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Abstract

Several studies showed that assessing levels of specific circulating microRNAs (miRNAs) is a non-invasive, rapid, and
accurate method for diagnosing diseases or detecting alterations in physiological conditions. We aimed to identify a serum
miRNA signature to be used for the diagnosis of tuberculosis (TB). To account for variations due to the genetic makeup, we
enrolled adults from two study settings in Europe and Africa. The following categories of subjects were considered: healthy
(H), active pulmonary TB (PTB), active pulmonary TB, HIV co-infected (PTB/HIV), latent TB infection (LTBI), other pulmonary
infections (OPI), and active extra-pulmonary TB (EPTB). Sera from 10 subjects of the same category were pooled and, after
total RNA extraction, screened for miRNA levels by TaqMan low-density arrays. After identification of ‘‘relevant miRNAs’’, we
refined the serum miRNA signature discriminating between H and PTB on individual subjects. Signatures were analyzed for
their diagnostic performances using a multivariate logistic model and a Relevance Vector Machine (RVM) model. A leave-
one-out-cross-validation (LOOCV) approach was adopted for assessing how both models could perform in practice. The
analysis on pooled specimens identified selected miRNAs as discriminatory for the categories analyzed. On individual serum
samples, we showed that 15 miRNAs serve as signature for H and PTB categories with a diagnostic accuracy of 82% (CI 70.2–
90.0), and 77% (CI 64.2–85.9) in a RVM and a logistic classification model, respectively. Considering the different ethnicity, by
selecting the specific signature for the European group (10 miRNAs) the diagnostic accuracy increased up to 83% (CI 68.1–
92.1), and 81% (65.0–90.3), respectively. The African-specific signature (12 miRNAs) increased the diagnostic accuracy up to
95% (CI 76.4–99.1), and 100% (83.9–100.0), respectively. Serum miRNA signatures represent an interesting source of
biomarkers for TB disease with the potential to discriminate between PTB and LTBI, but also among the other categories.
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Introduction

Tuberculosis (TB) remains one of the most relevant infectious

diseases with nearly 9 million cases and 1.4 million deaths per year

worldwide [1]. Due to the complexity of the clinical presentations

of the infection caused by members of the Mycobacterium tuberculosis

complex (latent asymptomatic infection, active pulmonary and/or

extra-pulmonary disease), accurate classification of cases is

essential to address the most appropriate clinical management

[2–4].

Current standards for TB diagnosis, including the most sensitive

molecular tests, rely on the detection of the pathogen, thus being

dependent on the bacterial load in the specimen analyzed; indeed,

diagnosing TB in children is a difficult task because the

mycobacterial load is often low [5–7]. Similarly, extra-pulmonary

TB (EPTB) cases are often challenging to diagnose due to the

difficulties in obtaining samples for microbiological investigations,

and are affected by unpredictable distribution of bacteria in

tissues. Therefore, EPTB and smear-negative pulmonary TB

(PTB) are usually diagnosed ex juvantibus. Finally, despite the

importance of utterly discriminating between latent TB infection

(LTBI) and active TB, clear-cut biological markers separating the

two conditions are not yet available [8–10]. Biomarkers and

surrogate endpoints are therefore crucial tools for the development

of innovative strategies for TB management [11].
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The development of diagnostic tests based on host biomarkers is

advocated to clinically categorize paucibacillary or not microbi-

ologically-confirmed TB cases, and for proper identification of

LTBI cases [11,12]. The need for biomarkers extends beyond the

urgency for improved diagnostic tools: the assessment of the

disease status and of the risk of progression to active disease or the

assessment of treatment success early during therapy are critical

bottlenecks in the development of new vaccines and drugs, and

could allow categorization of therapy based on individual risk of

unfavorable outcome.

The ideal biomarker should be a stable molecule, and should be

in sufficient amounts for easy detection in accessible body fluids

[9,13]. The discovery that human microRNAs (miRNAs) expres-

sion is frequently altered in various diseases has uncovered a new

Figure 1. Criteria for the inclusion in the study population.
doi:10.1371/journal.pone.0080149.g001
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repertoire of molecular factors, which warrants investigation to

further elucidate their role in physiology and disease [14]. In the

cell, miRNAs post-transcriptionally regulate the expression level of

target genes [15]. The miRNA highly-conserved regulatory system

does not remain confined to the intracellular compartment: they

can be transferred via body fluids (including plasma, serum, urine,

and saliva), thus modulating translational responses by intercellu-

lar communication [16–19].

miRNAs could represent an ideal biomarker, owing to the

sampling easiness, the inherent stability and the resilience [19,20].

However, their characterization during viral or bacterial infection

has raised interest only recently, and data on TB remain limited to

few studies [21–23].

This research aimed at identifying miRNA profiles associated

with the different phases of M. tuberculosis infection (PTB, EPTB,

LTBI), and non-tubercular lung infections as well as in healthy

condition and showing their use as specific signatures for PTB

diagnosis.

Materials and Methods

Ethical Statements
The protocol of the study was approved by the Ethical

Committee of the San Raffaele Scientific Institute, Milano, Italy

(GO/URC/ER/mm prot. N. 82/DG) and of the participating

institutions in Uganda and Tanzania. The study was conducted in

full compliance with the principles of the Declaration of Helsinki.

All samples were collected from individuals who had signed an

informed consent form for the purpose of the study and for

cryopreservation of their biological samples.

Study Population
The following case definitions were adopted to categorize

individuals enrolled in the study:

– Patients with active pulmonary TB (PTB): sputum smear

microscopy positive for acid-fast bacilli, M. tuberculosis complex

culture and/or Xpert MTB/RIF (Cepheid, Sunnyvale, CA)

positive patients with pulmonary disease, HIV negative

individuals;

– Patients with active pulmonary TB and HIV co-infection

(PTB/HIV): sputum smear microscopy positive for acid-fast

bacilli, M. tuberculosis complex culture and/or Xpert MTB/RIF

positive patients with pulmonary disease, HIV positive

confirmed cases;

– Patients with active extra-pulmonary TB (EPTB): culture

positive TB cases with any extra-pulmonary disease localiza-

tion, HIV negative individuals;

– Latent TB infection cases (LTBI): subjects who resulted

interferon-c release assay (IGRA) or tuberculin skin test

(TST) positive with no signs/symptoms of active disease;

– Subjects affected by pulmonary infectious diseases other than

TB (OPI): clinical diagnosis (clinical exam plus imaging), with

or without microbiological confirmation, IGRA and/or TST

negative;

– Healthy subjects (H): IGRA and/or TST negative, without any

known risk factors for LTBI, without any clinically relevant

conditions.

The study populations of adult subjects were enrolled between

September 2009 and December 2012 from two studies, namely

TBnew and TB CHILD.

TBnew. Subjects enrolled at the San Raffaele Hospital

(Milano, Italy), Spedali Civili of Brescia (Brescia, Italy), Regional

Center for TB ‘‘Villa Marelli’’, Niguarda Hospital (Milano, Italy),

and at the National Institute for Infectious Diseases ‘‘L.

Spallanzani’’ (Roma, Italy) belonged to the following categories:

PTB, EPTB, LTBI, H, OPI.

TB CHILD. Subjects enrolled at Ifakara Health Institute -

Bagamoyo Research and Training Centre (BRTC) (Pwani,

Tanzania), NIMR-Mbeya Medical Research Programme

(MMRC) (Mbeya, Tanzania), and at the St. Francis Nsambya

Hospital (Kampala, Uganda) belonged to the following categories:

PTB, PTB/HIV, H.

Figure 2. Demographic data of the TBnew and the TB CHILD populations. The Figure reports mean age for the categories of subjects enrolled
and distribution of the country of birth in the different World Health Organization regions.
doi:10.1371/journal.pone.0080149.g002
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All subjects included in the study underwent the following

procedures:

– phlebotomy through a 21G butterfly device to minimize

hemolysis during specimen collection. Additive-free blood

collection tubes were chosen to minimize unwanted modifica-

tion of miRNA content in the serum;

– collection of clinically relevant data to determine TB status

(with relevant confirmatory exams), and HIV status. A

questionnaire to capture any additional information such as:

pregnancy, smoking, current medical problems (diabetes,

transplant, silicosis, sarcoidosis, cancer), current therapies with

particular focus on immunosuppressive, antiretroviral and anti-

TB ones was compiled for all patients during enrolment.

All information was stored in an electronic data-protection

system.

Enrolment and exclusion criteria of the study population are

summarized in Figure 1.

Figure 3. Summary of candidate serum miRNAs selected as relevant to discriminate among the categories according to the analysis
of pooled specimens. Population and category of pooled specimens are reported on the circumference. The thickness of the ribbons connecting
two categories is proportional to the number of miRNAs potentially interesting in the discrimination between the categories linked.
doi:10.1371/journal.pone.0080149.g003
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Serum Preparation
Within 4 hours from time of phlebotomy, after coagulation,

tubes were centrifuged at 2500 rpm for 10 minutes, with

separation of serum from corpuscular fractions. Subsequently,

serum fraction was transferred – in sterile environment – into

15 mL tubes and underwent a second centrifugation at 2800 rpm

for 10 minutes, in order to achieve maximum removal of cellular

component. Serum was hence transferred in aliquot of 1 mL into

cryogenic vials and stored at 280uC. For RNA extraction, sera

were thawed on ice and the degree of hemolysis was determined

through spectrometry analysis of free hemoglobin as previously

described [24]. A cut-off value of hemoglobin concentration of

.10 mg/dL was considered for hemolyzed samples.

Figure 4. Summary of putative serum miRNA signatures discriminating among relevant clinical categories according to the analysis
of pooled specimens. Clinical category and miRNAs are reported on the circumference. The ribbons represent the connection between miRNAs
and clinical categories. The serum miRNAs have been defined by the following filters: Infection: H vs PTB, H vs LTBI, H vs EPTB, H vs PTB/HIV, OPI vs
PTB, OPI vs LTBI, OPI vs EPTB; Active TB: H vs PTB, H vs EPTB, H vs PTB/HIV, OPI vs PTB, OPI vs EPTB, LTBI vs PTB, LTBI vs EPTB; Symptoms: H vs PTB, H vs
OPI, H vs PTB/HIV, H vs EPTB, LTBI vs PTB, LTBI vs EPTB, LTBI vs OPI; Pulmonary disease (any): H vs PTB, H vs OPI, H vs PTB/HIV, LTBI vs PTB, LTBI vs OPI,
EPTB vs PTB, EPTB vs OPI.
doi:10.1371/journal.pone.0080149.g004
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Table 1. Serum miRNAs showing different levels in healthy (H) and pulmonary active tuberculosis (PTB) subjects from the two
populations included in the study.

miRNA Array TBnew vs TB CHILD (p-val) H vs PTB (p-val)

has-miR-155-4395459 A 0,01375 0,40055

hsa-miR-126-4395339 A 0,02580 0,76655

hsa-miR-129-5p-4373171 A 0,02600 0,84640

hsa-miR-139-3p-4395424 A 0,00975 0,91465

hsa-miR-142-5p-4395359 A 0,00025 0,33310

hsa-miR-145-4395389 A ,0,00001 0,88630

hsa-miR-146b-5p-4373178 A 0,02525 0,10360

hsa-miR-148b-4373129 A 0,00170 0,84365

hsa-miR-150-4373127 A 0,01065 0,37600

hsa-miR-152-4395170 A ,0,00001 0,43940

hsa-miR-17-4395419 A 0,00630 0,50405

hsa-miR-184-4373113 A 0,00510 0,32595

hsa-miR-195-4373105 A ,0,00001 0,16715

hsa-miR-19a-4373099 A 0,04110 0,34870

hsa-miR-20b-4373263 A 0,00315 0,52460

hsa-miR-220c-4395322 A 0,00100 0,29480

hsa-miR-29c-4395171 A 0,02855 0,29935

hsa-miR-302c-4378072 A ,0,00001 0,55550

hsa-miR-324-3p-4395272 A 0,00805 0,75735

hsa-miR-331-3p-4373046 A 0,00455 0,43190

hsa-miR-374b-4381045 A 0,00745 0,36145

hsa-miR-423-5p-4395451 A 0,04475 0,15395

hsa-miR-485-3p-4378095 A ,0,00001 0,54070

hsa-miR-574-3p-4395460 A 0,04470 0,05040

hsa-miR-597-4380960 A 0,00025 0,98915

hsa-miR-628-5p-4395544 A 0,01450 0,32615

hsa-miR-744-4395435 A 0,00100 0,40245

hsa-miR-872-4395375 A ,0,00001 0,06135

hsa-miR-9-4373285 A 0,04985 0,21925

MammU6-4395470 A 0,00140 0,51640

hsa-miR-135a*-4395343 B 0,00020 0,22165

hsa-miR-509-3p-4395347 B 0,01160 0,19885

hsa-miR-645-4381000 B 0,00005 0,27560

hsa-miR-801-4395183 B ,0,00001 0,87435

hsa-miR-923-4395264 B 0,00080 0,06465

MammU6-4395470 B 0,00045 0,58190

hsa-let-7e-4395517 A 0,80890 0,00395*

hsa-miR-10b-4395329 A 0,79615 0,0072*

hsa-miR-127-5p-4395340 A 0,96665 0,00495*

hsa-miR-130a-4373145 A 0,09690 0,02485

hsa-miR-146a-4373132 A 0,14045 0,0047*

hsa-miR-148a-4373130 A 0,91780 ,0,00001*

hsa-miR-16-4373121 A 0,17145 0,00045*

hsa-miR-185-4395382 A 0,47350 0,00685*

hsa-miR-19b-4373098 A 0,42240 0,01720

hsa-miR-24-4373072 A 0,29355 0,04625

hsa-miR-25-4373071 A 0,18345 0,00065*

hsa-miR-27a-4373287 A 0,19845 0,01235

Serum miRNA Signatures in Pulmonary Tuberculosis
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Serum Pools
Each pool for qRT-PCR analysis was composed of 10 non-

smoker subjects from the same category, equally distributed by

gender. Selected subjects were free of co-morbidities (as for the

pathologies investigated during the enrolment interview) to avoid

confounding effects on miRNA profiles. A serum aliquot from

each subject was thawed on ice, and 500 mL of serum from each

sample were mixed together in order to obtain a homogeneous

pooled serum sample. One mL of pooled serum was used for RNA

extraction and subsequent miRNA analysis in duplicate.

Serum from Single Individuals
To refine the results obtained from pooled sera, we performed

individual serum analysis on 18 subjects belonging to the PTB and

Figure 5. Analysis of the results of serum miRNAs in healthy controls (H) and pulmonary active tuberculosis (PTB) using pooled and
individual specimens. Squares summarize results obtained by comparison of miRNAs in pooled specimens, whereas circles define results from
individual sera.
doi:10.1371/journal.pone.0080149.g005

Table 1. Cont.

miRNA Array TBnew vs TB CHILD (p-val) H vs PTB (p-val)

hsa-miR-27b-4373068 A 0,12255 0,03670

hsa-miR-342-3p-4395371 A 0,77485 0,01620

hsa-miR-365-4373194 A 0,48025 0,00345*

hsa-miR-374a-4373028 A 0,17845 0,03010

hsa-miR-376c-4395233 A 0,32505 0,04740

hsa-miR-451-4373360 A 0,50895 0,0082*

hsa-miR-532-5p-4380928 A 0,09210 0,00155*

hsa-miR-590-5p-4395176 A 0,46820 0,0039*

hsa-miR-660-4380925 A 0,48025 0,00095*

hsa-miR-885-5p-4395407 A 0,86025 0,003*

RNU48-4373383 A 0,90280 0,02350

hsa-miR-144*-4395259 B 0,63015 0,02595

hsa-miR-223*-4395209 B 0,79420 0,00025*

hsa-miR-30a-4373061 B 0,14410 0,00065*

hsa-miR-30a*-4373062 B 0,54630 0,03605

hsa-miR-30d-4373059 B 0,43060 0,00715

hsa-miR-30e-4395334 B 0,50865 0,0012*

hsa-miR-106a-4395280 A 0,03535 0,01145

hsa-miR-125a-5p-4395309 A 0,00380 0,03295

hsa-miR-192-4373108 A 0,04850 0,001*

hsa-miR-193a-5p-4395392 A 0,01675 0,00485*

hsa-miR-212-4373087 A ,0,00001 0,02215

hsa-miR-483-5p-4395449 A 0,00120 0,03800

hsa-miR-518d-3p-4373248 A 0,03350 0,00155*

*miRNAs showing a p-adj ,0.05.
doi:10.1371/journal.pone.0080149.t001
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H categories from the TBnew group, and on 10 subjects from the

TB CHILD group. As for pooled sera, individuals were selected

free of co-morbidities among non smokers. A serum aliquot from

each subject was thawed on ice, and 1 mL of serum from each

individual was used for RNA extraction and subsequent miRNA

analysis.

RNA Extraction
RNA extraction was performed using the mirVana miRNA

isolation kit (Life Technologies) according to the manufacturer’s

instructions for isolating total RNA. RNA samples were stored at

280uC until use.

Serum miRNA Profiling
Serum miRNAs analysis was performed with TaqManH Low

Density Array (TLDA) Human MicroRNA Panels A and B,

investigating an overall of 671 different miRNAs (Life Technol-

ogies). Retro-transcription was performed with TaqManH micro-

RNA reverse transcription kit and MegaPlex RT Primers Human

Pool A v2.1 and B v2.0 components (Life Technologies), according

to the manufacturer’s instructions. For each RT reaction 15 ng of

total RNA were used. After RT step, samples were pre-amplified

using the MegaPlex PreAmp Primers A and B and the TaqManH
PreAmp Mater Mix according to the manufacturer’s instructions

(Life Technologies). TLDAs were performed using a 7900HT Fast

Real-Time PCR System or a ViiATM 7 Real-Time PCR System

according to manufacturer’s instructions (Life Technologies). On

pooled sera, we performed analyses in biological and technical

replicate for each array panel (A and B), whereas for each

individual sera we performed single arrays (panels A+B).

Data Analysis and Normalization
Data from TaqManH were collected with SDS v2.4.1, ViiATM 7

v1.1, and RQ Manager v1.2.2 software (Applied Biosystems),

(baseline: automatic; threshold: 0.20; maximum allowable Ct:

35.0). Data analysis was performed in R and Bioconductor

environment [25]. We first preprocessed raw Ct values by means

of quantile normalization, as described elsewhere [26–28]. This

widely used approach is based on the assumption that only few

miRNAs are differentially expressed. As a general result, this

method provides homogenous data with the same distribution and

the correlation coefficient between observations increases com-

pared to raw data. Normalized data distribution was graphically

inspected.

Statistical Analysis
Results from pools and individuals were analyzed separately.

Pools. We performed one-to-one category comparisons be-

tween mean Ct values fitting a constrained regression model with

MM robust estimators [29,30]. These robust estimates have a high

breakdown-point and are not affected by the presence of outliers

or differently expressed miRNAs. We then computed the

Empirical Distribution Function of residuals and filtered miRNAs

associated with residuals outside the Inter Quartile range (i.e.

outside the 1st quartile –3rd quartile interval) of the residuals

distribution and we defined them as ‘‘interesting miRNAs’’ or

‘‘relevant miRNAs’’. Circular visualization of data was made by

Circos software [31].

Individuals. As our first step we filtered out miRNAs

detected Ct,35 in at least $80% of subjects of at least one of

the categories considered (H in TBnew, PTB in TBnew, H in TB

CHILD, and PTB in TB CHILD). For these filtered out miRNAs

we performed a two ways ANOVA for health status and genetic

makeup (defined as for country of birth). P-values were computed

non-parametrically by means of permutations [32]. We checked

for False Discovery Rate (FDR) with the method described by

Benjamini and Yekutieli [33]. miRNAs showing both (i) an

adjusted p-value (p-adj) ,0.05 on individuals and (ii) relevant by

Table 2. Serum miRNA levels in pulmonary active tuberculosis (PTB) subjects as compared with healthy controls (H).

TBnew TB CHILD Combined

miRNAs p-adj ,0.05 Individuals Pools Individuals Pools Individuals Pools
Relevance in pooled
specimens To be considered for

hsa-let-7e-4395517 TBnew, TB CHILD TBnew, TB CHILD

hsa-miR-146a-4373132 6 TB CHILD only TB CHILD only

hsa-miR-148a-4373130 TBnew, TB CHILD TBnew, TB CHILD

hsa-miR-16-4373121 TBnew only TBnew only

hsa-miR-192-4373108 TBnew, TB CHILD TBnew, TB CHILD

hsa-miR-193a-5p-4395392 TBnew, TB CHILD TBnew, TB CHILD

hsa-miR-25-4373071 TBnew only TBnew only

hsa-miR-365-4373194 6 TBnew only TBnew only

hsa-miR-451-4373360 TBnew, TB CHILD TBnew, TB CHILD

hsa-miR-532-5p-4380928 6 TB CHILD only TB CHILD only

hsa-miR-590-5p-4395176 TBnew, TB CHILD TBnew, TB CHILD

hsa-miR-660-4380925 TB CHILD only TB CHILD only

hsa-miR-885-5p-4395407 TBnew, TB CHILD TBnew, TB CHILD

hsa-miR-223*-4395209 TB CHILD only TB CHILD only

hsa-miR-30a-4373061 6 6 6 TBnew, TB CHILD –

hsa-miR-30e-4395334 6 6 TBnew, TB CHILD TB CHILD only

The table reports data from individual and pooled specimens. Discrepancies are marked by x.
doi:10.1371/journal.pone.0080149.t002
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pooled specimens analysis were considered for miRNA signature

definition.

Performances of the signature. To assess the single

miRNA performance in identifying health status a Receiver

Operating Characteristic (ROC) curve based on kernel density

distributions method fit as described in [34]. As overall measures

of the performance in distinguish cases, the associated Area under

the curve (AUC) was calculated and the p-values computed by

means of permutations.

To assess and compare diagnostic performances of the miRNA

signature identified, we fitted a multivariate logistic model selected

by maximizing the Akaike Information Criteria (AIC) and a

Relevance Vector Machine (RVM) model [35–37]. In contrast

with Support Vector Machine, RVM follow a Bayesian approach

giving a posteriori probability of the class. This makes the results

from the two approaches more directly comparable. ROC curve

and associated AUC were also computed for the logistic model.

A leave-one-out-cross-validation (LOOCV) approach was

adopted for assessing how the results of both the RVM and AIC

logistic regression predictive models would perform in practice.

Performances were summarized in terms of sensitivity, specificity,

positive predictive value (PPV), negative predictive value (NPV),

and diagnostic accuracy.

Results

Study Population
A total of 311 subjects (159 males, 51.2%) were enrolled within

the TBnew group. As summarized in Figure 2 there were 56

healthy subjects, 109 individuals with LTBI (75 recent contacts of

active PTB cases; 34 non-recent contacts), 24 subjects affected by

other pulmonary infections (OPI), 32 EPTB and 90 PTB patients.

Subjects were recruited in Italy but were born in countries located

in the different World Health Organization (WHO) regions

(Figure 2). The TB CHILD group includes only individuals from

Tanzania and Uganda. A total of 186 subjects were enrolled (107

males, 57.5%): 49 healthy subjects, 64 PTB patients, and 73

patients with PTB and HIV co-infection. In the latter category the

median CD4+ cell count was 198.4 cells/mL (interquantile range:

277.1) compared with 707.7 cells/mL (interquantile range: 813.3)

of PTB subjects without HIV infection. H and PTB populations

were statistically comparable for mean age values of enrolled

subjects (p-values for H and PTB: 0.29, and 0.80, respectively).

Eight pools from the TBnew group, and 11 pools from the TB

CHILD group were considered for the analysis. We used a subset

of individuals to refine the miRNA signatures identified on pooled

specimens. Briefly, we performed individual serum analysis for 36

and 20 subjects for the TBnew, and the TB CHILD group,

respectively (details are reported in Table S1).

Normalization of qPCR Data
The TLDA is a 384-well microfluidic card containing dried

TaqManH primers and probes. Array A focuses on more highly

characterized miRNAs while array B contains many of the more

recently discovered miRNAs along with the miR* sequences. The

use of two panels (array A and array B) enables quantitation of

gene expression levels of up to 671 different miRNAs. This is

Table 3. Diagnostic performances of the serum miRNA signatures in the Relevance Vector Machine (RVM).

Serum miRNA signature (n) All (15) TBnew (10) TB CHILD (12)

n of individuals (H/PTB) 56 (28/28) 36 (18/18) 20 (10/10)

Sensitivity % (95% CI) 85.71 (68.51–94.30) 77.78 (54.78–91.00) 100.00 (72.25–100.00)

Specificity % (95% CI) 78.57 (60.46–89.79) 88.89 (67.20–96.90) 90.00 (59.58–98.21)

PPV % (95% CI) 80.00 (62.69–90.50) 87.50 (63.98–96.50) 90.91 (62.26–98.38)

NPV % (95% CI) 84.62 (66.47–93.85) 80.00 (58.40–91.93) 100.00 (70.08–100.00)

Diagnostic accuracy % (95% CI) 82.14 (70.16–90.00) 83.33 (68.11–92.13) 95.00 (76.39–99.11)

Likelihood ratio of a positive test % (95% CI) 4 (2.846–5.621) 7 (2.524–19.41) 10 (1.409–70.99)

Likelihood ratio of a negative test % (95% CI) 0.1818 (0.1087–0.3041) 0.25 (0.1508–0.4144) 0

The Table reports diagnostic performances already corrected for the leave-one-out cross validation (LOOCV).
doi:10.1371/journal.pone.0080149.t003

Table 4. Diagnostic performances of the serum miRNA signatures in the AIC logistic regression model.

Serum miRNA signature (n) All (15) TBnew (10) TB CHILD (12)

n of individuals (H/PTB) 56 (28/28) 36 (18/18) 20 (10/10)

Sensitivity % (95% CI) 71.43 (52.94–84.75) 72.22 (49.13–87.50) 100.00 (72.25–100.00)

Specificity % (95% CI) 82.14 (64.41–92.12) 88.89 (67.20–96.90) 100.00 (72.25–100.00)

PPV % (95% CI) 80.00 (60.87–91.14) 86.67 (62.12–96.26) 100.00 (72.25–100.00)

NPV % (95% CI) 74.19 (56.75–86.30) 76.19 (54.91–89.37) 100.00 (72.25–100.00)

Diagnostic accuracy % (95% CI) 76.79 (64.23–85.90) 80.56 (64.97–90.25) 100.00 (83.89–100.00)

Likelihood ratio of a positive test % (95% CI) 4 (2.599–6.156) 6.5 (2.302–18.35) undefined

Likelihood ratio of a negative test % (95% CI) 0.3478 (0.2672–0.4527) 0.3125 (0.2079–0.4696) 0

The Table reports diagnostic performances already corrected for the leave-one-out cross validation (LOOCV).
doi:10.1371/journal.pone.0080149.t004

Serum miRNA Signatures in Pulmonary Tuberculosis

PLOS ONE | www.plosone.org 9 November 2013 | Volume 8 | Issue 11 | e80149



accomplished by loading the cDNA product onto the array for

PCR amplification and real-time analysis. MegaPlex Pools are

designed to detect and quantitate up to 380 microRNAs (miRNAs)

per pool in human species thanks to a set of stem-looped reverse

transcription primers (MegaPlex RT Primers) that enable the

simultaneous synthesis of cDNA and a set of miRNA-specific

forward and reverse primers (MegaPlex PreAmp Primers)

intended for use with very small quantities of starting material.

The primers enable the unbiased preamplification of the miRNA

cDNA target by PCR prior to loading the TaqManH MicroRNA

Array.

After the quantile normalization procedure, the Ct values of

four miRNAs (ath-miR159a, MammU6, RNU44, and RNU48)

detected by both array A and array B were compared. As showed

in Table S2, Ct values were consistent between ‘‘pools –

individuals’’, ‘‘array A – array B’’, and ‘‘TBnew – TB CHILD’’.

Normalized data from pooled and individual specimens are

reported in Table S3.

Analysis of Serum miRNA Profiles in Pooled Samples
Normalized qPCR data from pools showed 277 miRNAs

undetectable in the categories (H, PTB, LTBI, OPI, EPTB, and

PTB/HIV) from both groups (TBnew, and TB CHILD).

The mean Ct value for each miRNA was calculated and a one-

to-one comparison between different categories was carried out.

Residual values are available in Table S4.

Figure 3 summarizes the number of miRNAs outside the 1st and

3rd quantile tails of the distribution of the residuals obtained by

comparing two categories. The two percentiles considered, should

most probably contain the miRNAs that are significantly different

between the two compared categories. According to this qualita-

tive analysis based on the distribution of the residuals, between 120

and 172 serum miRNAs could allow to discriminate among the

categories considered in this study. For example, 134 miRNAs

showed to be relevant in differentiating LTBI and PTB, whereas

132 miRNAs would allow discriminating between PTB and OPI.

After filtering the pooled specimen results according to clinically

relevant categories, we identified putative serum miRNA signa-

tures defining MTB infection, active TB, pulmonary disease, or

any of the disease statuses considered in this study (Figure 4).

To optimize our approach, for the PTB and H categories, we

performed the analysis of individual sera.

Analysis of Serum miRNA Profiles in Individuals
Serum miRNA profiles from 18 H, and 18 PTB from TBnew

group as well as 10 H and 10 PTB from the TB CHILD group

were analyzed.

Out of the 671 miRNAs tested, 126 targets were detected in

80% of the subjects in at least one of the analyzed categories. As

reported in Table 1, 71 miRNAs showing a p-value ,0.05 were

identified: we could detect differences in serum miRNA profiles

between the TBnew and TB CHILD individuals (35 miRNAs,

49.3%), between H and PTB (29 miRNAs, 40.8%), and

Figure 6. Receiver Operating Characteristic (ROC) based on Akaike information criterion (AIC) logistic regression for the 15-miRNA
signature. AUC: area under the curve. The AIC model identified as the best performing miRNA signature the following: miR-let-7e, miR-146a, miR-16,
miR-25, miR-365, miR-451, miR-885-5p, miR-223*.
doi:10.1371/journal.pone.0080149.g006
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differences depending on both the population and the clinical

status (7 miRNAs, 9.9%). After checking for FDR (p-adj), twenty

miRNAs resulted to be significantly different between H and PTB

(let-7e, miR-10b, miR-127-5p, miR-146a, miR-148a, miR-16,

miR-185, miR-192, miR-193a-5p, miR-25, miR-365, miR-451,

miR-518d-3p, miR-532-5p, miR-590-5p, miR-660, miR-885-5p,

miR-223*, miR-30a, miR-30e). Complete results are available in

Table S5.

Pools vs Individuals
Out of the 20 miRNAs showing a significant p-adj in the study

on individuals (Table 1), 16 (80%) had already been identified as

‘‘relevant miRNA’’ in the analysis of pooled specimens (Figure 5).

Among those miRNAs, nine showed differences between H and

PTB pools in each group; four showed differences only in TB

CHILD pooled specimens, whereas three only in the pools from

TBnew group. Four miRNAs with a significant p-adj in the study on

individuals had not been detected as relevant by the first screening

on pooled specimens. Figure 5 shows that the analysis on pools

correctly excluded 429 out of 439 ‘‘not relevant’’ miRNAs from

further investigations.

Then, for the 16 miRNAs found to be relevant in the pooled

specimens analysis and significant (p-adj ,0.05) in individual sera (let-

7e,miR-146a,miR-148a,miR-16,miR-192,miR-193a-5p,miR-25,

miR-365, miR-451, miR-532-5p, miR-590-5p, miR-660, miR-885-

5p, miR-223*, miR-30a), we compared the direction of the variation

(increase or decrease) in pooled and single PTB serum analyses. From

this comparison we found that some miRNAs showed inconsistent

results between individual and pooled specimens (Table 2): eleven

miRNAs showed the same type of variation in individual and pooled

samples across both study groups considered, three miRNAs showed

discordantvariationonly inTBneworTBCHILDpopulation,andone

showed discordant variation in both TBnew and TB CHILD groups.

Five and three targets were found to be associated only to the TB

CHILD and to the TBnew group, respectively. In conclusion, from the

combined analysis on pools and individuals, a total of 15 miRNAs

were identified as a signature for discriminating between H and PTB

(let-7e, miR-146a, miR-148a, miR-16, miR-192, miR-193a-5p,

miR-25, miR-365, miR-451, miR-532-5p, miR-590-5p, miR-660,

miR-885-5p, miR-223*, miR-30e).

Diagnostic Performances of the Identified Serum miRNA
Signature

We used two approaches to evaluate the diagnostic perfor-

mances of the identified serum miRNA signature: RVM model,

and AIC logistic regression analysis. Both were cross-validated by

the use of a LOOCV approach. All fifteen miRNAs (let-7e, miR-

146a, miR-148a, miR-16, miR-192, miR-193a-5p, miR-25, miR-

365, miR-451, miR-532-5p, miR-590-5p, miR-660, miR-885-5p,

miR-223*, miR-30e) were used to re-classify the 56 subjects

analyzed as single sera obtaining a diagnostic accuracy of 82% by

RVM, and of 77% by logistic regression. The diagnostic accuracy

increased up to 83% by RVM and 81% by logistic regression

when miRNAs identified as ‘‘TBnew-specific’’ (let-7e, miR-148a,

Figure 7. Receiver Operating Characteristic (ROC) based on Akaike information criterion (AIC) logistic regression for the 10-miRNA
signature specific for TBnew population. AUC: area under the curve. The AIC model identified as the best performing miRNA signature the
following: miR-let-7e, miR-192, miR-25, miR-451.
doi:10.1371/journal.pone.0080149.g007
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miR-16, miR-192, miR-193a-5p, miR-25, miR-365, miR-451,

miR-590-5p, miR-885-5p) re-classify TBnew single serum samples.

A similar increase was observed when the ‘‘TB CHILD-specific’’

signature (let-7e, miR-146a, miR-148a, miR-192, miR-193a-5p,

miR-451, miR-532-5p, miR-590-5p, miR-660, miR-885-5p, miR-

223*, miR-30e) was used on the 10 individual samples from TB

CHILD group (95% by RVM, and 100% by logistic regression,

respectively). Table 3 and Table 4 summarize the diagnostic

performances of the miRNA signatures achieved by the different

approaches used for the classification of subjects. AUCs for the

regression logistic analyses are reported in Figure 6, Figure 7, and

Figure 8.

Discussion

In TB biomarker research, published studies on highly

multiplexed assays focus on proteomics, gene expression, tran-

scriptomics, and miRNAs, as predictors of disease, disease

recurrence or drug resistant infection [38–47]. Our study on

serum miRNA signatures ascertains the value of these biomarkers

for TB disease classification, as previously reported by others [21–

23]. However, previous studies did not consider the impact of the

genetic makeup on the miRNA signatures: ethnicity, together with

age and gender, could influence the levels of circulating miRNAs

[48]. By the comparison of two populations with different genetic

makeup we showed that some population-specific miRNAs can

increase the diagnostic accuracy for active TB.

While much research is still focused on assessing the quality of

single biomarkers, there is an emerging interest in panels of

biomarkers composed of multiple candidate targets which are

neither specific nor sensitive when used as single tests, but which

show a good performance when used in combination. In this study

we used both RVM and logistic regression methods supported by a

LOOCV approach to evaluate the diagnostic performances of

serum miRNAs identified as a signature rather than as single

biomarkers. The presence of miRNAs detectable in at least the

80% of one category indicates a higher diagnostic index;

moreover, our filtering approach did not introduce biases in

detecting potential on/off miRNAs between categories. Indeed,

whenever a serum sample is tested for miRNA, its diagnostic

relevance will be attested by its level rather than by their presence/

absence in H and PTB categories.

To ascertain if a serum miRNA signature could discriminate

between different categories of patients, we used a restrictive

stratification screening approach to minimize the number of

possible biases. Despite subjects within the H category showed a

mean age lower than the other categories, we consider this to be

only a minor drawback of the study. Particular attention should be

reserved to specific subgroups (e.g. childhood and elderly) where

age would expect to have a bigger impact. Another possible

drawback could be the heterogeneity in terms of genetic

background (estimated on the basis of the country of birth) in

the TBnew group. This could partially explain lower performances

of the miRNA signature on this population. The results on pooled

specimens identified differences in serum miRNA profiles in the

Figure 8. Receiver Operating Characteristic (ROC) based on Akaike information criterion (AIC) logistic regression for the 12-miRNA
signature specific for TB CHILD population. AUC: area under the curve.
doi:10.1371/journal.pone.0080149.g008
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categories analyzed. Interestingly, according to our qualitative

analysis based on the Empirical Distribution Function of residuals,

serum miRNAs would allow not only to discriminate LTBI and

PTB, but also PTB from OPI and EPTB. Indeed, the 134

miRNAs showing relevant differences in serum level of LTBI and

PTB subjects include a smaller subset of miRNAs that could be

used as specific signature to discriminate between these two

categories. A similar approach could be applied for the 132

miRNAs showing relevant differences in serum levels of PTB and

OPI subjects and for the 124 miRNAs differentiating PTB and

EPTB subjects. Further studies on cohorts of LTBI, OPI and

EPTB individuals will allow to identify specific miRNA patterns

and to evaluate their diagnostic accuracy. The discriminatory

power of serum miRNAs observed is further supported by the fact

that the same findings have been confirmed in the two different

groups (namely TBnew and TB CHILD) for the signature identified

for the comparison H-PTB. Additionally, the use of pooled

specimens allowed halving the number of targets to be analyzed by

excluding miRNAs under the detection threshold or showing very

little changes across categories.

To refine our findings, we performed serum miRNA analysis on

individual sera from H and PTB subjects. Table 5 summarizes the

comparison between our results and previously published studies. In

the first study on circulating miRNAs as biomarkers for TB reported

by Fu and colleagues [21], it was demonstrated that 92 miRNAs

had significantly different levels in the sera of healthy controls vs

PTB subjects: 59 miRNAs were down-regulated and 33 miRNAs

were up-regulated in the serum of TB patients. One-by-one

comparison is not possible due to different analytical platforms

and normalization strategies, but some homologies between the

study by Fu and our results can be observed. For example, miRNAs

belonging the families let-7, miR-30, and miR-146 were found to be

significantly different between H and PTB in both studies. miRNAs

miR-590-5p, miR-185, miR-660, let-7e, miR-25, miR-146a, and

miR-885-5p showed to be differentially expressed between healthy

controls and PTB subject also in the study reported by Qi and

colleagues [22]. miR-197 which was observed to be slightly

increased in our study was also reported to be increased in sera

from pulmonary TB patients by Abd-El-Fattah and colleagues [23].

However, the previous studies did not consider the genetic

background of the subjects enrolled. Differently, in the present

study the inclusion of groups with different genetic background

allowed us to better define serum miRNA signatures associated to a

different (health) status. Indeed, subjects belonging to the same

status (i.e. H or PTB) showed different serum miRNA levels

between the TBnew and the TB CHILD groups in pooled specimens

(Table S4). Comparing individual sera from subjects belonging to

the two populations we found significant differences in the level of

several miRNAs (Table S5). Despite larger population-based studies

are still needed, our data support the hypothesis that the genetic

background could influence the specific serum miRNA profiles.

Interestingly, by matching miRNA signatures from pooled speci-

mens, individual specimens, and direction of variation (increase/

decrease) we identified 7 common discriminatory miRNAs (let-7e,

miR-148a, miR-192, miR-193a-5p, miR-451, miR-590-5p, miR-

885-5p) plus three miRNAs specific for the TBnew group (miR-16,

miR-25, miR-365), and five miRNAs specific for the TB CHILD

group (miR-146a, miR-532-5p, miR-660, miR-223*, miR-30e).

The diagnostic accuracy for each single miRNA was found to be

,75% (data not shown), while better results were achieved by using

the approach of ‘‘signatures’’: AUC values were above 0.90 and the

use of the entire fifteen-miRNAs signature provided a diagnostic

accuracy between 77% and 82% in a LOOCV approach (logistic

regression and RVM, respectively). Population-specific signatures

allowed to further improve classification accuracy (81–83% for

TBnew, and 95–100% for TB CHILD, respectively). As mentioned

before, serum miRNA signatures showed less efficiency in classifying

subjects belonging to the TBnew group. Our hypothesis is that,

despite the mild to moderate differences, the genetic background

heterogeneity of this group is likely affecting the classification

performances of the miRNA signature. The higher number of

miRNAs with discrepancy variations (in terms of increase/decrease)

between individual and pooled specimens provides some evidence

on the heterogeneity of the TBnew population.

As for the function of extracellular miRNAs, current evidences

suggest a regulatory role on the expression of target genes when taken

up by recipient cells, with the peculiar capability to act on several

targets at a time and to operate in a network with other extracellular/

intracellular miRNAs [17,19]. A ‘‘hormonal’’ role to extracellular

miRNAs was attributed [17,19]. If this interpretation proves to be

true, we could then be facing a major advancement in modern

biology not only for better understanding of biological complexity,

but also in terms of diagnostic and even therapeutic possibilities [49].

Target cells for extracellular miRNAs and related targeting

mechanism are poorly understood, thus careful interpretation of

circulating miRNA origin and function should be considered.

Here we described a serum miRNA signature discriminating H

and PTB subjects. Despite promising results, several challenges in

pre-analytical and analytical phases remain in the analysis of

circulating miRNAs. Accurate large-cohort studies are therefore

required to validate PTB-specific miRNA signatures, and to

identify miRNA signatures also for LTBI, EPTB and pathologies

(like pneumonia, cancer, HIV infection and sarcoidosis) often in

differential diagnosis with TB. The inclusion of different sets of

biomarkers (e.g. cytokines, antibodies) could also help in achieving

higher discrimination power amongst the closest categories.

Supporting Information

Table S1 Details on subjects included in pooled and
individual specimens analyzed in the study. H: healthy

Table 5. Comparison between the serum miRNA signature
found in the present and the miRNAs reported in the previous
studies.

miRNA Fu et al, 2011 Qi et al, 2012

hsa-let-7e-4395517 let-7 family let-7e, let-7 family

hsa-miR-146a-4373132 miR-146a miR-146a

hsa-miR-148a-4373130 – –

hsa-miR-16-4373121 – –

hsa-miR-192-4373108 – –

hsa-miR-193a-5p-4395392 – miR-193 family

hsa-miR-25-4373071 – miR-25

hsa-miR-365-4373194 miR-365 family –

hsa-miR-451-4373360 – –

hsa-miR-532-5p-4380928 – miR-532 family

hsa-miR-590-5p-4395176 – miR-590-5p

hsa-miR-660-4380925 – miR-660

hsa-miR-885-5p-4395407 – miR-885-5p

hsa-miR-223*-4395209 – miR-223 family

hsa-miR-30e-4395334 miR-30 family miR-30 family

doi:10.1371/journal.pone.0080149.t005
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controls; LTBI: latent tuberculosis infection; PTB: pulmonary

active tuberculosis; EPTB: active extra-pulmonary tuberculosis;

OPI: other pulmonary infections; PTB/HIV: PTB in HIV-

positive. SD: standard deviation.

(XLSX)

Table S2 Comparison of the Ct values among the four
miRNAs detected in both array A and array B types
between different populations (TBnew, TB CHILD) and
different specimens (individual sera, pooled sera). Mean

Ct values are reported together with the standard deviation after

quantile normalization.

(XLSX)

Table S3 Normalized Ct values obtained from individ-
ual and pooled specimens after quantile normalization.

(XLSX)

Table S4 Complete data analysis on pooled specimens.
The Table reports residual values obtained by each comparison

performed between the categories. Relevant differences are

highlighted.

(XLSX)

Table S5 Complete data analysis on individual speci-
mens. The Table reports the p-value for the following

comparison on individual specimens: TBnew vs TB CHILD, and

healthy control (H) vs pulmonary active tuberculosis (PTB). P-

adjusted (p-adj) is reported for the comparison H vs PTB. Values

,0.05 are highlighted. na: not applicable (miRNAs not detected in

at least 80% of subjects in at least one of the category considered

where not included in the analysis).

(XLSX)
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