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Abstract Platelets are anucleate cells in blood whose principal function is to stop bleeding by

forming aggregates for hemostatic reactions. In addition to their participation in physiological

hemostasis, platelet aggregates are also involved in pathological thrombosis and play an important

role in inflammation, atherosclerosis, and cancer metastasis. The aggregation of platelets is elicited

by various agonists, but these platelet aggregates have long been considered indistinguishable and

impossible to classify. Here we present an intelligent method for classifying them by agonist type.

It is based on a convolutional neural network trained by high-throughput imaging flow cytometry of

blood cells to identify and differentiate subtle yet appreciable morphological features of platelet

aggregates activated by different types of agonists. The method is a powerful tool for studying the

underlying mechanism of platelet aggregation and is expected to open a window on an entirely

new class of clinical diagnostics, pharmacometrics, and therapeutics.

Introduction
Platelets are non-nucleated cells in blood whose principal function is to stop bleeding by forming

aggregates for hemostatic reactions (Michelson, 2012; George, 2000; Michelson, 2003; Harri-

son, 2005). In addition to their participation in physiological hemostasis (Michelson, 2012;

George, 2000; Michelson, 2003; Harrison, 2005), platelet aggregates are also involved in patho-

logical thrombosis (Davı̀ and Patrono, 2007; Ruggeri, 2002). Moreover, it is known that a range of

diseases or medical conditions, such as inflammation, atherosclerosis, and cancer metastasis, are

closely associated with platelet aggregation (Lievens and von Hundelshausen, 2011;

Engelmann and Massberg, 2013; Franco et al., 2015; Gay and Felding-Habermann, 2011). Also,

in patients with artificial lungs due to severe respiratory failure such as the coronavirus disease 2019

(COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

(Ramanathan et al., 2020; Ronco et al., 2020), the long-term foreign body contact of blood with

the artificial devices in the extracorporeal circulation often leads to platelet aggregation and throm-

bus formation followed by serious complications (e.g., myocardial infarction, cerebral infarction)

(Brodie et al., 2019; Brodie and Bacchetta, 2011; Oliver, 2009). Here, the aggregation of platelets

is elicited by a variety of agonists, which bind to and activate specific receptors expressed on the

platelet. This leads to platelet activation and structural and functional changes of glycoprotein IIb/

IIIa expressed on the platelet surface. The activated form of the glycoprotein can bind with fibrino-

gen, enabling platelets to interact with each other and form aggregates (Michelson, 2012;

George, 2000; Michelson, 2003; Harrison, 2005; Moser et al., 2008). Despite the existence of

diverse agonist types, platelet aggregates look morphologically similar and have long been thought
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indistinguishable since the discovery of platelet aggregates in the 19th century (Michelson, 2012;

George, 2000; Michelson, 2003; Harrison, 2005). This is because morphological characteristics of

platelet aggregates on a large statistical scale have been overlooked as microscopy (a high-content,

but low-throughput tool) has been the only method to examine them (Finsterbusch et al., 2018;

Nitta et al., 2018).

In this Short Report, we present an intelligent method for classifying platelet aggregates by ago-

nist type. This is enabled by performing high-throughput imaging flow cytometry of numerous blood

cells, training a convolutional neural network (CNN) with the image data, and using the CNN to

identify and differentiate subtle yet appreciable morphological features of platelet aggregates acti-

vated by different types of agonists. Our finding that platelet aggregates can be classified by ago-

nist type through their morphology is unprecedented as it has never been reported previously. The

information about the driving factors behind the formation of platelet aggregates is expected to

lead to a better understanding of the underlying mechanism of platelet aggregation and open a win-

dow on an entirely new class of clinical diagnostics, pharmacometrics, and therapeutics.

Results

Development of the iPAC
Our procedure for developing an intelligent platelet aggregate classifier (iPAC) is schematically

shown in Figure 1A. First, a blood sample obtained from a healthy person was separated into sev-

eral different portions, into which different types of agonists were added to activate platelets while

no agonist was added to the last portion for negative control (Figure 1—figure supplement 1;

Materials and methods). Here, adenosine diphosphate (ADP), collagen, thrombin receptor activator

peptide-6 (TRAP-6), and U46619 were used since they are commonly used in platelet aggregation

tests (Michelson, 2012; George, 2000; Michelson, 2003; Harrison, 2005). Initially, the concentra-

tions of the agonists were carefully chosen (20 mM for ADP, 10 mg/mL for collagen, 13 mM for TRAP-

eLife digest Platelets are small cells in the blood that primarily help stop bleeding after an

injury by sticking together with other blood cells to form a clot that seals the broken blood vessel.

Blood clots, however, can sometimes cause harm. For example, if a clot blocks the blood flow to the

heart or the brain, it can result in a heart attack or stroke, respectively. Blood clots have also been

linked to harmful inflammation and the spread of cancer, and there are now preliminary reports of

remarkably high rates of clotting in COVID-19 patients in intensive care units.

A variety of chemicals can cause platelets to stick together. It has long been assumed that it

would be impossible to tell apart the clots formed by different chemicals (which are also known as

agonists). This is largely because these aggregates all look very similar under a microscope, making

it incredibly time consuming for someone to look at enough microscopy images to reliably identify

the subtle differences between them. However, finding a way to distinguish the different types of

platelet aggregates could lead to better ways to diagnose or treat blood vessel-clogging diseases.

To make this possible, Zhou, Yasumoto et al. have developed a method called the “intelligent

platelet aggregate classifier” or iPAC for short. First, numerous clot-causing chemicals were added

to separate samples of platelets taken from healthy human blood. The method then involved using

high-throughput techniques to take thousands of images of these samples. Then, a sophisticated

computer algorithm called a deep learning model analyzed the resulting image dataset and

“learned” to distinguish the chemical causes of the platelet aggregates based on subtle differences

in their shapes. Finally, Zhou, Yasumoto et al. verified iPAC method’s accuracy using a new set of

human platelet samples.

The iPAC method may help scientists studying the steps that lead to clot formation. It may also

help clinicians distinguish which clot-causing chemical led to a patient’s heart attack or stroke. This

could help them choose whether aspirin or another anti-platelet drug would be the best treatment.

But first more studies are needed to confirm whether this method is a useful tool for drug selection

or diagnosis.
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Figure 1. Development of the iPAC. (A) Procedure for developing the iPAC. (B) Images of the agonist-activated platelet aggregates and single

platelets (negative control). (C) Structure of the CNN with an encoder-decoder architecture used for the development of the iPAC.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page
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6, 14 mM for U46619) to minimize variations in aggregate size between the different blood sample

portions. These images were acquired through six experimental trials (Figure 1—figure supplement

2) to mitigate potential bias in the dataset that may have come from experimental variations (e.g.,

signal-to-noise ratio, fluctuations in optical alignment, hydrodynamic cell focusing conditions, sample

preparation). Then, four different concentrations of each agonist (2, 5, 10, 20 mM for ADP, 1, 5, 10,

20 mg/mL for collagen, 1, 5, 13, 20 mM for TRAP-6, 2.8, 5.6, 14, 28 mM for U46619) were used for

platelet activation to examine the potential influence of agonist concentrations on the ability to dif-

ferentiate platelet aggregates by agonist type, where the concentrations were chosen by referring

to the concentrations of agonists used in light transmission aggregometry and in vitro flow-cytomet-

ric platelet aggregation tests (Koltai et al., 2017; Granja et al., 2015). The platelet aggregates

were enriched by density-gradient centrifugation to remove erythrocytes from the blood sample

portions. To prevent the platelet aggregates from dissolving during imaging flow cytometry, 2%

paraformaldehyde was added to the blood sample portions to fix them. In addition to this sample

preparation procedure, we tested other procedures such as pipetting, vortexing, fixation, and non-

fixation and identified the current procedure to be advantageous over the others in preserving the

morphology of platelet aggregates (Figure 1—figure supplement 3; Materials and methods). Sec-

ond, an optofluidic time-stretch microscope (Goda et al., 2009; Jiang et al., 2017; Lei et al., 2018;

Lau et al., 2016) was employed for high-throughput, blur-free, bright-field image acquisition of

events (e.g., single platelets, platelet-platelet aggregates, platelet-leukocyte aggregates, single leu-

kocytes, cell debris, remaining erythrocytes) in each sample portion (Figure 1—figure supplements

4 and 5; Materials and methods). Here, fluorescence image acquisition is not needed because fluo-

rescence images of platelet aggregates would look very similar to their bright-field images (except

for the colors). Third, the acquired images of the events were used to train two CNN models that

classified the platelets based on their morphological features by agonist type (Figure 1B). Specifi-

cally, we first trained a CNN model with images of platelet aggregates activated by certain concen-

trations of agonists (12,000 images per agonist type) in order to examine their morphological

changes while minimizing a potential influence of concentration-dependent factors on the morphol-

ogy of the platelet aggregates. Then, we trained the other CNN model with a dataset in which the

images of platelet aggregates activated by different concentrations of the agonists were equally

mixed (12,000 images in total per agonist type) in order to show that different concentrations of the

agonists do not perturb the CNN model’s ability to classify platelet aggregates. We employed the

CNN (Krizhevsky et al., 2012) with an encoder-decoder architecture to disregard insignificant fea-

tures such as background noise and keep important features in the bottleneck layer and trained it

with the data of a single blood donor to ensure that only the morphological features driven by the

agonists contributed to the development of the iPAC (Figure 1C; Materials and methods). In com-

parison, we measured the platelet samples that were prepared under the same procedure using a

conventional flow cytometer (Cytomics FC500, Beckman Coulter) which is based on fluorescence

measurements for cell classification. As shown in Figure 2, the flow cytometer was not capable of

differentiating them as indicated by their significant overlap (Figure 2—source data 1; Materials

and methods).

Demonstration of the iPAC
The iPAC is manifested as a confusion matrix with each row representing the examples in a pre-

dicted class and each column representing the examples in an actual or true class. As shown in

Figure 3A, most of the images were classified into the correct groups in the diagonal line of the con-

fusion matrix. Large separations between the different platelet sample portions in Figure 3B that vis-

ualizes the bottleneck layer in the CNN indicate the first CNN model’s ability to discriminate various

Figure 1 continued

Figure supplement 1. Detailed Procedure for Sample Preparation.

Figure supplement 2. Extend Image Library from Six Experimental Trials.

Figure supplement 3. Comparison of Different Procedures for Sample Preparation.

Figure supplement 4. Fabrication of the Microfluidic Chip.

Figure supplement 5. Schematic of the Optofluidic Time-stretch Microscope.
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types of agonist-activated platelet aggregates and negative control (Figure 3—source data 1). The

negative control shows the highest classification accuracy, indicating that large morphological

changes were made to the activated platelets. The U46619-treated blood sample portion shows the

second highest classification accuracy of all the blood sample portions, indicating that the morpho-

logical changes caused by the agonist are very different from those caused by the other agonists.

Many platelet-leukocyte aggregates were identified in the U46619-treated sample portion, but few

in the other blood sample portions (Figure 2). This may be because U46619 acted as a thromboxane

A2 (TXA2) receptor agonist, which activated TXA2 receptors that are abundantly expressed on plate-

lets, vascular smooth muscle cells, and injured vascular endothelial cells. The activation of TXA2

receptors may affect the morphology of U46619-induced platelet aggregates by promoting the

expression of adhesion molecules that favors the adhesion and infiltration of leukocytes (Michel-

son, 2012; George, 2000). The low classification accuracy values of the ADP-, collagen-, and TRAP-

Figure 2. Scatter plots of agonist-activated platelets analyzed by a conventional flow cytometer. The points in region C1 are colored in red, while the

points in region C2 are colored in blue for distinguishing them visually. C1: single platelets and platelet-platelet aggregates. C2: leucocytes and

platelet-leucocyte aggregates. C3: blood cells other than platelets and leucocytes. C4: leucocytes.

The online version of this article includes the following source data for figure 2:

Source data 1. Statistical analysis of agonist-activated platelets by conventional flow cytometry.

Zhou et al. eLife 2020;9:e52938. DOI: https://doi.org/10.7554/eLife.52938 5 of 15

Short report Cell Biology Human Biology and Medicine

https://doi.org/10.7554/eLife.52938


6-treated blood sample portions are presumably due to the fact that these agonists partially share

similar mechanisms in forming platelets aggregates (Michelson, 2012; George, 2000; Michel-

son, 2003; Harrison, 2005; Li et al., 2000). For example, since platelets also release ADP

Figure 3. Demonstration of the iPAC. (A) Confusion matrix as a manifestation of the iPAC. (B) t-SNE plot of the agonist-activated platelet aggregates

and single platelets (negative control). (C) Validation of the reproducibility of the iPAC. (D) Confusion matrix of the CNN model trained with the images

of platelet aggregates activated by different concentrations of agonists.

The online version of this article includes the following source data for figure 3:

Source data 1. Source data of Figure 3B.
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themselves during activation (Michelson, 2012; George, 2000; Michelson, 2003; Harrison, 2005),

platelet aggregates produced by other agonists may also share similar morphological features as

ADP-activated platelet aggregates. In addition, TRAP-6 activates thrombin receptors while thrombin

generation may be amplified by other agonists during platelet activation (Mann, 2011), which indi-

cates that the low prediction values of TRAP-6 can be attributed to the participation of thrombin in

platelet aggregation induced by all types of agonists. Furthermore, it is common that platelets are

simultaneously activated by multiple agonists whose effects on platelet aggregation are coupled

whereas they are also influenced by other factors such as locally produced inhibitors, vascular endo-

thelial cells, blood flow, and coagulation proteins during activation (Cattaneo and Lecchi, 2007;

Michelson, 2012), thereby leading to the low classification accuracy values of certain agonists, which

can be overcome by including the influences into the classification model to cover a wide spectrum

of aggregation factors. To demonstrate the reproducibility of the iPAC, we tested it with an inde-

pendent dataset (a total of 25,000 images of all event types), which was performed under the same

conditions as shown in Figure 1A. The contribution values over all the agonists are in good agree-

ment with the values in the diagonal elements of the confusion matrix (Figure 3C), which validates

the reliability of the iPAC.

The iPAC’s ability to classify platelet aggregates by agonist type in a concentration-independent

manner is indicated by the confusion matrix shown in Figure 3D with an average diagonal element

value of 77%. The results also reveal the existence of the unique morphological features related to

each agonist type, which is promising for potential application to diagnosis of thrombotic disorders

by tracing back to the leading factors of platelet aggregation. In addition, from a viewpoint of

potential clinical applications, while the conventional assays can only evaluate platelet aggregability

qualitatively, the iPAC can quantify it with the resolving power to identify the contribution of each

agonist type to it. However, it can be recognized from the image library (Figure 1B) that U46619-

activated platelet aggregates have relatively larger size than those in the other sample portions,

which may be captured as a type of morphological features by the CNN, leading to the high classifi-

cation accuracy of the U46619-activated samples.

To demonstrate the diagnostic utility of the iPAC, we applied it to blood samples of four healthy

human subjects to predict the contribution of each agonist type to platelet aggregates (if any) in the

samples (Figure 4). The blood samples were prepared by following the same procedure as shown in

Figure 1A except for the step of adding agonists (with 2000 images of events in each blood sam-

ple). The experiment was repeated under the same conditions three times. Over 85% of the total

population of platelets in all the samples were identified as single platelets, which indicates the abil-

ity of the iPAC to differentiate single platelets and platelet aggregates. Furthermore, the agonist

types of the platelet aggregates in each subject’s platelet classification results are consistent

between the repeated experiments, indicating that the variations between the subjects resulted

from platelet heterogeneity, not test variations. The iPAC’s diagnostic ability to obtain this type of

information is an effective tool for studying and elucidating the mechanism of platelet aggregation

and holds promise for clinical diagnostics, pharmacometrics, and therapeutics, although the iPAC

needs more training with a wide spectrum of diseases and medical conditions for the purpose. For

example, the iPAC may provide an important clue to the choice of drugs (e.g., aspirin or thienopyri-

dines) for antiplatelet therapy (Mauri et al., 2014; Roe et al., 2012), the gold standard of the treat-

ment and prevention of atherothrombosis (e.g., myocardial infarction, cerebral infarction), in that

aspirin inhibits the formation of TXA2 whose stable analogue is U46619 while thienopyridines exert

an antiplatelet effect by blocking the ADP receptor P2Y12. Furthermore, the iPAC may be able to

identify TRAP-6-activated platelet aggregates in the bloodstream of patients with deep vein throm-

bosis (since TRAP-6 interacts with the receptor of thrombin) and suggest that they come from the

venous side.

Discussion
The information about the driving factors behind the formation of platelet aggregates is expected

to lead to a better understanding of the underlying mechanisms of platelet aggregation and,

thereby, open a window on an entirely new class of clinical diagnostics and therapeutics. For exam-

ple, antiplatelet therapy is the gold standard of the treatment and prevention of atherothrombosis

(e.g., myocardial infarction, cerebral infarction) for which aspirin and thienopyridines (e.g., prasugrel

Zhou et al. eLife 2020;9:e52938. DOI: https://doi.org/10.7554/eLife.52938 7 of 15

Short report Cell Biology Human Biology and Medicine

https://doi.org/10.7554/eLife.52938


and clopidogrel) are primarily used as antiplatelet drugs worldwide (Mauri et al., 2014; Roe et al.,

2012). Aspirin inhibits the formation of TXA2 whose stable analogue is U46619, whereas thienopyri-

dines exert an antiplatelet effect by blocking the ADP receptor P2Y12. Accordingly, the ability to

identify the type of platelet aggregates in the blood stream may provide an important clue to the

choice of a drug for antiplatelet therapy. Furthermore, deep vein thrombosis (DVT) is a blood clot

that normally occurs in a deep vein where coagulation activation plays an important role. Since

TRAP-6 interacts with the receptor of thrombin (i.e., the product of the coagulation cascade), the

Figure 4. iPAC-based diagnosis of platelets from four healthy human subjects. The experiment was repeated under the same conditions three times

per subject.
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ability to identify TRAP-6-activated platelet aggregates in the blood stream may suggest that aggre-

gates come from the venous side. Therefore, the iPAC may pave the way for introducing a novel lab-

oratory testing technique for the management of pathological thrombosis such as atherothrombosis

and DVT although further basic and clinical studies are needed.

The relation between platelet activation signaling pathways and the formation of platelet aggre-

gates has been extensively studied (Li et al., 2010; Michelson, 2012; Brass et al., 2013). It is known

that agonists activate platelets in a selective manner via specific receptors, which is followed by a

variety of downstream signaling events (Li et al., 2010). For example, collagen interacts with the

immune-like receptor glycoprotein VI, which signals through an immunoreceptor tyrosine-based acti-

vation motif and activates the tyrosine phosphorylation pathway (Michelson, 2012; Li et al., 2010)

In contrast, soluble agonists such as TRAP-6, U46619, and ADP interact with G protein-coupled

receptors (Michelson, 2012; Brass, 2003). Furthermore, each soluble agonist couples with a specific

type of G protein, which leads to different aggregation mechanisms (Rivera et al., 2009) and thus

suggests different underlying mechanisms for expressing different morphological features on plate-

let aggregates. It is challenging, but is expected to be intriguing to study and elucidate the mecha-

nisms for a further understanding of the biology of platelets.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody PE anti-human CD61
(mouse monoclonal)

BioLegend Cat#336405;
RRID:AB_1227583

Platelet samples
(5 mL per sample)

Antibody Conjugated
Antibody CD45-FITC

Beckman Coulter Cat#A07782;
RRID:AB_10645157

FACS (5 mL per test)

Antibody APC Mouse Anti-
Human
CD61 (mouse
monoclonal)

BD Pharmingen Cat#564174;
RRID:AB_2738645

FACS (5 mL per test)

Chemical
compound,
drug

Collagen HYPHEN BioMed Cat#AG005K-CS Platelet activation

Chemical
compound,
drug

Revohem ADP Sysmex Cat#AP-200–422 Platelet activation

Chemical
compound,
drug

TRAP-6 amide
trifluoroacetate salt

BACHEM Cat#H-2936.0005 Platelet activation

Chemical
compound,
drug

U46619 Cayman Chemical Cat#16450 Platelet activation

Chemical
compound,
drug

4% Paraformaldehyde
Phosphate Buffer
Solution

WAKO Cat#30525-89-4 Fixation (2%
Paraformaldehyde)

Chemical
compound,
drug

Lymphoprep STEMCELLS Cat#ST07851 Density-gradient
medium

Chemical
compound,
drug

KMPR 1035 MicroChem Cat#Y211066 Negative
photoresist

Chemical
compound,
drug

SU-8 Developer MicroChem Cat#Y020100 Developer

Chemical
compound,
drug

SYLGARD 184
Silicone Elastomer

Dow Corning Cat#1064291 Microfluidic device

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

Matlab MathWorks https://mathworks.
com/products/
matlab.html

Image recovery

Software,
algorithm

Keras others https://github.com/
keras-team/keras

Python library;
Image analysis

Software,
algorithm

Tensorflow arXiv:1603.04467 https://arxiv.org/
abs/1603.04467

Python library;
Image analysis

Software,
algorithm

AutoCAD Autodesk https://www.autodesk.
com/products/
autocad/overview

Microfluidic
channel design

Blood samples for detection of platelet aggregates
The detailed procedure of the sample preparation is shown in Figure 1—figure supplement 1,

where platelets and platelet aggregates were enriched from whole blood by the density-gradient

centrifugation to maximize the detection efficiency (Beakke, 1951). Specifically, blood samples were

obtained from a healthy person with 3.2% citric acid as the anticoagulant (Figure 1—figure supple-

ment 1A). Although it has a depressed concentration of ionized calcium, 3.2% citrate blood is desir-

able for clinical coagulation tests (Adcock et al., 1997; Cazenave et al., 2004). The other common

anticoagulants, such as heparin and ethylenediaminetetraacetic acid (EDTA), are not suitable for this

study because they influence the coagulation functions of platelets (Ludlam, 1981). Platelets were

immunofluorescently labeled by adding 20 mL PE anti-human CD61 (BioLegend, 336405) to the

blood samples to ensure that platelets would be detected in all images (Figure 1—figure supple-

ment 1B). For each agonist type, 500 mL blood was incubated with 50 mL agonist solution, which

contained 20 mM ADP (BioMed, AP-200–422), 10 mg/mL Collagen (BioMed, AG005K-CS), 13 mM

TRAP-6 (H2936.0005, BACHEM), or 14 mM U46619 (Cayman Chemical, 16450), for 10 min (Fig-

ure 1—figure supplement 1C). The labeled, activated platelets were then diluted using 5 mL saline

(Figure 1—figure supplement 1D). Next, the platelets were isolated by using Lymphoprep (STEM-

CELLS, ST07851), a density-gradient medium, using the protocol provided by the vendor. Specifi-

cally, the diluted blood was added on top of the Lymphoprep and then centrifuged at 800 g for 20

min (Figure 1—figure supplement 1E). After the centrifugation, 1 mL of the sample was taken from

the mononuclear layer, to which 1 mL of 2% paraformaldehyde (Wako, 163–20145) was added for

fixation (Lanier and Warner, 1981; Figure 1—figure supplement 1F,G). The operation of the fixa-

tion was performed at 4˚C for 30 min while other operations were performed at 25˚C room tempera-

ture. As shown in Figure 1—figure supplement 2, we first compared several procedures of

preparing blood samples, but most of the procedures either left a large amount of non-target blood

cells in the sample, thus decreasing the iPAC’s detection efficiency, or dismantled the agonist-acti-

vated platelet aggregates. The current procedure is advantageous over the procedures in preserving

the morphology of platelet aggregates while eliminating non-target blood cells. This study was

approved by the Institutional Ethics Committee in the School of Medicine at the University of Tokyo

[no. 11049-(6)]. Written informed consents were obtained from the blood donors.

Microfluidic chip fabrication
The microfluidic chip was fabricated using standard photolithographic methods (Whitesides et al.,

2001). A designed pattern of the microfluidic channel was drawn using AutoCAD (Autodesk) and

printed on a film mask (UnnoGiken). Negative photoresist (KMPR 1035, MicroChem) was spin-coated

on a silicon wafer and heated at 100˚C for 10 min. Then, the silicon wafer, covered with the film

mask, was exposed to ultraviolet (UV) light followed by hard baking at 100˚C for 5 min and devel-

oped using SU-8 developer (MicroChem). After washing with isopropyl alcohol and water, the silicon

wafer was heated at 150˚C for 15 min. The negative photoresist mold on the silicon wafer was fixed

in a Petri dish and then filled with polydimethylsiloxane (PDMS, Dow Corning) in which PDMS base

and curing reagent were mixed at a ratio of 10:1 (Figure 1—figure supplement 4A). PDMS was

heated at 80˚C for 15 min, and then a small piece of coverslip was placed on PDMS right above the
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observation area of the microfluidic channel. This step improved the mechanical strength of PDMS

so that the channel (Figure 1—figure supplement 4B) was able to resist the pressure inside the

channel without deformation. After another heating for more than 1 hr, the PDMS layer was cut into

a small piece so that it could fit in the size of a glass slide (Figure 1—figure supplement 4C). The

inlets and outlet were punched by a 25G needle (Figure 1—figure supplement 4D). To form perma-

nent bonding between the PDMS channel and the glass slide, both the PDMS device and the glass

slide were treated with a plasma cleaner (Harrick Plasma) (Figure 1—figure supplement 4E). The

dimensions of the microchannel in the observation area are about 80 mm in width and 40 mm in

height (Figure 1—figure supplement 4F).

Optofluidic time-stretch microscopy
The optofluidic time-stretch microscope (Lei et al., 2016) is schematically shown in Figure 1—figure

supplement 5. A Ti:Sapphire mode-locked femtosecond pulse laser with a center wavelength, band-

width, and pulse repetition rate of 780 nm, 40 nm, and 75 MHz, respectively, was used as an optical

source. Each laser pulse was first stretched temporally by a single-mode dispersive fiber with a

group-velocity dispersion of �240 ps/nm (Nufern 630-HP) and then dispersed spatially by the first

diffraction grating with a groove density of 1200 lines/mm. The stretched laser pulse was focused by

the first objective lens (Olympus, 40�, NA 0.6) onto a flowing cell in the microfluidic channel. The

pulse that contained the spatial profile of the cell on its spectrum was collected by the second objec-

tive lens and spatially recombined by the second diffraction grating, followed by photodetection

with a high-speed photodetector (New Focus 1580-B) with a detection bandwidth of 12 GHz. To

ensure imaging of platelet-related events (i.e., single platelets, platelet-platelet aggregates, platelet-

leukocyte aggregates), fluorescence detection was used in conjunction with the optofluidic time-

stretch microscope. A 488 nm continuous-wave laser was used to detect CD61 fluorescence signals

with a photomultiplier tube (Hamamatsu H10723-01MOD). Only the image signals associated with

CD61 fluorescence signals were collected. The image-encoded pulse and fluorescence signal were

digitized using a high-speed oscilloscope (Tektronix DPO 71604B) with a detection bandwidth of 16

GHz and a sampling rate of 50 GS/s. Pulses were repeated by the mode-locked pulse laser at 75

MHz so that image-encoded pulses detected by the photodetector were digitally stacked to form

2D images using MATLAB R2018b (MathWorks). The pulse intensity profile (usually Gaussian-shaped

with ripples) was normalized to obtain a flat background. Also, all the images were cropped into

160 � 160 pixels by the same cropping algorithm, by which the cell-contained part was completely

included in each image for further analysis.

Evaluation of agonist-activated platelets by conventional flow
cytometry
We analyzed agonist-activated platelets with a conventional flow cytometer (Cytomics FC500, Beck-

man Coulter) that can count and analyze large cell populations via scattering and fluorescence meas-

urements with high throughput. Blood samples were processed using the same procedure as for

optofluidic time-stretch microscopy, but labeled with anti-CD61-APC and anti-CD45-FITC antibodies

(Beckman Coulter) for detecting white blood cells and platelets, respectively. To only detect single

platelets and platelets aggregates, gating of cellular size and granularity was applied to the light

scatter plots. As shown in Figure 2, the C1 areas, which correspond to CD61-APC positive and

CD45-FITC negative, show events associated with single platelets and platelet-platelet aggregates.

The C2 areas, which correspond to CD61-APC/CD45-FITC double positive, show events associated

with platelet-leukocyte aggregates. The C3 areas (CD61-APC/CD45-FITC double negative) and C4

areas (CD61-APC negative and CD45-FITC positive) correspond to events which did not contain any

platelets.

Convolutional neural network
The details of the CNN with the encoder-decoder architecture are as follows. The encoder was used

to extract morphological features of platelet aggregates, while the decoder was used to recover the

platelet aggregate images from the morphological features. This two-stage structure forced the

encoder to extract features from the cells instead of the background or noise, which helped enhance

the reliability and accuracy of classification. The images were normalized to 0-mean and divided into
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training, validation, and test sets at a ratio of 3:1:1. The CNN classifier was trained on the training

set. The validation loss was calculated with the validation dataset at each epoch to monitor the

learning process. The learning rate was reduced when the validation loss stopped descending for

more than 3 epochs until it reached 1 � 10�8. The training was ceased when there was no more

decrease in the validation loss for more than 6 epochs. After the training ended, the test set was

processed to calculate the final classification accuracy for each agonist type. The CNN classifier was

implemented on Keras (Chollet, 2015) with the Tensorflow (Abadi et al., 2016) backbone. The train-

ing of the CNN classifier was optimized by Adam with an initial learning rate of 0.001.
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