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Target control based on edge 
dynamics in complex networks
Furong Lu1,2, Kaikai Yang1,2 & Yuhua Qian1,2 ✉

In the past decade, the study of the dynamics of complex networks has been a focus of research. In 
particular, the controllability of complex networks based on the nodal dynamics has received strong 
attention. As a result, significant theories have been formulated in network control. Target control 
theory is one of the most important results among these theories. This theory addresses how to 
select as few input nodes as possible to control the chosen target nodes in a nodal linear dynamic 
system. However, the research on how to control the target edges in switchboard dynamics, which 
is a dynamical process defined on the edges, has been lacking. This shortcoming has motivated us 
to give an effective control scheme for the target edges. Here, we propose the k-travel algorithm to 
approximately calculate the minimum number of driven edges and driver nodes for a directed tree-like 
network. For general cases, we put forward a greedy algorithm TEC to approximately calculate the 
minimum number of driven edges and driver nodes. Analytic calculations show that networks with 
large assortativity coefficient as well as small average shortest path are efficient in random target edge 
control, and networks with small clustering coefficient are efficient in local target edge control.

Research on the structure and dynamics of complex networks has attracted much attention in recent years. 
Traditionally, we assume that the topological structure remains static and then study its influence on the net-
work dynamics1–6. However, the topological structure is not necessarily static. One of the relatively new research 
themes is how dynamic processes affect on the evolution of topological structures. In particular, the controlla-
bility of a complex network, which we assess by determining whether the network can be driven from any initial 
state to any desired state within a finite time, is considered one of the focal research subjects and has been studied 
massively. Liu et al. convert the problem on structural controllability into a graph maximum matching problem6 
and propose the scheme of calculating the number of minimum driver nodes. Yuan et al. later expand the results 
to undirected networks7 and propose the exact controllability theory. Yan et al. analyse the observational uncer-
tainty and the energy required for control and achieve a series of fundamental yet important theories8. Profái 
applies structural controllability to temporal networks9. Additionally, Gu et al. study the application of network 
controllability to brain networks10. These problems address how to control the whole system efficiently. However, 
for certain large systems, we only need to control some target nodes of the network that are associated with spe-
cific tasks. Thus, Gao put forward an approximate algorithm to calculate the fewest driver nodes that can be used 
to control the target nodes, which effectively reduces the usage of driver nodes11. Zhang et al. make improvements 
to this algorithm12. The above theory pertains to the dynamic process on the nodes.

In natural or artificial systems, some dynamical processes take place on the edges, such as with power grids, 
in which power generators, transformers and power consumption are the nodes and transmission lines are the 
edges. The transformers receive power from high-voltage lines and output the lower-voltage power to the con-
sumers along the transmission lines. The power load on a line can be regarded as the state of the edge and it con-
stantly changes during the process of power transmission.

Subsequently, researchers have made progress modeling the dynamics on the edges of a network. Tamas 
Nepusz et al. study the formation of an edge dynamics system and analyse the structural controllability of edge 
dynamics13, which transforms the edge dynamics in the original networks into the nodal dynamics in the corre-
sponding linear graph. An efficient solution is proposed to compute the minimum driven edges and driver nodes.

However, in many systems, it is inefficient or unnecessary to address all edges. In a power grid, instead of con-
trolling all the lines, we sometimes need to control specified lines to avoid outage on power lines due to overloads. 
Generally, We may also seek to calculate the minimum driven edges and driver nodes to control the target edges 
in the edge dynamics, which can be transformed into calculating the minimum driver nodes to control the target 
nodes in the corresponding line graph. However, the calculation process is time-consuming. In the whole system, 
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the nodes carrying input signals are called driver nodes, the edges linked to the driver nodes are called driven 
edges. Pang et al. generalize the edge dynamics to undirected networks and show a series of results14–16. Moreover, 
they explore the edge target control problem from the perspective of driver nodes17.

In this paper, we present a greedy algorithm to solve the problem of target edges’ control and focus on the 
optimization of the number of driven edges. First, we select the target edges in two different ways: randomly and 
locally. In the first scheme, we randomly select target edges at random according to the specified probability p. In 
the other scheme, we select target edges from connected components in a depth-first strategy. For a specific 
tree-like network, we propose a k-travel algorithm to obtain the minimum number of drivers to control the col-
lection of target edges. For the general case, we also give an approximate algorithm TEC to calculate the mini-
mum number of driven edges and driver nodes to control the states of target edges. Finally, we analyse the 
influence of the topology on the control efficiency.

To evaluate the efficiency of our algorithm, we apply the following metric:

∫ε α= . − f df0 5 ( ( )) ,
0

1

which denotes the control efficiencies of the driver nodes (driven edges) in the random and local schemes by 
ε r( )N , ε r( )M , ε l( )N  and ε l( )M . In addition, α = P

N
D

D
, PD is the number of driven edges (driver nodes) under target 

edge control, and ND is the number of driven edges (driver nodes) under switchboard dynamic control of the 
whole network. f  denotes the proportion of edges that we selected from the network. When ε = 0, the control 
efficiency is neutral, which means that to control f fraction of edges in networks, we need ⁎f N  driver 
nodes(driven edges). When ε<0 (ε>0), the target edge control is less (more) efficient than the situation with 
ε = 0. The simulation results and analytic calculation show that SF networks with large average degrees are suit-
able for target edge control, and the local target control obtains a higher control efficiency than the random target 
control. The control efficiency increases with the average degree of the SF networks and it is higher on driven 
edges than on driver nodes. In real networks, the results are similar to the cases in artificial networks.

Method
In the real world, the dynamical processes performed in the vast majority of systems are nonlinear. However, 
we can not understand the dynamics of many complex systems deeply, such as the neural network of the human 
brain. Thus, before exploring the dynamical rules in a nonlinear system, it is essential to lucubrate the dynamics 
of linear systems, as they are the basis of solving the nonlinear problems. Here, we will firstly introduce the linear 
time-invariant(LTI) system:
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where ∈ ∈x R y R,N S and ∈u RM  are the state vector, output vector and control inputs, respectively. 
∈ ∈× ×A R B R,N N N M and ∈ ×C RS N  represent the transposed matrix of the coupled matrix, the input matrix 

and the output matrix, respectively. The simplified representation of the above LTI system is A B C( , , ). Here, 
dim(C) denotes the dimension of the subspace C, through which we simplify the dimension of system as A B C( , , ) 
(e.g., dim A B C( , , ) is denoted as d A B C( , , )).

Generally, the target controllability can be regarded as the output controllability of the LTI system. Hence, we 
give the following definition and theorem.

Definition 1 (output controllability)18 A system is output controllable if we can move its output from any initial 
state to any desirable state in a finite time interval with an appropriate input. The LTI system A B C( , , ) is output 
controllable if and only if its output controllability matrix has full rank:

= … = .−d A B C rank C B AB A B A B S( , , ) [ ( , , , , )] (2)N2 1

Here, the target edges can be seen as C, A and B are the matrices given by Eq. (1).
Let G V E( ; ) denote a network, V  denote the node set and E denote the edge set. The numbers of nodes and 

edges are denoted by N  and M, respectively. = ⋅ ⋅ ⋅X x x x[ , , , ]1 2 M  denotes the state vector of each edge, which 
can be viewed as the packages on a router network or the loads on a line in a power network. +yv  and −yv  denote the 
states of the inbound edges and outbound edges of vertex v, respectively. Generally, the states of the outbound 
edges +yv  are affected by the states of the inbound edges −yv , the losses of inbound edges τ ⊗ +y t( )v v  and the exter-
nal disturbance on the corresponding nodes σu t( )i i . Mv is a switching matrix that denotes the adjacency relation-
ship between the inbound edges and the outbound edges.

The equation of the switchboard dynamic process13 is as follows:

τ σ= − ⊗ ++ − +ẏ M y y u(t) (t) (t) (t), (3)vv v v v i i

where σi is 1 if vertex i is a driver node and zero otherwise, and ⊗ denotes the entry-wise product of two vectors 
of the same size.

Here, Eq. (1) can be rewritten in terms of xi. The connection of the switchboard dynamic and a standard linear 
dynamical system can be rewritten in terms of xi as
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= − +X W T X Hu( ) , (4)

where =W w[ ]kj  and wkj may be nonzero if and only if the head of edge ek is the tail of edge ej. ∈ ×T RM M is a 
diagonal matrix with the damping term on the main diagonal. H is a diagonal matrix where the i th diagonal ele-
ment σi is the tail of the i th edge. Furthermore, Eq. (4) can be rewritten in a linear time-invariant dynamical form 

= +X AX Bu with = −A W T  and =B H. In fact, W  is the adjacency matrix of the linear graph L G( ) on the 
original graph G. The nodes of L G( ) are the edges of G, and the edge ′eij of L G( ) indicates that the head of edge ei is 
the tail of edge ej.

According to the exact controllability, the damping matrix T  with identical diagonal elements has no effect on 
the edge controllability of the network characterized by −W T 14. However, if the diagonal elements are nonzero, 
the system can be controlled by only one driver node according to the theory of structural controllability5. Except 
in the above two cases, we need to account for the influence of matrix T  on the controllability. The main results of 
the switchboard dynamics are as follows13.

The minimum set of driver nodes required to maintain the structural controllability of the switchboard 
dynamics on a network G V E( , ) is determined by selecting the divergent vertices of G and one arbitrary vertex 
from each balanced component. The divergent node v is the node with <− +d dv v , and the balanced component is 
the component such that each node satisfies =+ −d dv v . For vertex v, +dv  is the out-degree and −dv  is the in-degree. 
In addition, MD is the minimum of the driven edges. Then, we have

Figure 1.  The distance between two edges. The figure shows the distance between two edges along a path. The 
distance from edge e1 to edge e5 is four, which is the number of nodes between e1 and e5.

Figure 2.  Target edge control based on switchboard dynamics and the k-travel theory. (a) The graph is the 
original network, and the target edges which are indicated in red. (b) The switchboard matrix of the original 
matrix. (c) The linear graph of the original network. The nodes in graph(c) are the edges in graph(a). (d) The 
driver nodes and the driven edges that we obtained by using SBD theory. According to the SBD, we need two 
driver nodes(indicated in green) and three driven edges(indicated in green) to control the whole network. If we 
want to control the target edges, we need two nodes(a and b) and three driven edges x x x( 1, 2, 5). (e) In fact, we 
need only one node(a) and one driven edge(x1) to control the states of the target edges, which can be obtained 
according to the k-travel theory.
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here, N is the number of vertexes, c is the number of connected components and βi is 1 if the i th connected com-
ponent is balanced and zero otherwise.

Given a directed network G V E( , ) where |V| = N and =E L denote the number of vertexes and edges, if 
≠a 0ji  is in the matrix A, then there is a link from node i to node j. A set of target edges with size S may be 

denoted as ...c c c{ , , , }1 2 S . The target edges may also be denoted as …e e e{ , , , }1 2 S . In the switchboard dynamics, the 
controllability of the target edges is equivalent to the controllability of the corresponding nodes in the linear 
graph L G( ); the linear graph is a graph where we view the edge in the original graph G as a node, and two edges 
are connected when the head of an edge is the tail of the other edge. Formula =y Cx is the state of the target 
edges ...x x x, , ,c c c1 2 S

. Similar to the conclusion in ref. 11, the target edge controllability can also be regarded as a 
special output controllability problem on the linear graph.

For a directed network G with the adjacency matrix of its linear graph: A = [aij], aij = 1 if there is a link e e( , )i j  
and 0 otherwise.

Definition 2 (Edge distance) The distance between two edges is the number of internal nodes on a path that con-
nects the two edges, and it is denoted by d′.

This definition is used in the k-travel theory, and it differs from the distance between two nodes, which is 
shown in Fig. 1.

We have =′d kij  if the i j( , ) entry of matrix Ak is nonzero. For general directed networks, ′dij could have multiple 
values because there could be many different walks connecting edge i and edge j. For a directed tree, all of the 
paths are unique. Consequently, ′dij is single-valued for any edge pair i j( , ) in T . To clarify algorithm 1, we first 
introduce several definitions:

Definition 3 (Structurally equivalent). Two matrices A a( )ji=  and =
∼

A a( )ji  with the same size are said to be 
structurally equivalent if the entries of A being nonzero implies that entries in the corresponding location of ∼A are 
also nonzero5. Moreover, if any entries in A are zeros, the corresponding entry ∼A must also be zero, which is 
applicable for the structurally equivalence of systems A B C( , , ) and ∼

 A B C( , , ).

Definition 4 (Generic dimension)19. The generic dimension gd A B C( , , ) of the output state space is defined by

=
∼

∼
 

 

gd A B C rank A B C( , , ) max ( , , ),
(6)A B C, ,

Algorithm 1.  TEC Algorithm.
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where ∼  A B C, ,  are structural equivalent to A B C, , , respectively. The generic dimension is used to describe the 
control range of the edge. Based on the switchboard dynamics, we use this k-travel theory to give an effective 
algorithm to find the controllable set of any edge in the directed tree, especially the root edge.

Theorem 1 (k-travel theory) For a directed tree, we can control the target edges set = ...e e e{ , , , }i i i iLi1 2
  by con-

trolling an edge ei provided that ′dik  (the distance from edge ei to edge ek) meets = −′d k 1ik  for every integer 
∈k L[1, ]i .

Proof: In switchboard dynamics, Eq. (2) can be written in a linear time-invariant dynamical form = +X AX Bu, 
where A is the adjacency matrix of the linear graph L G( ) of the original graph G. The nodes of L G( ) denote the 
edges of G, and the edge ′e ij of L G( ) indicates that the head of edge ei is the tail of edge ej.

According to the output controllability theorem, edge ei can control all of the edges in i if the generic dimen-
sion of the matrix = ...α

−l b Ab A b A b[ , , , , ]i i
N

, i
2

i
1

i  is Li, i.e., if

= … =α
−gd gd l b Ab A b A b L( ) ( [ , , , , ]) , (7)N

i, i i
2

i
1

i i

where l I i i i({ , , , })i, 1 2 Li
= ...α  represents an ×L Mi  matrix that contains the i i i{ , , , }1 2 Li

...  th rows of the identity 
matrix I . Moreover, bi is the i th column of the identity matrix. Here, M denotes the number of edges in G, and 
i i i{ , , , }1 2 Li

...  are the corresponding indices of the edges set i in L(G). The ×M 1 vector A bk
i contains nonzero 

entries corresponding to those edges with =′d kij ; i.e., the distance between edge ei and ej is k in G.
Given a directed-tree network, there is only one edge in i  that satisfies =′d kij , which is assumed to be ek with 

index ik in L G( ). Thus, We have β=αl A b Ik
ii, i k k

, where βk is a nonzero constant. Iik
 is the ik th column in the iden-

tity matrix. Hence, we have

β β β= ... .gd gd I I I( ) [ , , , ] (8)L1 i 2 i iLi1 2 i

Since ...I I I, , ,i i iLi1 2
 are independent, =gd L( ) i . According to the output controllability theorem, we can 

control the the edges in i by controlling the edge ei.
Based on the above theorem, we can find the set of edges controlled by edge ei in a directed tree. Figure 2 shows 

that two driven edges are required to control the target edges under the SBD theory, and k-travel theory requires 
only one such edge.

In SBD theory, to control all of the edges, the minimum number of driver nodes and driven edges can easily 
be obtained by checking the in-degree and out-degree of each node.

For the problem of a single edge input, we propose a k-travel theory based on the edge dynamics. Our theory 
shows that by controlling one edge, we can control a set of target edges given that the lengths from the driven edge 
to the rest of the target edges are different from each other. We verify that the approach based on k-travel theory is 
more efficient than the traditional edge dynamics method because it can control more edges according to output 
controllability theory (Lemma 1).

Although the method based on k-travel theory is efficiently control tree-like networks with single driven edge 
(which is shown in Fig. 2), the situation becomes more complex in real networks. For more general cases, we pres-
ent an iterative algorithm to approximate the minimum number of driven edges and driver nodes. We can prove 
that the driven edges and driver nodes obtained by our algorithm can control the target edges. This algorithm 
is based on the k-travel theory, and we call it the TEC (target edge control) algorithm (it is shown in Fig. 3a–e).

The main processes of the TEC algorithm are shown in Fig. 3, and they are based on structural control the-
ory5,6 as well as the edge dynamics13. Step 1: We are given a directed network G with target edges(the red lines). 
Step 2: We construct a bi-layer bipartite graph, locate the head nodes of the target edges in the right part, and find 
these edges’ tail nodes in the left part. Then, we add the edges which points to the tail nodes of the target edges in 
graph G, and we construct another bipartite graph with the tail nodes of the new edges in the left part such that 
the right part contains their head nodes. Step 3: We use the greedy algorithm for target edges control. In the first 
iteration, for the tail node of each target edge, if the in_degrees of the middle nodes are not less than their corre-
sponding out_degrees, we select the same number of in_edges. Otherwise, the extra target edges are the driven 
edges Et, and the driver nodes are the tail nodes of Et, which are denoted by Dt. The set of total driven edges is 

∪=E E Et, with tail nodes ∪=D D Dt. Step 4: In the next iteration, the edges reserved in the left part of the 
bi-layer bipartite graph are the new target edges in the second iteration. If there is still an edge pointing to the tail 
nodes of the target edges, go back to step 2 . If not, stop. Step 5: By controlling the driver nodes calculated from 
the TEC, we can control the driven edges and then all of the targets can be controlled. In the above control pro-
cess, the target edges or nodes are controlled in some chronological order. The process is given in the pseudo-code 
in the following table.

Here, dGL
(v) means the degree of vertex v in graph GL. In each iteration, the times required to calculate the 

driver nodes and the driven edges are O N( ), and the depth of iteration is N  at most. Therefore, the complexity of 
the TEC algorithm is O N( )2 .
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Result
Target control of artificial networks.  We apply the TEC algorithm to an ER random network and a BA 
scale-free network (which are denoted by ER network and SF network). The number of vertexes in the ER net-
work is 10000, and the average degree is 6; the result is the average control efficiency over 100 repeated cycles. To 
quantify the efficiency of the target control for a given fraction f , we define the parameter α = P N/D D for both 
driver nodes and driven edges in two selection schemes. We also use the two schemes to select the target edges, 
which are random or local. In the local scheme, the target edges are selected from the connected components.

Figure 4 shows the two schemes and the results of the driver nodes and driven edges on an ER network and a 
SF network. The red line represents the ratio of the driver nodes obtained by TEC algorithm to the driver nodes 
controlling the whole system, and the green line is the corresponding ratio of the driven edges. The black line 
represents the neutral case that (α = =P N f/D D ) as a baseline, which means that we need a fraction f  of the 
driven edges(driver nodes) to control the fraction f  of the edges. Our algorithm is efficient if the red line is below 
the baseline. In other words, we use fewer driver nodes or driven edges to control the target edges than with the 
SBD theory. From Fig. 4b,c, we find that the number of driver nodes obtained from TEC algorithm is less than the 
corresponding proportion of driver nodes obtained from the SBD theory in the ER network with random scheme. 
In the SF network, the number of driver nodes under TEC algorithm is slightly more than that obtained under 
SBD theory framework. However, the number of driven edges in both networks is less, which shows that our 
algorithm is efficient. In the local scheme(Fig. 4d–f), the number of driver nodes in the two networks is below the 
baseline when the fraction is small. However, when the fraction is large, the number of driver nodes is above the 
baseline. In addtion, the control efficiencies of the driven edges in the two networks are below the baseline which 
means that we can control the target edges by controlling fewer driven edges.

Figure 3.  Controlling the states of the edges in a network. (a) A directed network with target edges(the red 
lines). (b) We locate the out-edges of the given nodes on its right, and the in-edges on the left. In this way, 
we construct a bipartite graph. We use SBD theory to obtain the driven edges and the driver nodes, which 
are marked with blue and green. The driven edges are {(1,2),(2,3),(4,5)} and the driver nodes are {1,2,4}. (c) 
By controlling the three nodes and the three driven edges, all the target edges can be controlled. Moreover, 
the whole system can be controlled. (d) We use the greedy algorithm to control the target edges. In the first 
iteration, the target edges are shown on the right (shown in red). For the tail node of each target edge, if in_
degree(the number of edges on the left) is not less than out_degree(the number of edges on the right), we select 
the same number of out_edges on the left. Otherwise, the extra target edges are the driven edges according to 
SBD theory. In the first iteration, the target edge (1,2) is a driven edge(highlighted in blue). In the next iteration, 
the edges on the left of the bi_layer bipartite graph are the new target edges in the second iteration. After four 
rounds of iteration, we obtain the driver node 1,2 and the driven edge (1,2),(2,3). (e) By controlling the driver 
node calculated from the TEC, we can control the driven edge. Then, all the targets can be controlled.

https://doi.org/10.1038/s41598-020-66524-6
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Overall, the efficiency of the driver nodes in the ER network is higher than that of the SF network under the 
two selection schemes. In the four situations, the metric value of ε on driven edges are all below the baseline, 
which shows that our algorithm is efficient in the two artificial networks. Meanwhile, we observe that networks 
with a big average degree are easy to control and that the homogeneous networks are easier to be controlled than 
the heterogeneous networks in target edge control.

Factors of target edge control in artificial networks.  The above results inspire us to consider which 
topological characteristics determine the control efficiency. To ask this question, we analyse the effects of average 
degree and power exponent on the control efficiency. Here, we mainly study the problem on SF networks20 with 
the average degree varying from 2 to 10 at intervals of 2 and with the power index varying from 2.2 to 3.4 in a step 
0.2. In addition, we fix the power exponent and the average degree to observe the marginal influence of the two 
factors on the control efficiency, which is shown in Fig. 5.

Figure 5a,b show that the control efficiency of driver nodes and driven edges first decrease and then increase 
as the average degree increases in the random scheme. Furthermore, the control efficiency on the driven edges 
is higher than that of the driver nodes. Figure 5c,d show the results in the local scheme, and we observe a similar 
trend in the random scheme. The reason is that we consider the edges in network G as the nodes of its linear graph 
in our algorithm and make use of target control theory based on the nodes. For this reason, our algorithm focuses 
on the optimization of the driven edges. Moreover, local target edge control is more efficient than random target 
edge control. In general, when the average degree increases, the control efficiency increases, which can be attrib-
uted to the fact that networks gain more connectivity when the average degree is increasing.

Target control of real networks.  We also apply our algorithm to several real networks, where s838, s420 
and s208 are three electronic circuit networks21 whose average degree is between 1.54 and 1.6. The neuronal net-
work ( .C elegans)22 is a directed weighted network representing the neural network of .C elegans with 297 neurons 
and 2359 synaptic connections. TRN -Yeast-1 and TRN -Yeast-2 are two transcription networks of yeast. 

Figure 4.  Target edge controllability on the two artificial networks. (a) A schematic of the randomly selected 
edges. (b) For the ER network with average degree k  = 6, we show that the normalized fraction α of the driver 
nodes (highlighted in red) and the driven edges(highlighted in green) varies with the target edges’ fraction in 
the random scheme. (c) For the SF network with average degree k  = 6 and γ = .2 4, we show that the 
normalized fraction α of the driver nodes and the driven edges varies with the target edges’ fraction in the 
random scheme. (d–f) are the corresponding figures for the local scheme.

https://doi.org/10.1038/s41598-020-66524-6
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. .E coli C elegans,  and .S cerevisiae23 are three metabolic networks. Ythan, Grassland, Little rock and Seagrass 
are four food webs24–26 on a small scale.

From Table 1, the efficiency of the driven edges on the three networks( .C elegans, TRN -Yeast-1 and TRN -
Yeast-2)27,28 is slightly better than that of the driver nodes, which shows that their topological structures are suit-
able for target edge control in both schemes with respect to the metric. In the metabolic networks ( .E coli, 

.C elegans and .S cerevisiae), fewer driven edges and driver nodes are needed to control the target edges in the 
two schemes. Our method does not optimize the control efficiency of the four food webs under both schemes. 
The efficiency of the driven edges in the random scheme is higher than that in the local scheme. Conversely, we 
employ more driver nodes in random control than in local control. In random target edge control, the control 
efficiencies of the driver nodes of most networks are negative except the metabolic networks, which implies that 
most networks do not perform well in terms of the driver nodes in the random scheme. In term of the efficiency 
of driven edges in the random scheme, the neuronal network, the regulatory networks and the metabolic 

Figure 5.  Analysis of the influence factors of the target control efficiencies of SF networks. (a) The overall 
control efficiency ε on the driver nodes for SF networks varies with the average degree k  for different degree 
exponents γ in the random scheme. (b) The overall control efficiency ε on the driven edges for SF networks 
varies with the average degree k  for different degree exponents γ in the random scheme. (c) The overall control 
efficiency ε on the driver nodes for SF networks varies with the average degree k  for different degree exponents 
γ in the local scheme. (d)The overall control efficiency ε on the driven edges for SF networks varies with the 
average degree k  for different degree exponents γ in the local scheme. In (a,b), the efficiencies of the driver 
nodes and the driven edges increase monotonically with the degree exponents. Most of the efficiency of the 
driver nodes are negative, and they first decrease and then increase. However, the efficiencies of the driven edges 
are nearly positive, and they have the same trend as the driver nodes. In the local scheme, though we have the 
same situation as in the random scheme, the local control outperforms the random control.

https://doi.org/10.1038/s41598-020-66524-6


9Scientific Reports |         (2020) 10:9991  | https://doi.org/10.1038/s41598-020-66524-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

networks surpass those of the other networks, which means that we need fewer driven edges to control the target 
edges under the TEC algorithm than that the SBD theory would require on these networks. With reagard to 
controlling the target edges in local scheme, the efficiencies of the driver nodes is high in the electronic circuit 
networks and the metabolic networks. For the driven edges in the local scheme, we select target edges in a local 
manner, the efficiency is satisfactory in all the networks except for the food web.

In general, we can see that the same types of networks present similar results. The performance of different 
network types is quite different, but why are the results so different? Is there any correlation between the control 
efficiency and the topological character? In artificial networks, we see that the control efficiency of SF networks is 
closely related to the average degree and the degree exponent. Does the same hold for real networks? We show the 
topological characteristics of these networks in Table 2.

We list 6 topological features of the networks, including their average degree(AD), diameter(D), average 
shortest path(ASP), clustering coefficient(CC), assortativity coefficient(AC), and heterogeneity(H). From the 
table, we observe that the electronic circuit networks, the metabolic networks and the transcriptional regulatory 
network have larger diameter. However, the electronic circuit networks have smaller degrees, longer average 
shortest paths, and more obvious heterogeneity. The food webs have greater average degrees, smaller diameters as 
well as higher clustering coefficient.

Nodes Edges k ND MD ε r( )N ε r( )M ε l( )N ε l( )M

s838 512 819 1.6 0.223 0.350 −0.085 −0.042 0.108 0.093

s420 252 399 1.58 0.25 0.348 −0.078 −0.049 0.102 0.078

s208 122 189 1.549 0.246 0.344 −0.091 −0.066 0.087 0.062

.C elegance 297 2359 7.895 0.549 0.377 −0.071 0.05 −0.024 0.085

TRN-Yeast-1 4441 12873 2.899 0.0336 0.964 −0.424 0.007 −0.229 0.002

TRN-Yeast-2 688 1079 1.568 0.1773 0.952 −0.225 0.0003 −0.097 0.004

.E coli 2275 5763 5.07 0.182 0.121 0.0279 0.0789 0.1403 0.1715

.C elegance 1173 2864 2.442 0.182 0.1156 0.0127 0.0776 0.1824 0.2035

.S cerevisiae 1511 3833 2.54 0.185 0.1158 0.0134 0.0791 0.1475 0.1838

Ythan 135 601 4.452 0.3037 0.597 −0.1515 0.0331 −0.2037 −0.0093

Grassland 88 137 1.557 0.3182 0.606 −0.1042 −0.0041 −0.0500 −0.0247

Little rock 183 2494 13.63 0.6393 0.603 −0.2177 −0.0412 −0.1292 0.0482

Seagrass 49 226 4.571 0.4490 0.518 −0.1295 −0.0383 −0.1182 −0.0517

Table 1.  The topological characters and the efficiencies of the real networks. We test the greedy algorithm on 
the real networks and list the following metrics: the average degree k , where D represents the diameter of the 
network, ASP is the average shortest path, N _D denotes the efficiency of the driver nodes in the full control in 
the switchboard dynamic scheme(SBD), M_D show the efficiencies of the driven edges, ε r( )N , ε r( )M  are the 
similar metrics in the random target edges’ control, and ε l( )N , ε l( )M  represent the corresponding metrics in the 
local scheme.

N M AD D ASP CC AC H

s838 512 819 1.6 20 8.924 0.027 −0.03 1.2595

s420 252 399 1.58 16 7.282 0.028 −0.0059 1.2347

s208 122 189 1.549 14 6.032 0.03 −0.0020 1.2159

C.elegance 297 2359 7.895 14 3.992 0.169 −0.1520 1.8008

TRN-Yeast-1 4441 12873 2.899 17 4.785 0.046 −0.5968 15.4315

TRN-Yeast-2 688 1079 1.568 5 1.441 0.024 −0.4001 4.2544

.E coli 2275 5763 5.07 17 5.657 0 −0.1617 8.2345

.C elegans 1173 2864 2.442 30 5.945 0 −0.1733 4.8075

.S cerevisiae 1511 3833 2.54 22 5.793 0 −0.1812 5.8141

Ythan 135 601 4.452 4 2.151 0.109 −0.2217 2.1194

Grassland 88 137 1.557 3 1.736 0.174 −0.2157 1.7582

Little rock 183 2494 13.63 6 1.898 0.17 −0.2374 1.6148

Seagrass 49 226 4.571 4 1.816 0.132 0.1119 1.2612

Table 2.  The topological characters of the real networks. N and M are the total numbers of nodes and links, 
respectively. AD denotes the average degree of the network, D is the network diameter, and ASP denotes the 
average shortest path. CC and AC are the clustering coefficient and assortativity coefficient, respectively. Nodes 
with degree 1 are excluded from the calculation of the clustering coefficient. H is the degree heterogeneity, 
which is defined as H =  k

k

2

2
.
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To find the relationship between the topological characteristics and the control efficiency, we take the topology 
parameters of each network and the corresponding control efficiency index values as samples and calculate the 
correlation coefficient of each pair of indicators. The D and the ASP are related to the network scale and the aver-
age degree, respectively. To facilitate a uniform comparison, we normalize D and ASP by dividing these factors by 
the network scale N. The results are presented in Table 3.

As observed from the table, although AC is the dominant factor for ε (r)N  and ASP is dominant for ε (l)N , in 
general, CC is the most influential factor for the control efficiency in local scheme. AC and ASP′ are the main 
factors in the random scheme. In general, we can conclude that D′, ASP′ and CC are weakly negative correlated 
to the control efficiency. Form k-travel theory, while the distances from every target edge to the root edge are 
distinct, then we can control the target edges by solely driving the root edge. However, we can also easily control 
the whole network. Therefore, our algorithm is not very efficient for target edge control relative to the SBD theory. 
As a result, the control efficiency is not high. CC is also negatively correlated to the control efficiency. When the 
clustering coefficient is high, the number of driven edges in target control is not siginficantly different from the 
corresponding number in SBD theory. Furthermore, the control efficiency is nearly high when AC is high. In 
Fig. 5(a–d), we observe that the control efficiency at =k 4 is lower than the corresponding efficiency in the other 
cases. Because the diameter and ASP of SF network at =k 4 are higher than in the other cases, the network’s CC 
is nearly the same, which is shown in Table 4.

Discussion
In this paper, we study the edge target controllability of complex networks. For a directed tree-like network, 
to find the lowest driver nodes or driven edges needed to control the target edges, we propose a new method: 
k-travel theory. Base on the situation with multiple inputs, we develop a TEC greedy algorithm to approximately 
identify the set of the minimum driven edges and driver nodes to control some target edges. Our algorithm is 
more efficient than the SBD theory in most cases. We adopt the local scheme and the random scheme to study 
the impact of the network topology on the final results. We also approximately give the minimal drive nodes and 
driven edges on the artificial and real networks. The results show that our method is efficient in most networks, 
especially under the local scheme. Moreover, we analyse the topological factors that affect target edge control.

In addition, when the nodal target controllability is based on the structural controllability, our method outper-
forms the nodal target controllability approach in terms of the computational efficiency with respect to identify-
ing the minimum set of drivers. For example, in each iteration of the TEC algorithm, finding the driver nodes 
based on the degree-checking requires a run-time with the order of magnitude O N( ), whereas the nodal target 

ε r( )N ε r( )M ε l( )N ε l( )M

k −0.1461 0.0365 −0.3435 −0.0363

D′ 0.1787 −0.6473 0.1361 −0.2349

ASP′ 0.1279 −0.7026 0.0626 −0.3579

CC −0.2585 −0.2455 −0.5988 −0.6082

AC 0.6599 −0.3197 0.4930 0.1228

H −0.4407 0.4252 −0.1837 0.1469

Table 3.  Pearson’s correlation coefficient. We test the TEC algorithm on the real networks and list the following 
metrics. The bold numbers are the relatively large values of the correlation coefficient.

=k 2 =k 4 =k 6 =k 8 =k 10

SF2-2
12
4.519
0

15
4.452
0.078

13
4.13
0.057

10
3.618
0.05

9
3.567
0.062

SF2-4
13
4.318
0

18
5.697
0.014

15
4.903
0.015

11
4.375
0.017

10
4.075
0.019

SF 2-6
15
4.99
0

20
6.429
0.007

15
5.314
0.008

13
4.77
0.008

10
4.386
0.009

SF2-8
13
4.397
0

22
7.185
0.002

16
5.713
0.004

12
5.003
0.005

11
4.578
0.005

SF3
12
4.329
0

23
7.479
0.002

18
5.96
0.003

13
5.200
0.003

12
4.712
0.004

SF3-2
14
4.802
0

26
7.934
0.002

17
6.189
0.002

14
5.37
0.002

11
4.835
0.003

Table 4.  The topological indices of SF networks. We list the different SF networks with different power 
exponents and average degrees and their three topological indices: D(diameter), ASP(average shortest path), 
and CC(clustering coefficient).
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controllability framework requires a run-time that is O N L( )1/2  to find the unmatched nodes, where L is the total 
number of links.

Our research leads to several questions. Recently, the theory of structural controllability has been extended 
to temporal networks9,29 and multi-layer networks30. Extending edge target controllability theory to temporal 
networks and multi-layer networks may be necessary to combine their own characters. Solving these problems 
will help further enrich the theory of edge target control.
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