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SOX2 for Stem Cell Therapy and Medical
Use: Pros or Cons?
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Abstract
Stem cell transplantation is a fast-developing technique, which includes stem cell isolation, purification, and storage, and it is in
high demand in the industry. In addition, advanced applications of stem cell transplantation, including differentiation, gene
delivery, and reprogramming, are presently being studied in clinical trials. In contrast to somatic cells, stem cells are self-
renewing and have the ability to differentiate; however, the molecular mechanisms remain unclear. SOX2 (sex-determining
region Y [SRY]-box 2) is one of the well-known reprogramming factors, and it has been recognized as an oncogene associated
with cancer induction. The exclusion of SOX2 in reprogramming methodologies has been used as an alternative cancer
treatment approach. However, the manner by which SOX2 induces oncogenic effects remains unclear, with most studies
demonstrating its regulation of the cell cycle and no insight into the maintenance of cellular stemness. For controlling certain
critical pathways, including Shh and Wnt pathways, SOX2 is considered irreplaceable and is required for the normal functioning
of stem cells, particularly neural stem cells. In this report, we discussed the functions of SOX2 in both stem and cancer cells, as
well as how this powerful regulator can be used to control cell fate.
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Introduction

Stem cell transplantation is a well-established technique that

has been part of the clinical treatment strategies for both

malignant (e.g., acute myeloid leukemia and Hodgkin’s lym-

phoma) and nonmalignant (e.g., thalassemia and sickle cell

anemia) diseases and disorders since 19591. In response to

the increasing medical need, stem cells are now being iso-

lated and transplanted from a variety of sources, including

umbilical cord blood, placenta, amniotic fluid, dental pulp,

and adipose tissue2–4. In addition, the discovery of induced

pluripotent stem cells (iPSCs) has dramatically broadened

the field5. These improvements are a reflection of the unmet

medical need of regenerative medicine and the limitations of

drugs and medical devices6. Despite organ transplantation

having been successfully performed for the heart, kidney,

liver, lung, pancreas, intestine, and thymus, organ sources

are in very limited supply7,8. Even if a patient receives an

organ and the transplantation is considered a success, the

patient is required to take antirejection drugs, which have

the risk of severe side effects. As such, the development of

artificial organs may represent a promising solution; how-

ever, effective and efficient techniques for tissue engineering

pose numerous challenges9.

Stem cells and/or progenitor cells may be a good choice for

compensation of the functions of target tissues and for the

secretion of appropriate cytokines and growth factors, includ-

ing those that are considered immunomodulatory10–12.

However, the majority of studies have revealed that delivered

cells rarely transdifferentiate into their target type and the

survival time remains insufficient13,14. Nonetheless, while

the mechanisms remain unclear, most experimental and
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clinical results have shown positive results15–17. As such, the

technologies underlying stem cell therapy continue to

improve regarding cellular function and survival duration.

The most important breakthrough has been the reprogram-

ming of somatic cells into pluripotent stem cells with the

exogenous expression of certain transcription factors18. The

potential applications of stem cells, including cellular trans-

plantation and organ development, have been tremendously

enhanced after the discovery of iPSCs19,20.

As a member of the SOX gene family and SOXB group,

which includes SOX1, SOX2, and SOX3, SOX2 (sex-

determining region Y [SRY]-box 2) encodes a 34.3 kD pro-

tein21. As a key regulator of self-renewal, SOX2 protein

binds to octamer-binding transcription factor 4 (Oct4) and

enhances the expression of Nanog22,23. However, Tanaka

et al. indicated that SOX2 is unnecessary as an enhancer,

suggesting that it modulates the expression of Oct424–26. The

coupling of SOX2 to paired box protein 6 (PAX6) and BRN2

(encoded by POU3F2 in humans) has been shown to regu-

late eye and neural primordial cell functions27. Interestingly,

SOX2 and/or the partner protein are not considered suffi-

cient for transcriptional activation, but this complex is28.

Once the complex is formed, downstream genes such as

undifferentiated embryonic cell transcription factor 1 and

fibroblast growth factor 4 activate and enhance embrionic

stem cell development and survival29. Accordingly, the

knockdown of Sox2 expression in mouse embryonic stem

cells (ESCs) results in the failure of this self-renewal prop-

erty and leads to differentiation22. In contrast to tumorigen-

esis, the expression level of SOX2 correlates with lower

survival and treatment resistance30. Therefore, we evaluated

the relationship between SOX2 and its functions in both stem

and cancer cells and discovered a potential approach for

improving stem cells and deteriorating cancer cells.

SOX2 Is Associated With an Enormous
Expression Network

The characteristics of stemness are associated with the target

genes of SOX2. In addition, stem cells possess regulatory

mechanisms to maintain the appropriate expression of

SOX2. For mouse ESCs, the exogenous elevated expression

of Sox2 leads to differentiation of ESCs into a wide range of

cell types, including neuroectoderm, mesoderm, and tro-

phectoderm (TE)31. Moreover, feedback regulation involved

in the Akt pathway reactivates endogenous Sox2 expression

and serves to retain cellular stemness (Fig. 1)40. However, in

comparison with iPSCs, the expression of SOX2 is artificial

and lacks interactive control. Nevertheless, to reprogram

cells into iPSCs, four genes, namely, Oct4, Klf-4, SOX2,

and c-Myc (abbreviated to OKSM), are exogenously acti-

vated and these genes need a specific ratio to work ade-

quately. Since the OKSM is necessary for pluripotency,

other accessory factors such as Nanog and Sal-like protein

4 can only increase the efficiency of reprogramming and

cannot replace SOX2 or OCT441,42. For example, a ratio

increase of Klf4 is recommended in one of the commercial

cellular reprogramming kits. Moreover, the expression of

SOX2 is activated by the VP16 transactivator and further

improves reprogramming efficiency43. These findings indi-

cate that the OKSM acts as a driving force in the fertilization

stage and should be tightly restricted or the cells may get out

of control. Thus, the upstream and downstream regions of

the SOX2 coding sequence contain large untranslated regions

(UTRs) or the so-called gene deserts to prevent mutations

and false binding44. Certain enhancers, including miRNA,

long-noncoding RNA, and posttranslational modification

have been shown to reversely regulate both transcriptional

and posttranslational activity. At least 19 miRNAs, including

miR-200b and miR-145, can influence the expression of

SOX245. Indeed, miR-200 facilitates the reprogramming of

fibroblasts into iPSCs in the presence of OKSM46. More-

over, miR-145 targets the 30-UTR of SOX2 and inhibits

self-renewal in human ESCs and iPSCs47. In other words,

simply elevating the expression of SOX2 serves to attract

negative regulation molecules such as the cyclin-dependent

kinase inhibitor 1A (p21Cip1)48. Conversely, the zygote has a

massive demethylation pattern compared with repro-

grammed cells49. Although existing techniques, including

single-cell RNA-Seq, methylation array, and bioinformatics,

have confirmed that the methylation state changes in zygotes

Fig. 1. Molecular interactions illustrate various SOX2 signaling partners.32–39
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and somatic cells, the secrets of dedifferentiation remain a

mystery50.

SOX2 Utilization in Stem Cell Therapy

Except for the stemness regulation of SOX2, the existence

for cell differentiation and development is necessary. Nota-

bly, in the development of ESCs, when the blastocyst is

formed and then divides into the TE and inner cell mass, the

expression of SOX2 is decreased. However, the TE will not

form if SOX2 is impaired or knocked down by siRNA51. This

change is due to the complex formed with Oct4 and Nanog.

For example, Oct4 and Nanog bind to SOX2 and regulate its

functions of self-renewal and differentiation inhibition52. In

adult humans, the olfactory nerve proliferates and is replaced

every 3 to 4 weeks. The SOX2/PAX6-expressed epithelium

plays an important role in maintaining the multipotency of

the olfactory nerve53. These findings suggest further appli-

cations in the transplantation from iPSC-differentiated

neural stem cells (NSCs). In particular, the in vitro-

transcribed mRNA of SOX2 has been shown to induce NSC

morphology in human dermal fibroblasts54. In addition,

another study revealed that exogenous Sox2 expression in

rat bone marrow–derived stem cells (BMSCs) benefits the

cell transplantation treatment in a rat traumatic brain injury

(TBI) model55. Especially, BMSCs retain their self-renewal

property via the expression of Sirtuin1 (SIRT1)56. SIRT1 is a

lysine deacetylase that contributes in maintaining SOX2

content by avoiding the acetylation and ubiquitination of

SOX257. Moreover, proliferation and differentiation poten-

tial is conferred by the forced SOX2 expression of BMSC58.

Using MRI tracking, Jiang et al. found that NSCs migrate

into the injury site of rats with TBI59. Therefore, the exis-

tence of SOX2 is essential for the maintenance of self-

renewal and multipotency. These studies suggested that

Sox2-positive cells may play a role in neuron regeneration,

enhancing neural functions after brain injury60.

Direct Evidence of SOX2 Initiating
Tumorigenesis

SOX2 is generally considered an oncogene; however, its role

in tumorigenesis remains controversial61,62. As part of the

same lineage of breast cancer cells, the SOX2-positive pop-

ulation shows a greater colony-forming ability and would be

abolished by SOX2 knockdown63,64. SOX2 is amplified in

patients with cancer, and it contributes to the same stemness

property observed in stem cells of patients with lung, brain,

breast, and colon tumors65.

The clinical implications of SOX2 and cancers vary

depending on the type of cancer, influencing patient survival

and prognosis66. These molecules and pathways include

VEGF, MAPK, Notch-Shh, BMP, Jak-STAT, and others,

depending on the types of tumors67–69. In brief, SOX2 reg-

ulates downstream genes and microRNAs by direct DNA

binding, resulting in the alteration of thousands of genes and

hundreds of microRNAs35. Moreover, a glioma cell subset

with high levels of SOX2 has been shown to be resistant to

platelet-derived growth factor (PDGF)- and insulin-like

growth factor 1 (IGF-1)-receptor inhibitors70. Conversely,

SOX2 may play a role in the maintenance of PDGF and

IGF-1 pathways in cancer cells as well as in stem cells and

may produce dysplasia or tumor cell initiation. However, in

patients with gastric cancer, the overall survival rate is lower

with SOX2 methylation than with unmethylated SOX2.

Moreover, the exogenous expression of SOX2 results in cell

cycle arrest through cyclin-dependent kinase inhibitor 1B

(p27Kip1) and Rb phosphorylation71. Indeed, Sox2 expres-

sion in the mouse respiratory epithelium does not cause pul-

monary tumors but induces the cellular proliferation of

respiratory epithelial cells72. Direct induced-NSCs can also

be obtained by SOX2 expression in human and mouse fibro-

blasts without tumorigenesis73.

Future Prospects of SOX2 Utilization

Due to the close relationship between SOX2 and cancer,

studies that have investigated SOX2-dependent gene manip-

ulation are limited. However, cell differentiation and prolif-

eration has been achieved, including SOX2-expressing

dental pulp stem cells, which lead to the differentiation of

odontoblasts74. SOX2 also cooperates with various cofactors,

including Oct4 for stemness, BRN2 for neural differentia-

tion, and PAX3 for melanocyte maturation. These studies

suggested that SOX2 (and possibly other members in the

family) is one of the masters regulating cell fate and is asso-

ciated with different kinds of cofactors75.

An urgent question we would ask is how to take advan-

tage of SOX2 without eliciting detrimental effects? For the

nerve system, SOX2 may prove to be a useful regulator for

the maintenance of progenitor characteristics, allowing the

cells to retain their ability to self-renew and differentiate into

neurons, astrocytes, and oligodendrocytes76,77. Moreover,

Hagey and Muhr found that decreased expression of Sox2

resulted in the differentiation of radial glia cells into their

more developed progeny, intermediate progenitor cells78.

However, mouse NSCs and progenitors have reduced differ-

entiation ability and SOX2 expression with the loss of the

E2f3a transcription factor, indicating that the expression of

SOX2 is essential for neurogenesis79. These studies indicated

that SOX2 is required for stemness but is unfavorable for

differentiation. In other words, the expression of SOX2

should be controlled or there is a risk of the cells going

corrupt.

Conversely, the SOX2-induced stemness ability is devas-

tating and problematic when it appears in tumor cells. Since

the existence of SOX2 is associated with the cell membrane,

specific antibodies are not effective for disrupting its func-

tion. To control the stemness and metastatic properties,

Tuhin et al. found that the downregulation effect of actino-

mycin D induced the cell death of breast cancer stem cells80.

Moreover, SOX2 knockdown or small molecules reduced

Chuang et al 3



SOX2 expression and inhibited the stemness and metastatic

properties61,81. A significant factor in patients with cancer is

the selection of SOX2þ cells after anticancer therapies,

including radiotherapy and chemotherapy, and SOX2-

induced drug-resistant genes have been characterized in

numerous studies82,83. These SOX2þ cells then form a new

tumor bulk, with the most well-studied type being the quies-

cent Sonic Hedgehog subgroup medulloblastoma, which is

activated into medulloblastoma-propagating cells after anti-

mitotic drug treatment84. Moreover, the inhibition of the

SOX2-driven transcriptional network arrests GBM growth

by treatment with mithramycin, which is an antineoplastic

antibiotic85. Indeed, SOX2 antigen and antibody were found

in small-cell lung cancer (SCLC) cell lines and sera in SCLC

patients. However, neither the antigen nor the antibody of

SOX2 or other SOX group B genes exist in normal sera,

suggesting that SOX2 might be a potential tumor target or

marker86. However, these effects should be precisely tar-

geted toward tumor cells to take advantage of the attributes

of SOX2.

Summary

With the use of iPSC-derived retinal pigment epithelial cells

transplanted in clinical trials, a large research and develop-

ment effort has been undertaken to not only evaluate the

effectiveness and safety but also improve the associated

techniques87,88. In this report, we discussed the stemness-

prone properties and some possible risks of SOX2 in Table 1.

In addition, the safety issue in iPSC-derived cell therapy is

the most important topic; therefore, Larsson et al. established

a molecular beacon to compliment SOX2 mRNA, displaying

the fluorescent signal when SOX2 is expressed89. Although

the interaction networks remain incomplete, reactions with

different expression levels of SOX2 are more apparent than

ever. In summary, the potential applications of SOX2 are

extremely promising but precise targeting and expression

in the right place and at the right dosage are crucial.
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