as obesity and T2D down-regulate tissue inhibitor of
metalloproteinase 3 (TIMP3), an important endogenous TACE
inhibitor that critically regulates TACE and the release of
TNF in metabolic tissues (87, 88). The resulting increase in
TACE activity induces a proinflammatory state (e.g., cytokine

production, immune cell adhesion molecule expression, and
hyperpermeability) and pronounced endothelial dysfunction
(e.g., reactive oxygen species generation and impaired autacoid
release) (89–92) observed in obese and T2D patients. Aging
is a double-hit: in addition to inducing pro-inflammatory
endothelial dysfunction (93, 94), it also diminishes infection
defense (“immune senescence”) (95, 96).

A common thread across these risk factors is chronic
low-level inflammation and endothelial dysfunction: these risk
factors facilitate infection, prime an exaggerated immune
response and/or compromise viral containment. Thus, it is
entirely reasonable to expect that these underlying conditions
would synergize with SARS-CoV-2 infection mechanisms to
more profoundly erode barrier function and drive more
severe disease progression. These underlying conditions also
profoundly impact the patient’s immunological status, which
is an obvious determinant of COVID-19 severity (97). Indeed,
deep immune profiling reveals that hospitalized patients
fall across a spectrum of immune response patterns (98),
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with underlying conditions contributing to the diversity in
host responses.

GLP-1 AGONISTS: A POTENTIAL
INTERVENTION FOR MITIGATING
COVID-19

Glucagon-like-peptide 1 (GLP-1) is an enteroendocrine
hormone, originally characterized in the orchestration of insulin
release in response to ingested nutritional stimuli (99, 100).
However, GLP-1 signaling plays a vital role in energy metabolism
and cell viability in several tissues: thus, targeting GLP-1
receptors can potentially elicit systems-level effects (101). In
this regard, GLP-1 has emerged as an important homeostatic
element within the cardiovascular system, where it possesses
significant endothelial-protective functions (102, 103). It is also
interesting to note that all of the barrier-forming cells in the lung
and vascular system express GLP-1 receptors (104–108).

In the lung, GLP-1 tightens barriers via the upregulation
of tight junction proteins in barrier-forming cells (108, 109);
in alveolar type 2 pneumocytes, GLP-1 stimulates the production
of surfactant that, by reducing surface tension, helps to minimize
fluid accumulation within alveolar spaces (110). In endothelial
cells, GLP-1 inhibits TACE expression and activity (111):
it therefore directly opposes key mechanisms that SARS-CoV-
2 commandeers to augment inflammation and compromise
barrier function. Accordingly, GLP-1 signaling attenuates
TACE-dependent EPCR shedding (111); GLP-1 signaling also
increases deficient ACE2 levels in pathological settings (112),
presumably via reduced ACE2 shedding. Consistent with this
anti-inflammatory role, GLP-1 receptor agonists possess several
desirable actions, including (i) antagonizing inflammatory NF-
κB signaling (103), (ii) reducing immune cell adhesion molecule
expression on endothelial cell surfaces (e.g., ICAM-1 and
VCAM-1) (103, 113), (iii) reducing immune cells cytokine
production (113), and (iv) attenuating endothelial cell oxidative
stress (114).

With regard to the risk factors associated with severe
COVID-19 cases, it is remarkable to note that GLP-1 receptor
agonists (e.g., exendin-4, liraglutide, semaglutide) are either
FDA-approved (diabetes) (115) or proposed (obesity, age-related
decline) (116, 117) as an intervention for the underlying
conditions. GLP-1 receptor agonists were specifically developed
to harness GLP-1’s potent hypoglycemic effect in the treatment
of diabetes (115): the improved glycemic control results in
weight loss in T2D patients and consequently, clinical trials
are currently assessing their utility as an anti-obesity drug
for patients without T2D (116). In addition to its functions
as a metabolic hormone, GLP-1 possesses significant anti-
inflammatory effects that are independent of glucose homeostasis
(118). Consequently, GLP-1 receptor agonists are now being
considered for age-related pathologies, including Alzheimer’s
disease, Parkinson’s disease, and cognitive decline, all of which
possess a strong inflammatory component (117, 119). Since
GLP-1 signaling exerts clear beneficial effects in obesity, T2D
and aging, it must potently ameliorate a common pathological

thread across these conditions: chronic low-level inflammation
and endothelial dysfunction. Since (i) both the risk factors for
severe COVID-19 (e.g., obesity, diabetes, age) and the SARS-
CoV-2 virus harness similar pro-inflammatory mechanisms and
(ii) GLP-1 signaling is anti-inflammatory and has demonstrable
benefits in patients with underlying conditions (118), it stands
to reason that GLP-1 signaling should directly oppose the
inflammatory mechanisms activated in COVID-19. In this
context, GLP-1 agonists would be a useful mechanism-based
treatment strategy (Figure 2).

GLP-1 SECRETAGOGUES: A NOVEL
OPPORTUNITY FOR PROPHYLAXIS

Given that GLP-1 signaling confers many positive benefits,
especially in individuals with COVID-19 risk factors (118, 120,
121), it is intriguing to hypothesize that the benefits of GLP-1
can be harnessed prophylactically. In essence, the objective
would be to activate the endogenous barrier-promoting and anti-
inflammatory actions of GLP-1 signaling prior to SARS-CoV-2
infection, with the prospect that this would increase resilience in
the event of infection. Based on the rapid and dramatic metabolic
effects observed in Roux-en-Y Gastric Bypass (RYGB) patients
(122, 123) there is no doubt that the intestinal tract has the
enteroendocrine capacity to drive significant beneficial effects on
the systemic level. Further, extreme measures are not necessary
to elicit systemic effects: even normal, post-prandial GLP-1
secretion is sufficient to stimulate nitric oxide production in the
forearm, thereby increasing blood flow and oxygen uptake (124,
125). The fact that “normal” enteroendocrine GLP-1 signaling
activates the endothelium is important, because it suggests that
the full repertoire of positive GLP-1 effects may be in play. Thus,
if endogenous GLP-1 signaling could be stably or perpetually
activated, it may be possible to increase endothelial and epithelial
“resilience” to SARS-CoV-2 infection.

Eliciting prophylactic GLP-1 release from the intestine is likely
mechanistically simple, extremely safe, and in all probability,
very low cost. Virtually any carbohydrate, lipid or protein
macronutrient could be used as a candidate secretagogue, as
these nutrients clearly mobilize GLP-1 secretion mechanisms
(126–128). Assuming that secretagogues stimulate sufficient
GLP-1 release to positively influence inflammatory and barrier-
promoting mechanisms at the systemic level, there would
be little argument that these stimuli would: (i) be safe to
ingest, as they are basic food components, (ii) not cause
the adverse effects associated with the supra-physiological
levels of GLP-1 signaling elicited by GLP-1 agonists, such as
headache, vomiting or diarrhea (129), (iii) be cost effective to
manufacture and purchase and (iv) have immediate worldwide
availability. This strategy is obviously speculative and not
currently available for use against COVID-19; it is nevertheless
worth pursuing, as it could have broad implications for patients
with obesity, T2D, cardiovascular disease and other pathologies
that target the endothelium, inflammatory mechanisms or
barrier function.

Frontiers in Endocrinology | www.frontiersin.org 6 September 2020 | Volume 11 | Article 583006

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Hanchard et al. GLP-1 in COVID-19

SUMMARY AND OUTLOOK

In summary, the breakdown of cellular barriers is a key driver
of severe SARS-CoV-2 disease progression. The underlying
pro-inflammatory mechanisms that disrupt barrier function
in COVID-19 are well-characterized and substantially overlap
with the disease mechanisms operating in diabetes, obesity
and aging, all putative COVID-19 risk factors. Since anti-
inflammatory interventions that strongly supress immune
function (e.g., anti-TNF therapeutics) are not recommended
for treating COVID-19, we need to deploy other options
that interfere with these barrier-disrupting mechanisms. GLP-
1 is an intriguing candidate, because it possesses both anti-
inflammatory and barrier-promoting properties. Indeed, GLP-1
signaling is currently proposed as an intervention for the very
risk factors that also drive aggravated COVID-19 severity. It is,
therefore, tempting to speculate that GLP-1 signaling could be
harnessed to fight COVID-19 on two levels: secretagogues could

prophylactically increase the global population’s resilience to the
infection, and in acute COVID-19, GLP-1 receptor agonists may
be useful in supporting acute therapeutic interventions.
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