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Summary

The antagonistic pleiotropy (AP) theory posits that aging occurs

because alleles that are detrimental in older organisms are

beneficial to growth early in life and thus are maintained in

populations. Although genes of the insulin signaling pathway

likely participate in AP, the insulin-regulated cellular correlates of

AP have not been identified. The mitochondrial quality control

process called mitochondrial autophagy (mitophagy), which is

inhibited by insulin signaling, might represent a cellular correlate

of AP. In this view, rapidly growing cells are limited by ATP

production; these cells thus actively inhibit mitophagy to max-

imize mitochondrial ATP production and compete successfully for

scarce nutrients. This process maximizes early growth and

reproduction, but by permitting the persistence of damaged

mitochondria with mitochondrial DNA mutations, becomes detri-

mental in the longer term. I suggest that as mitochondrial ATP

output drops, cells respond by further inhibiting mitophagy,

leading to a further decrease in ATP output in a classic death

spiral. I suggest that this increasing ATP deficit is communicated

by progressive increases in mitochondrial ROS generation, which

signals inhibition of mitophagy via ROS-dependent activation of

insulin signaling. This hypothesis clarifies a role for ROS in aging,

explains why insulin signaling inhibits autophagy, and why cells

become progressively more oxidized during aging with increased

levels of insulin signaling and decreased levels of autophagy. I

suggest that the mitochondrial death spiral is not an error in cell

physiology but rather a rational approach to the problem of

enabling successful growth and reproduction in a competitive

world of scarce nutrients.
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tive oxygen species; Tor.

In the long run we are all dead. Economists set
themselves too easy, too useless a task, if in tempes-
tuous seasons they can only tell us, that when the
storm is long past, the ocean is flat again.John
Maynard Keynes, 1923

The death spiral, pros and cons

A death spiral, also known as a vicious circle, is a specific form of positive

feedback in which steps taken to handle a particular problem, while

successful in the short term, exacerbate the problem in the long term.

The classic example of a death spiral is a company with debt trouble that

must borrow to pay for operating expenses. Although the operating

expenses can get paid (short-term success), the additional borrowing

worsens the company’s debt problem (long-term exacerbation).

Insurance companies can face death spirals when, as a consequence

of adverse selection, claims increase unexpectedly, which necessitate

premium increases, which increase the adverse selection, etc.

The death spiral is generally viewed unfavorably because the end

result of a death spiral is generally catastrophic failure. However, in

comparison with the alternative, the death spiral offers critical advan-

tages. For example, when a debt-afflicted company borrows money to

pay operating costs, it survives longer – perhaps not forever, but longer

at least than it would have in the absence of this activity. Reaping

benefits in the long term first requires survival through the short term, as

is indicated above in the quote from John Maynard Keynes, and the

death spiral can, at least, promote this short-term survival.

Aging as a form of death spiral

From an evolutionary perspective, aging has been difficult to under-

stand. Natural selection increases organismal fitness, and yet aging,

which clearly decreases fitness, is not only observed, but also appears to

be nearly universal within multicellular (and even some single-celled)

organisms. To address this dilemma, it was proposed that aging occurs

and is fixed in populations because alleles that have deleterious effects in

old age benefit growth, survival, and reproduction in youth. This theory

is called antagonistic pleiotropy (AP) theory (Williams, 1957). In this view,

aging occurs because alleles that in the short term are beneficial in

solving problems in growth and reproduction serve to exacerbate the

problem in the long run. Therefore, aging can be viewed as a form of

death spiral.

Evidence that the genes of the insulin signaling (IIS)
pathway mediate AP

If this premise is accepted, the next step is to identify the alleles that

mediate AP, understand the nature of these alleles, how they might

exert AP, and finally identify and define the critical cellular processes

affected by AP.

Alleles of genes in the insulin/insulin growth factor signaling (IIS)

pathway are the likeliest candidates for AP alleles (Walker et al., 2000;

Blagosklonny, 2010). Loss-of-function alleles in the IIS pathway slow

aging and increase lifespan in a variety of invertebrate and vertebrate

systems (Kenyon, 2010), which means that wild-type alleles of the IIS

pathway promote aging and decrease lifespan. In C. elegans, loss-of-

function alleles in the insulin receptor (daf-2), PI3K (age-1) and Akt (two

redundant genes, in double mutant), the D. melanogaster insulin
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receptor InR and insulin receptor substrate chico, and the mouse growth

hormone-releasing hormone gene GHRH and the insulin growth factor

receptor IGFR1 each delay aging (Clancy et al., 2001; Flurkey et al.,

2002; Holzenberger et al., 2003; Kenyon, 2010). Thus, wild-type alleles

of this pathway, by promoting aging and impairing longevity, fulfill the

requirement that AP alleles are deleterious to organisms in old age. In

addition, members of the Foxo transcription factor family, which are

inhibited by IIS, slow aging in a number of systems (Martins et al., 2016).

IIS genes also fulfill the requirement that AP alleles promote growth

and reproduction at young ages. Loss-of-function mutations in IIS genes

confer many deleterious effects to young organisms, including very slow

growth, dwarfism, and deficient fecundity. It is unlikely that such

mutants could reproduce or even survive in the wild. Taken together,

these results indicate that wild-type alleles of the IIS pathway promote

growth and reproduction in young organisms at the expense of rapid

aging.

IIS pathway activity increases protein translation
and inhibits autophagy

The accelerated aging by IIS pathway activity is most likely mediated by

one or more of the cellular outputs regulated by IIS. These outputs

include autophagy, which is inhibited by IIS, and cell growth, which is

activated by IIS (Kapahi et al., 2010). Two molecular targets of IIS that

regulate each include the Tor kinase (Schmelzle & Hall, 2000), which is

activated by IIS (Hay & Sonenberg, 2004), and the Foxo transcription

factor, which is inhibited by IIS (Tang et al., 1999; Fig. 1). Both Tor and

Foxo have been implicated in mediating the effects of IIS on aging; Foxo

activity promotes longevity and Tor activity promotes aging (Kenyon,

2010). Consistent with these observations, Tor and Foxo regulate a

strongly overlapping series of outputs, but in opposite directions. Tor

inhibits autophagy by directly phosphorylating and inhibiting critical

autophagy proteins such as ATG13 (Kamada et al., 2010) while

simultaneously promoting protein synthesis by phosphorylating and

inhibiting the translation inhibitor 4E-BP (Hay & Sonenberg, 2004; Kim

et al., 2011; Fig. 1). In contrast, Foxo activates autophagy by activating

transcription of autophagy genes ATG8 and ATG12while simultaneously

inhibiting protein synthesis by activating 4E-BP transcription (J€unger

et al., 2003; Webb & Brunet, 2014; Fig. 1). These effects of Tor and

Foxo on autophagy components are physiologically significant. Tor

activation decreases autophagy (Kim et al., 2011), whereas loss of Foxo

decreases autophagy in muscle and other tissues (Mammucari et al.,

2007).

Autophagy is likely to be an important process for control of aging

(Rubinsztein et al., 2011; Tower, 2015). As a quality control mechanism

that ensures adequate function of proteins and organelles over time,

autophagy would enable cells to maintain viability over long periods.

Indeed, inhibiting autophagy confers cellular deficits related to aging

(Blagosklonny, 2010; Rubinsztein et al., 2011). Furthermore, autophagy

declines during normal aging in Drosophila muscle (Demontis &

Perrimon, 2010), mouse lung (Shirakabe et al., 2016), and human brain

(Lipinski et al., 2010), and the mitochondrial autophagy (mitophagy)

inducer PINK1 is transcriptionally downregulated during aging in mouse

lung (Sosulski et al., 2015). It was previously proposed that IIS pathway

activity is deleterious to old organisms via inhibition of autophagy

(Blagosklonny, 2010; Gems & de la Guardia, 2012).

Although autophagy is responsible for degrading many types of

damaged organelles or other macromolecular structures, mitophagy is

likely to be the process most critical for aging. First, an early theory of

aging posited that cellular damage caused by free radicals or reactive

oxygen species (ROS; Harman, 1956) is a major cause of aging. ROS

chemically modify a number of different functional groups on proteins,

lipid, and DNA and thereby cause dysfunction. Mitochondria are a

potent source of ROS generation and therefore would be expected to be

particularly susceptible to ROS-mediated damage. Second, alone among

organelles and other macromolecular structures within animal cells,

mitochondria possess DNA, which encodes several proteins critical for

oxidative phosphorylation. Whereas every other macromolecular struc-

ture can be perfectly reconstructed with only nuclear genomic input,

mitochondria are uniquely dependent on non-nuclear DNA for contin-

ued activity. Thus, ROS-mediated mitochondrial DNA damage, if allowed

to persist, irreversibly impairs mitochondrial function. With time, the

continuous accumulation of mitochondrial DNA mutations would

continuously ratchet down mitochondrial ATP productive capacity, and

be primarily responsible for the decline in cellular function over time.

IIS inhibits mitochondrial quality control by
inhibiting mitophagy

Cells possess numerous mechanisms to enable maintenance of mito-

chondrial function and genome integrity over time, despite continuous

generation of mitochondrial mutations. Most notably, cells possess

mechanisms that enable the detection, segregation, and finally

mitophagic destruction of dysfunctional mitochondria, in a process

termed mitochondrial quality control. The importance of this quality

control in cell physiology is demonstrated by experiments showing that

mitophagy inhibition decreases bulk mitochondrial oxidative phospho-

rylation capacity and causes deficits in cell function (Twig et al., 2008).

As described above, IIS inhibits autophagy in general. This autophagy

inhibition leads to long-term declines in mitochondrial health: Long-term

Fig. 1 The insulin/insulin growth factor signaling pathway and its activation by

reactive oxygen species (ROS). Insulin or other growth factors bind to and activate

the insulin receptor or other receptor tyrosine kinases. This binding leads to PI3K

and Akt activation either directly or via Ras. Akt phosphorylates and inhibits the

activities of Foxo and the Tor inhibitor Tsc1/Tsc2. Activated Tor impairs autophagy

and activates protein synthesis, whereas activated Foxo has the opposite effects.

Phosphatases inhibit signaling either by catalyzing receptor dephosphorylation or

by antagonizing PI3K activity. Pathway activators are shown in blue, and inhibitors

in gray. ROS inhibits pathway inhibitors (red) and activates pathway activators

(green).
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(10-week) Tor activation in the heart increases mitochondrial number,

but decreases mitochondrial output, both phenotypes likely a conse-

quence of impaired mitophagy (Grevengoed et al., 2015). Furthermore,

IIS specifically inhibits transcription of the mitophagy inducer PINK1

(PTEN-induced Kinase 1), which was originally identified as a gene

transcriptionally upregulated by the IIS inhibitor PTEN (Unoki & Naka-

mura, 2001) (Fig. 1). This transcriptional induction is mediated by Foxo

(Mei et al., 2009; Sengupta et al., 2011). This mitophagy inhibition has

important physiological consequences, as mitophagy inhibition prevents

the lifespan-increasing effects of IIS inhibition in nematodes (Palikaras

et al., 2015). In addition, increasing mitophagy genetically or pharma-

cologically can extend lifespan in several organisms (Rana et al., 2013;

Ryu et al., 2016).

The observation that IIS inhibits autophagy and mitophagy in rapidly

growing cells, despite deleterious long-term consequences, suggests two

conclusions. First, that mitochondrial ATP production is limiting, partic-

ularly under high growth conditions, suggesting further that rapidly

growing cells operate under an ATP deficit. Protein synthesis requires a

large expenditure of ATP; the observation that Tor induces mitochondrial

protein translation to increase ATP production is consistent with this

view (Morita et al., 2013). Second, that mitophagy decreases ATP

production, at least in the short term; mitophagy requires several hours,

and during this time, the engulfed mitochondrion is not able to

contribute to ATP production. In this way, overzealous or precocious

removal of mostly functional mitochondria will decrease peak mito-

chondrial ATP production in the short term (Fig. 2).

Experiments performed in invertebrates support both of these

conclusions. Activation of mitophagy in nematodes decreases ATP levels

in young worms (Ryu et al., 2016), and increasing mitophagy by PINK1

overexpression in the Drosophila eye decreases eye size (Koh et al.,

2012). Similarly in Drosophila, ubiquitous expression of an activated, but

not wild-type, form of the mitophagy protein Parkin is lethal, and

muscle-specific expression of this activated Parkin decreases muscle

function in adults. This result suggests that excessive mitophagy can be

deleterious even in adulthood (Shiba-Fukushima et al., 2014). I suggest

that as damaged mitochondria accumulate during aging, organisms

become increasingly dependent on these mitochondria for necessary

ATP production. This increasing dependency, in fact, is what necessitates

the decreasing mitophagy during aging. Consistent with this view, the

effectiveness of decreased IIS on extending C. elegans lifespan progres-

sively diminishes as the decreased IIS is initiated progressively later during

aging (Dillin et al., 2002). I suggest that the abrupt increase in

mitophagy caused by late-in-life IIS inhibition leads to a deleterious

culling of damaged, but essential mitochondria.

Mitophagy inhibition as the cellular correlate of
antagonistic pleiotropy

An organism that slows its growth through excessive mitophagy will

allow out-competition for scarce nutrients by other organisms. Thus,

under rapid growth conditions, cells attain a short-term selective

advantage by inhibiting mitophagy. However, this mitophagy inhibition

also allows persistence of mitochondria with damaged DNA, which will

eventually lead to decreased mitochondrial ATP production as damaged

mitochondria accumulate. Accumulation of damaged mitochondria has

been proposed to promote aging (Dutta et al., 2012; Palikaras &

Tavernarakis, 2012; Carnio et al., 2014; Diot et al., 2016). Thus, cells

attain a long-term selective disadvantage by inhibiting mitophagy

(Fig. 2). The combination of short-term advantage and long-term

disadvantage suggests that mitophagy inhibition acts as a cellular

correlate with AP.

As mitophagy inhibition continues and mitochondrial dysfunction

increases, ATP output will decline, exacerbating the ATP deficit. I suggest

that as this ATP deficit increases, cells respond by further inhibiting

mitophagy in order to salvage higher ATP production. This response

eventually leads to a further decrease in mitochondrial ATP production, a

further increase in the ATP deficit, and so on, in a classic death spiral

(Fig. 2). Ultimately, a catastrophic collapse in ATP production ensues.

In this view, evolution selects for rapid growth as well as slow aging.

However, because of the specific biology of mitochondria, organisms

cannot simultaneously grow rapidly and age slowly. Organisms will

balance these contradictory alternatives to maximize lifetime reproduc-

tion. Different species may choose to emphasize either rapid growth or

slow aging, and evolutionary niches are available for many different

growth/aging strategies. The house mouse combines extremely rapid

growth (~20-day gestation period) with extremely rapid aging (~3-year

lifespan) and presumably low levels of mitophagy, whereas the naked

mole rat combines extremely slow growth (~70-day gestation period)

with extremely slow aging (~30-year lifespan; Roelling et al., 2011) and

presumably high levels of mitophagy. In addition, organisms are capable

of modulating growth rate vs. aging rate upon changes in nutrient

availability; this is accomplished by modulating IIS activity and hence

mitophagy (Kenyon, 2010). However, the trade-off between rapid

growth and slow aging is never eliminated.

A proposed mechanism for the mitochondrial death
spiral

As mitochondrial output begins to decline during aging, cellular demand

for ATP outstrips the ability of mitochondria to produce the required

ATP. I suggest that this inadequacy of ATP supply is communicated to

the cytoplasm by an increase in mitochondrial ROS production. For

example, mouse cardiac cells under metabolic load and Drosophila

muscle cells with genetically impaired complex I function increase ROS

generation (Sundaresan et al., 2009; Owusu-Ansah et al., 2013). Other

studies indicate increased ROS generation from mitochondria defective

in oxidative phosphorylation (Turrens, 2003; Kregel & Zhang, 2007;

Murphy, 2009, 2013; Tal et al., 2009; West et al., 2011; Raimundo

et al., 2012). Finally, mitophagy impairment is sufficient to increase ROS

generation in yeast (Kurihara et al., 2012; Bin-Umer et al., 2014) and

human monocytes (Zhou et al., 2011). How mitochondrial dysfunction

increases ROS generation is not clear. Taken together, these

Fig. 2 Short-term and long-term effects of impaired mitophagy. An ATP deficit

impairs mitophagy by activating IIS. This mitophagy impairment prevents

premature autophagic destruction of partially functional mitochondria. This

impairment increases ATP production and thus facilitates growth in the short term.

However, by allowing persistence of damaged mitochondria, this impairment leads

to the accumulation of dysfunctional mitochondria and decreased ATP production

in the long term. By combining short-term benefit and long-term detriment, I

suggest that impaired mitophagy underlies antagonistic pleiotropy.
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observations indicate that cells respond to initial declines in mitochon-

drial ATP production by increasing ROS generation, which I suggest

signals the cell that mitochondrial ATP output has become inadequate to

meet cellular requirements.

I suggest that this ROS increase inhibits mitophagy via IIS activation.

ROS has been shown to increase IIS pathway activity at several steps

(Fig. 1; Okoh et al., 2013; reviewed in Sullivan and Chandel, 2014). First,

several intermediates of IIS are activated by ROS either produced

endogenously or supplied exogenously. In particular, Ras is activated

when the thiol group of cysteine 118 is oxidized (Sawyer et al., 2002;

Kuster et al., 2005; Sundaresan et al., 2009). This mechanism might

underlie the observation that the activation of Erk by hydrogen peroxide

requires Ras activity (Guyton et al., 1996). In addition, hydrogen

peroxide activates PI3K (Wang et al., 2000; Qin & Chock, 2003; Stone

& Yang, 2006), and ROS directly activates Tor (Sarbassov & Sabatini,

2005; Reiling & Sabatini, 2006) in part by inducing disulfide bond

formation at the C-terminus, which stabilizes the protein (Dames et al.,

2005). Second, several IIS inhibitors are themselves inhibited by ROS.

PTP1B, a phosphatase that deactivates receptor tyrosine kinases, is

inhibited by oxidation, which enables activation of both the insulin and

epidermal growth factor receptors (Knebel et al., 1996; Denu & Tanner,

1998; Lee et al., 1998; Finkel & Holbrook, 2000). In addition, PTEN,

which removes the 3’ phosphate from PIP3 and thus opposes PI3K

activity, is likewise inhibited by ROS (Lee et al., 2002; Leslie et al., 2003;

Connor et al., 2005). Finally, ROS inhibits the Tsc1/Tsc2 complex,

thereby relieving Tor from upstream inhibition (Yoshida et al., 2011).

Thus, ROS acts through a variety of targets to activate IIS and Tor. This IIS

activation is predicted to inhibit Foxo.

Not only does increased ROS activate IIS, but activated IIS also

increases ROS (Irani et al., 1997; Trachootham et al., 2006; Nogueira

et al., 2008; Silva et al., 2011; reviewed in Dolado & Nebreda, 2008).

This increase in ROS likely occurs at least in part via mitophagy inhibition,

which as described above is sufficient to activate ROS, although

mitophagy-independent, IIS-dependent ROS increases might also occur.

The ability of IIS and ROS to activate each other supports the notion that

a ROS/IIS positive feedback can be generated. Such a positive feedback,

once initiated, is anticipated to progressively impair mitophagy, accel-

erate mitochondrial dysfunction, and irreversibly decrease cellular ATP

production.

Based on these molecular events, I propose the following model for

the mitochondrial death spiral (Fig. 3). As deficit of mitochondrial ATP

production continues to rise, the consequent rise in mitochondrial ROS

production progressively oxidizes the cytoplasm and increases IIS

pathway activity. Mitophagy thus becomes progressively attenuated,

further exacerbating mitochondrial decline and thus the ATP supply

deficit, in a positive feedback loop.

Testing predictions of this model

Mitochondrial dysfunction increases with age

Many lines of evidence indicate that mutations in mitochondrial DNA

accumulate and mitochondrial function declines during aging (reviewed

in Payne & Chinnery, 2015). Mitochondrial DNA damage increases in

aging rodents (Hamilton et al., 2001; Genova et al., 2004; Hagen et al.,

2004) and humans (Taylor et al., 2003), and these increases in mutation

can lead to reduced flow through the electron transport chain during

aging (Wanagat et al., 2001; Hagen et al., 2004; Short et al., 2005;

reviewed in Golden & Melov, 2001; Ikeda et al., 2014).

Cells become more oxidized with age

The model shown in Fig. 3 suggests that as the mitochondrial death

spiral progresses, cells should become progressively more oxidized. This

possibility is supported by investigations by several groups (reviewed in

Droge, 2003). In particular, older animals generate more oxidation

products than younger animals in response to radiation (Beckman &

Ames, 1998). In addition, levels of reduced glutathione decline with age

both in plasma and in multiple tissues (Maher, 2005; Jones, 2006),

perhaps as a consequence of age-dependent decreases in glucose 6

phosphate dehydrogenase activity (Beckman & Ames, 1998). Finally, it

was shown in yeast, nematodes, and Drosophila that the cytoplasm or

mitochondria become increasingly oxidized during aging (Liu et al.,

2012; Brandes et al., 2013; Kirstein et al., 2015; Knieß & Mayer, 2016).

This cellular oxidation might be responsible for the observation that very

old Drosophila display strikingly similar changes in gene expression to

Drosophila placed under oxidative stress (Landis et al., 2004).

ROS production increases with age

The increase in oxidation state during aging is most likely a consequence,

at least in part, of increased generation of ROS from mitochondria. In

Drosophila, hydrogen peroxide production significantly increases during

aging (Cochem�e et al., 2011; Sohal & Orr, 2012; Orr et al., 2013) and

increased ROS release during aging was observed from rodent muscles,

heart, liver, and brain (Sohal et al., 1994; Bejma & Ji, 1999; Bejma et al.,

2000; Driver et al., 2000; Vasilaki et al., 2006; reviewed in Hekimi et al.,

2011).

IIS becomes more activated with age

Several lines of evidence suggest that Foxo activity diminishes during

aging in the rat muscle and kidney (Edstr€om et al., 2006; Kim et al.,

2008, 2014). In addition, the transcription of several autophagy genes

decreases during aging in the Drosophila flight muscle. This decrease is

mostly likely due to decreased Foxo activity, as ectopic overexpression of

Foxo is sufficient to rescue this transcriptional decrease (Demontis &

Perrimon, 2010). Finally, transcription of the Foxo-dependent mitophagy

gene PINK1 is downregulated during aging in the mouse lung (Sosulski

et al., 2015).

The effect of aging on Tor activity is less clear. Although Tor activity

was reported to increase with age in muscle, liver, lung, and stem cells

(Chen et al., 2009; Sandri et al., 2013; Leontieva et al., 2014; reviewed

by Nacarelli et al., 2015; Romero et al., 2016; White et al., 2016), other

Fig. 3 The mitochondrial death spiral. Cellular ATP deficit or mitochondrial

dysfunction causes increased production of ROS. This increased ROS activates IIS,

which in turn activates ROS by inhibiting mitophagy and thus promoting further

mitochondrial dysfunction and exacerbating the cellular ATP deficit. IIS might also

increase ROS through mitochondria-independent mechanisms.
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studies failed to confirm some of these findings (Baar et al., 2016). It

appears that phosphorylation of various Tor substrates is affected

differentially during aging. Unfortunately, phosphorylation status of

autophagy components is difficult to evaluate due to lack of phospho-

specific antibodies. In addition, Tor activity is less effective in regulating

autophagy when Foxo activity is low (Mammucari et al., 2007), most

likely because of the low expression of autophagy proteins.

Autophagy declines with age

Many lines of evidence demonstrate that autophagy declines with aging

(reviewed in Keller et al., 2004; Bergamini et al., 2004; Massey et al.,

2006; Cuervo, 2008; Rubinsztein et al., 2011; Kroemer, 2015; Romero

et al., 2016). Autophagy declines during normal aging in Drosophila

muscle (Demontis & Perrimon, 2010), rat liver (Del Roso et al., 2003);

mouse lung (Shirakabe et al., 2016), and human brain (Keller et al.,

2004; Lipinski et al., 2010). Finally, the mitophagy inducer PINK1 is

transcriptionally downregulated during aging in mouse lung (Sosulski

et al., 2015).

The declines in mitophagy during aging might be causally related to

declines in mitochondrial biogenesis also observed during aging (Vina

et al., 2009; Seo et al., 2010). Declines in mitochondrial biogenesis are

likely caused in part by decreased levels of transcription factors such as

PGC-1a and NRF1 that increase expression of mitochondrial genes

(Baker et al., 2006; Finley & Haigis, 2009). In addition, PGC-1a activity is

inhibited by Akt-dependent phosphorylation (Li et al., 2007), which

might link the observed increase in IIS during aging with attenuated

mitochondrial biogenesis. Thus, cells combine attenuated mitophagy

with attenuated mitochondrial biogenesis, which enables total mito-

chondrial mass to be held within controlled limits.

Greatly elevated cytoplasmic oxidation late in life:
implications for oxidative stress, mitohormesis, and
insulin resistance

Different levels of ROS confer distinct cellular effects. Low levels of ROS

induce growth, protein synthesis, and proliferation (Antunes & Cadenas,

2001; Kwon et al., 2003; Cadenas, 2004). I suggest that these ROS

levels are generated as the mitochondrial death spiral progresses. In

contrast, higher ROS levels can induce an oxidative stress response that

involves JNK activation and Tor inhibition (Reiling & Sabatini, 2006;

Takimoto and Kass, 2007). Activated JNK, in turn, activates Foxo by

phosphorylation, which overcomes the Foxo nuclear import barrier

induced by IIS (Oh et al., 2005; Tzivion et al., 2011) and enables Foxo

activity despite Akt-dependent phosphorylation (Wang et al., 2005). This

Foxo activation is necessary for activated JNK to increase lifespan (Wang

et al., 2005). Although the mechanism underlying the Tor inhibition that

occurs under high ROS is not completely clear, it is possible that a role is

played by the ROS-dependent activation of AMPK (Cardaci et al., 2012),

which inhibits Tor both by phosphorylating and activating the Tor

inhibitor Tsc1/Tsc2 (Fig. 1; Inoki et al., 2003) and by phosphorylating

and inhibiting the Tor-associated scaffold Raptor (Gwinn et al., 2008).

JNK is activated during aging in the rodent brain and liver and in the gut

of very old Drosophila (Suh, 2001; Hsieh et al., 2003; Williamson et al.,

2003; Biteau et al., 2008; Zhou et al., 2009); this gut JNK activation is at

least partly responsible for the Foxo activation that occurs in these very

old Drosophila (Guo et al., 2014). Taken together, these results raise the

possibility that very late in life, the cytoplasm can become oxidized

sufficiently to induce an oxidative stress response that reactivates Foxo

and inhibits Tor. These late-stage effects on Foxo and Tor are predicted

to induce a cellular switch to mitochondrial protection late in life.

Mitochondrial protection triggered by oxidative stress is termed ‘mito-

hormesis’ (Tapia, 2006).

I suggest that induction of mitohormesis by high ROS production

explains at least in part the well-established observation that pharma-

cologically or genetically crippling ATP production is capable of

increasing lifespan (Lee et al., 2003; Schulz et al., 2007; Copeland

et al., 2009; Owusu-Ansah et al., 2013; Sun et al., 2014). For example,

Owusu-Ansah et al. (2013) reported that the increased lifespan caused

by knockdown of the complex I subunit ND75 is accompanied by, and

requires, a ROS increase, followed by JNK activation, transcriptional

induction of several Foxo target genes, including 4E-BP, InR, and ImpL2,

and increased mitophagy (Owusu-Ansah et al., 2013). In addition,

Schulz et al. (2007) reported that impaired glycolysis extended lifespan

by the ROS-dependent activation of AMPK (Schulz et al., 2007). In a

similar manner, feeding superoxide generators can increase lifespan in

C. elegans (Yang & Hekimi, 2010). This lifespan increase requires Foxo

(Heidler et al., 2010) and thus might be due to JNK-dependent

mitohormesis as well. Taken together, these results indicate that high

ROS levels, beginning early in life, enable cells to bypass the mitochon-

drial death spiral and proceed directly to the late-stage mitohormetic

state, and that this phenomenon is responsible for the increased lifespan

observed.

Furthermore, cytoplasmic oxidation sufficient to promote an oxidative

stress response might also be relevant to understanding the insulin

resistance (IR) that often develops in the elderly. Oxidative stress and JNK

are implicated in IR (Salmon, 2012); JNK phosphorylates the insulin

receptor substrate 1 (IRS-1) and attenuates the ability of ligand-bound

insulin receptor to activate IRS-1 (Aguirre et al., 2000). A JNK deletion at

least partly restores insulin sensitivity in a mouse obesity model (Hirosumi

et al., 2002), indicating that this JNK-dependent phosphorylation is

functionally relevant. Given the observation that oxidative stress is

increased during aging (Mendoza-N�u~nez et al., 2011), these results

suggest that age-dependent IR, like the late-stage mitohormetic state,

occurs at least in part when the mitochondrial death spiral-induced

cytoplasmic oxidation progresses sufficiently to activate JNK.

Increased ROS also promotes mitochondrial protection through

activation of the transcription factor Nrf2, which triggers expression of

a number of antioxidant genes (Ristow & Schmeisser, 2014). Increased

expression of antioxidants is expected to attenuate the ROS-mediated

positive feedback (Fig. 3), and the observation that Nrf2 activity shows

dose-dependent effects on lifespan (An et al., 2005) is consistent with

this attenuation. However, Nrf2 activity declines with age (Suh et al.,

2004), which likely occurs at least in part by increased Tor-dependent

inhibition of Nrf2 activity (Robida-Stubbs et al., 2012; Lerner et al.,

2013). Loss of Nrf2 activity with age will thus weaken the ability of Nrf2

to attenuate the positive feedback and might play a part in permitting

the positive feedback shown in Fig. 3 to accelerate during aging.

Role of antioxidants in lifespan

The hypothesis proposed here predicts that antioxidant administration, if

applied before the mitohormetic state develops, should extend lifespan.

However, data on the effects of antioxidant administration have been

difficult to interpret. Although ectopic overexpression of the peroxire-

doxin Prx5 increases lifespan in Drosophila (Radyuk et al., 2009),

indicating that decreasing ROS production can attenuate the mitochon-

drial death spiral as expected, the effects of feeding antioxidants on

lifespan have been inconsistent. Difficulties in enabling antioxidant

access to the cytoplasm might represent one issue, as the effectiveness
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of specific antioxidants can vary depending on the precise method of

antioxidant presentation (Shibamura et al., 2009; in data interpretation

include the difficulty in determining the Desjardins et al., 2016).

Additional difficulties extent to which the antioxidant feeding actually

reduces the cytoplasm. Fluorescent ROS indicators that monitor light

production from the whole organism are problematic as these combine

signal from the various subcellular and extracellular compartments,

including the cytoplasm, mitochondria, peroxisomes, ER, and extracel-

lular space, which all possess different redox states. This complicates

ability to isolate redox changes specific to the cytoplasm. In addition, it is

often difficult to distinguish lifespan effects due to antioxidant properties

from beneficial or toxic effects of the compounds distinct from

antioxidant properties. From these results, I suggest that the ability of

antioxidants to increase lifespan remains an unresolved question.

Future work and limitations and extensions of this
model

Causality has not yet been determined for several proposed events. Thus,

for example, it is not yet known whether the increased oxidation state of

the aging cytoplasm is causal for increased IIS. Further studies will be

needed to address this issue. Second, this analysis deals specifically with

only one mechanism proposed to underlie AP. It is likely that AP is also

driven by other mechanisms. In addition, it is also likely that processes

independent of AP drive aging. Such non-AP aging processes could arise

as a consequence of decreased selective pressure in old age. Finally, the

ROS-IIS positive feedback system described here is likely to advance

aging through processes in addition to loss of mitochondrial ATP

production. For example, the age-dependent activation of Tor and loss

of Foxo described above are predicted to inhibit autophagy in general.

This progressive loss of autophagy, combined with increased ROS and

thus ROS-mediated oxidative damage, might be responsible in part for

the loss of proteostasis that occurs during aging and likely plays a critical

role in the aging process. This loss of proteostasis is manifested by the

accumulation of protein aggregates, inclusion bodies, and other

damaged macromolecules, which are degraded via autophagy (Yao,

2010). The possibility that Tor activation during aging might be partly

responsible for the accumulation of these damaged macromolecules has

led to the suggestion that rapamycin administration might be helpful in

reversing this accumulation. In addition, Foxo plays a critical role in

inducing expression of components of the proteasome as well as

components of the autophagosome (Webb & Brunet, 2014). Thus, loss

of Foxo activity during aging is likely to contribute to loss of proteostasis

through multiple outputs.

You cannot get there from here

The mitochondrial death spiral should not be viewed as an error in cell

physiology. Rather, this death spiral should be viewed as a deliberate,

sensible, in fact necessary, approach by cells to solve the difficult

problem of successfully growing and reproducing in a competitive world

of scarce nutrients. This problem is exacerbated by the fact that cells

have not yet been able to relocate every mitochondrial gene to the

nucleus. This deficit means that the simultaneous demand for both high

ATP production and high mitochondrial quality control becomes

contradictory. The mitochondrial death spiral represents a cellular

attempt to resolve these contradictory demands.

It might seem plausible to dispose of the mitochondrial death spiral

after growth and reproduction are complete. Thus, when very high

levels of ATP production are no longer needed, perhaps an aging cell

could rejuvenate by greatly amplifying the few pristine mitochondria

that might remain and degrading the rest. However, in practice, this

course of action might require as a temporary intermediate a lethal

decline in ATP production. Extrication from a death spiral once

initiated is not easy. If a path from one point to another requires

transit through a lethal state, then this path cannot be taken,

regardless of the attractiveness of the destination (see John Maynard

Keynes’ quote above). Evolution has not found a way to overcome

this drawback. That is not to say that this problem is intractable.

Perhaps this problem could be solved by organisms possibly more

ingenious and certainly more motivated than evolution.
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