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Abstract

Lyme disease (LD) diagnosis using the current two-tier algorithm is constrained by low sen-

sitivity for early-stage infection and ambiguity in determining treatment response. We

recently developed a protein microarray biochip that measures diagnostic serum antibody

targets using grating-coupled fluorescent plasmonics (GC-FP) technology. This strategy

requires microliters of blood serum to enable multiplexed biomarker screening on a compact

surface and generates quantitative results that can be further processed for diagnostic scor-

ing. The GC-FP biochip was used to detect serum antibodies in patients with active and con-

valescent LD, as well as various negative controls. We hypothesized that the quantitative,

high-sensitivity attributes of the GC-FP approach permit: 1) screening of antibody targets

predictive for LD status, and 2) development a diagnostic algorithm that is more sensitive,

specific, and informative than the standard ELISA and Western blot assays. Notably, our

findings led to a diagnostic algorithm that may be more sensitive than the current standard

for detecting early LD, while maintaining 100% specificity. We further show that analysis of

relative antibody levels to predict disease status, such as in acute and convalescent stages

of infection, is possible with a highly sensitive and quantitative platform like GC-FP. The

results from this study add to the urgent conversation regarding better diagnostic strategies

and more effective treatment for patients affected by tick-borne disease.

1. Introduction

Tick-borne infection with Borrelia burgdorferi sensu stricto is the primary cause of Lyme dis-

ease (LD) in the United States, where it was recently predicted to affect ~300,000 new people

annually [1] and imparts an economic burden of potentially $786 million each year [2]. In
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Europe and Asia, various spirochetes in the B. burgdorferi sensu lato group have been shown

to cause LD [3]. The morbid symptoms of late-stage disseminated LD (e.g. joint pain, facial

palsy, extreme fatigue, and heart arrythmia) can generally be avoided with prompt diagnosis

and treatment [4–8]. One clue that a patient has early localized LD is a characteristic targetoid

rash, usually greater than 5 cm in diameter, called erythema migrans (EM). However, EM may

be absent or atypical and non-LD rashes may present similarly [9–11]. Serological diagnosis is

therefore often made using the standard two-tier test (STTT) algorithm, which entails initial

screening for host antibodies against bacterial proteins using the enzyme-linked immunosor-

bent assay (ELISA or EIA), followed by confirmatory Western blotting to identify specific IgG

or IgM against cultured cell lysate [12]. A positive IgM Western blot result (2 out of 3 antibody

targets detected: P24, P39, P41) can be used to diagnose LD cases within 30 days of infection

and a positive IgG Western blot result (5 out of 10 antibody targets detected: P18, P21, P28,

P30, P39, P41, P45, P58, P66, P93) is used in cases of potentially longer infection [13–15].

The STTT has been a useful diagnostic tool since its standardization by the Centers for Dis-

ease Control (CDC) in 1995 [13], but critical limitations have become increasingly apparent

[16, 17]. These include low sensitivity and low specificity for early disease [18, 19], inability to

monitor treatment progress or diagnose re-infection [20], inconsistencies across tests [21–23],

and subjective interpretation of Western blot results [18, 24]. Experts agree that new strategies

for diagnosing LD are necessary to address these concerns, pointing to modified two-tier algo-

rithms using only ELISAs [23, 25–27], as well as novel assays in various stages of development

[28–30]. Indirect serological testing is common because host antibodies against bacterial prod-

ucts are generally more abundant than direct targets, while direct detection of LD remains chal-

lenging [20]. Low titers of IgM and IgG Lyme-specific antibodies are present within the first

few weeks of infection and increase as the disease progresses [14]. Important considerations

when pursuing indirect detection include achieving high analytical sensitivity, as well as being

able to distinguish between treated and active disease. A multiplexed and quantitative strategy

may be particularly useful for screening diagnostic targets (Table 1), understanding the individ-

ualized immune response to LD infection, and capturing the kinetics of this response during

the course of disease and treatment [31]. Here we describe a protein microarray, in the form of

a compact biochip, that can be analyzed with high sensitivity using grating-coupled fluorescence

plasmonics (GC-FP) technology. This strategy uses surface plasmon resonance to enhance the

signal of a fluorescent reporter molecule by 100 times [32, 33] and has been used to quantify a

variety of targets [34–36], including those of the STTT Western blot [37, 38].

In this study, we systematically optimized and validated the GC-FP biochip for detection of

specific serum antibodies in patients with untreated LD, patients treated for LD with antibiot-

ics, and various negative controls using well characterized serum samples [22, 43]. We hypoth-

esized that GC-FP analysis could be used to effectively: 1) screen for antibody targets relevant

to various stages of LD, and 2) allow us to develop a new algorithm for diagnosing disease sta-

tus that is more sensitive, specific, and informative than the STTT. Our efforts involved physical

Table 1. Current and potential targets for LD serodiagnosis.

Diagnostic Markers Comments Ref.

P18, P23 (OspC), P28 (OspD), P30, P39 (BmpA), P41 (FlaB), P45, P58,

P66, P93

Standard 2-tier test Western blot

targets

[15]

VlsE Standard 2-tier ELISA target [39]

ErpG, ErpY, ErpL OspE/F-like proteins [40]

DbpA, DbpB Decorin-binding proteins [41]

BBA65, BBA69, BBA70, BBA73 IgM reactivity in early Lyme disease [42]

https://doi.org/10.1371/journal.pone.0228772.t001
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assay development and characterization (i.e. determining the analytical sensitivity, resilience to

changes in assay conditions, and variation across replicates), as well as generating a method to

analyze the quantitative data (i.e. determining signal detection cut-offs and diagnostic criteria)

to provide meaningful outputs with high diagnostic sensitivity and specificity. We show that the

GC-FP immunoassay is a reliable and versatile platform that can be used to detect femtomoles

of antibodies with only 5 μl of serum. When applied to LD serology, the assay detected IgG and

IgM serum antibodies at various stages of disease, including changes in specific antibody levels

during convalescence. Notably, we were able to screen a novel set of antigens and design a diag-

nostic algorithm that may be more sensitive than the STTT for detecting early LD, while main-

taining 100% specificity. Findings from this work add to the critical discussion regarding

practical replacement of the STTT with a more appropriate test that ultimately promotes better

human health via diagnosis and treatment of tick-borne disease.

2. Methods and materials

2.1 Recombinant antigens and control proteins

Various recombinant B. burgdorferi proteins (BmpA, OspD, OspC, DbpA, DbpB, RevA, ErpG,

ErpL, ErpY, and VlsE) were produced in E. coli as previously described [38]. Purified recombinant

proteins, BBA65, BBA69, BBA70, and BBA73 (gift from Dr. Robert Gilmore), as well as P41 and

P58 (Surmodics IVD Inc.), were also obtained. SDS-PAGE was used to validate the identity of

antigens by the expected molecular weights. Bovine serum albumin (BSA; Sigma-Aldrich) and

human IgG (Sigma-Aldrich) were used as negative and positive spotting controls, respectively.

2.2 Serum samples

The use of human blood serum samples for this study was approved by the SUNY Polytechnic

Institute IRB. Human serum samples were obtained from the Lyme Disease Biobank, Centers

for Disease Control, and from Dr. Susan Wong (NY State Department of Health). All samples

were de-identified and thus analyzed anonymously. Sample collection by the original collec-

tion agencies was performed with written consent. We received patient serum samples accom-

panied with results from two-tier testing, as well as a detailed clinical history. These sera were

derived from patients with early LD (diagnosed by STTT and/or EM rash), disseminated LD,

and convalescent stage LD (76 to 99 days following the first dose of antibiotics). Each conva-

lescent sample was derived from the second blood draw of a patient who also submitted an

early LD sample. Some of the disseminated LD samples may have originated from patients

treated with antibiotics between 1.5 to 157 days prior to serum collection [43]. Negative sera

were also obtained from individuals with no relevant symptoms of disease (non-symptomatic),

as well as those with non-LD conditions that potentially cause look-alike symptoms (multiple

sclerosis or fibromyalgia). All but the convalescent serum samples were used to obtain training

set data for generating ROC curves and setting detection cut-offs (Table 2). Seven additional

Lyme(+) patient serum samples (from Dr. Susan Wong) were pooled and used as a positive

control in preliminary experiments. Lyme(-) control serum (MBL International) was used in

some experiments as a negative control.

2.3 Biochip preparation and microfluidic processing

Microfluidic biochips were prepared and processed with serum samples as described previ-

ously [37] (Fig 1A). Briefly, gold-coated silicon microchips containing a plasmonic diffraction

grating were coated with specified proteins using a robotic spotter (ArrayIt; Spotbot II). The

negative and positive controls were printed first and last, respectively, along with up to 4

Serodiagnosis of Lyme disease using a fluorescent plasmonic biochip assay

PLOS ONE | https://doi.org/10.1371/journal.pone.0228772 February 10, 2020 3 / 20

https://doi.org/10.1371/journal.pone.0228772


replicate spots per antigen. Protein samples were prepared for printing by combining 500 ug/

ml of antigen with spotting buffer (ArrayIt) in a 1:1 ratio. Serum samples were diluted using

0.05% PBST at 1:100 X or as specified. Alexa Fluor 647 anti-human IgG (LifeTechnologies)

and Alexa Fluor 647 anti-human IgM (LifeTechnologies) were diluted at 1:400X with 0.05%

PBST and used as secondary labeling antibodies. Microfluidic processing entailed initial block-

ing with Superblock (ThermoFisher), followed by addition of diluted serum sample and then

secondary antibody, with washes using 0.05% PBST occurring between the latter two steps. In

each step, 500 μl of liquid reagent were moved across the flow chamber of the biochip using a

syringe pump at 50μl/min.

Table 2. Serum samples analyzed in this study. The blood serum of 34 individuals were analyzed, including LD

patients and negative controls. LD-positive samples were reported to be either in the disseminated, early, or conva-

lescent stages of disease depending on clinical history. Early and convalescent serum pairs from three patients are listed

at the bottom of the table. All but the convalescent serum samples were used to train diagnostic algorithms for LD

serodiagnosis.

Sample Disease Stage Serum Source

Biobank #526 Non-symptomatic Lyme Disease Biobank

Biobank #538 Non-symptomatic Lyme Disease Biobank

Biobank #610 Non-symptomatic Lyme Disease Biobank

Biobank #611 Non-symptomatic Lyme Disease Biobank

Biobank #664 Non-symptomatic Lyme Disease Biobank

Biobank #674 Non-symptomatic Lyme Disease Biobank

CDC #A Non-symptomatic CDC

CDC #B Non-symptomatic CDC

CDC #C Fibromyalgia CDC

CDC #D Multiple Sclerosis CDC

CDC #E Fibromyalgia CDC

CDC #F Disseminated LD CDC

CDC #G Disseminated LD CDC

CDC #H Disseminated LD CDC

CDC #I Disseminated LD CDC

Wadsworth #23 Disseminated LD NY Dept of Health

Wadsworth #24 Disseminated LD NY Dept of Health

Wadsworth #29 Disseminated LD NY Dept of Health

Wadsworth #43 Disseminated LD NY Dept of Health

Wadsworth #44 Disseminated LD NY Dept of Health

Wadsworth #64 Early LD NY Dept of Health

Wadsworth #66 Early LD NY Dept of Health

Biobank #585 Early LD Lyme Disease Biobank

Biobank #677 Early LD Lyme Disease Biobank

CDC #J Early LD CDC

CDC #K Early LD CDC

CDC #L Early LD CDC

CDC #M Early LD CDC

Biobank #640 Early LD Lyme Disease Biobank

Biobank #681 Convalescent LD Lyme Disease Biobank

Biobank #663 Early LD Lyme Disease Biobank

Biobank #682 Convalescent LD Lyme Disease Biobank

Biobank #673 Early LD Lyme Disease Biobank

Biobank #688 Convalescent LD Lyme Disease Biobank

https://doi.org/10.1371/journal.pone.0228772.t002
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2.4 GC-FP image analysis

GC-FP analysis in this study was performed as described previously [37], using a grating-cou-

pled surface plasmon resonance instrument developed by Ciencia, Inc (Fig 1B). The plasmon-

enhanced fluorescence signal was measured at 15 seconds exposure time, although other expo-

sure times were used in the event of oversaturation or overall low signal. Validation experi-

ments were conducted using a biochip imaged at 2, 3, 9, and 15 seconds to determine

differences in GC-FP signal. A representative GC-FP image of a biochip containing various

LD targets is shown in Fig 1C. Protein Array Analyzer for ImageJ [44] was used to set regions

of interest (ROIs) and obtain their intensity values. The ROIs for both antigen-coated areas

and uncoated background areas were uniformly scaled to accommodate the size of the printed

spot. The GC-FP signal (in arbitrary units) was determined by first subtracting the mean back-

ground signal composed of ROIs where no protein was deposited on the biochip surface, and

then dividing by the mean negative control spot signal consisting of ROIs where BSA was

printed onto the biochip. If the average background signal was higher than an antigen ROI sig-

nal, causing a negative value after background subtraction, the lowest intensity ROI signal

across the surface of the chip was subtracted instead.

2.5 Characterizing the sensitivity, flexibility, and reliability of the GC-FP

platform

To determine the linear range and analytical sensitivity of the GC-FP platform, a biochip was

printed with three replicate spots of human IgG at each concentration: (0.306, 0.638, 1.275,

Fig 1. The GC-FP platform and its linear range of IgG antibody detection. (A) After being coated with antigens, a GC-FP biochip is assembled with

a gasket and window to form a microfluidic chamber, where serum samples and other reagents can be applied. (B) GC-FP analysis on the gold-coated

biochip involves using a fluorophore-labelled secondary antibody that couples with the surface plasmon field to emit enhanced fluorescent signal. (C)

A representative GC-FP image is shown, containing various LD targets. The fluorescence intensity at each spot ROI corresponds to the amount of

detected antibody.

https://doi.org/10.1371/journal.pone.0228772.g001
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and 1.785 ng/spot). The biochip was labelled with fluorescent secondary antibody and the

average signal intensity for each IgG concentration was determined. The limit of detection and

optimal serum dilution was identified by diluting Lyme(+) control serum into three separate

samples at 1:1000 X, 1:100 X, and 1:50 X. Samples were flowed from lowest concentration to

highest concentration across a biochip containing 16 different B. burgdorferi antigens: BBA65,

BBA69, BBA70, BBA73, BmpA, DbpA, DbpB, ErpG, ErpL, ErpY, OspC, P41, P45, P58, RevA,

and VlsE. After each serum sample, fluorescent secondary antibody was added and the mean

GC-FP signal for each antigen was measured.

To determine inter-chip variability, three identical biochips were processed with aliquots

from the same patient serum (CDC #H serum sample) to measure specific IgG antibodies with

affinity to the 16 antigens. The serum sample was diluted 1:100 X and applied in the microflui-

dic processing step to obtain GC-FP data for each replicate biochip. A separate negative con-

trol biochip was also processed, which contained the same printed antigens, but used the Lyme

(-) control sera in the microfluidic processing step. The signal intensities of each biochip were

compared to that of the negative control.

2.6 Detection of Lyme disease antibodies in patient serum

The GC-FP immunoassay was used to evaluate serum from a patient with early LD (based on

clinical symptoms) but a false negative STTT result (CDC #M serum sample). A biochip con-

taining the 16 previously mentioned antigens was processed with this sample and then labelled

with fluorescent anti-IgG and anti-IgM secondary antibodies, respectively. A GC-FP image

was obtained and analyzed following the addition of each secondary antibody. Thirty-four

(34) patient serum samples were processed on biochips printed with 17 antigens (16 men-

tioned above, along with OspD). These samples underwent labeling with fluorescent anti-IgG

only. Acute and convalescent LD serum samples were processed separately in the biochips, but

analyzed in pairs, since they originate from two blood draws of each patient. The workflow

from printing, to processing, to imaging the biochip is summarized in Fig 2. The binding

schemes for detection of IgG only or both IgG and IgM during the microfluidic processing

step is also shown.

2.7 Constructing a novel diagnostic algorithm

Receiver operating characteristic (ROC) analysis for each antigen was conducted in the ROCR

package [45] for R v.3.5.2 (https://www.r-project.org/) using the training set data. Optimal sig-

nal cut-offs that maximized sensitivity and specificity were determined for each antigen and

only antigens with AUC values� 0.70 were included in the final diagnostic test. The sensitivity

and specificity of every combination of N antigens was evaluated, requiring X (where X = 1 to

N) number of antigens to be positive for a sample to be diagnosed as LD. For example, the sen-

sitivity/specificity of every combination of three antigens (N = 3) was evaluated where an LD

diagnosis was assigned if X = 1, 2, or 3 antigens were positive. This was performed for up to

seven antigens, where it was apparent no increases in sensitivity were gained. Combinations of

antigens and scoring criteria (diagnostic algorithms) that yielded the highest sensitivity and

specificity were included in the final diagnostic test, where samples that satisfy one or more of

these diagnostic algorithms were scored positive for LD.

2.8 Statistical analysis

Two-way ANOVA and Fisher’s LSD post-hoc analyses were conducted using Prism 6.0

(GraphPad Software). A p-value< 0.05 was considered significant.
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3. Results

3.1 Quantitative analysis of antibody targets

We characterized the quantitative performance of GC-FP for detection of antibodies on gold-

coated biochips by determining the linear range of fluorescent signal. The GC-FP signal for

each IgG concentration is plotted (Fig 3A). Linear regression analysis of the curve yielded an

R2 value of 0.96. Qualitatively, the fluorescent spots were visible at IgG concentrations above

1.275 ng/spot (Fig 3B). Taking into account the reported deposition volume of the microarray

pin (5.1 nl), the spot size (0.2 mm radius), and the molecular weight of IgG (150 kg/mol), we

estimate that the GC-FP platform may achieve an analytical sensitivity of 8.5 fmol of IgG per

0.13 mm2 spot in a direct antigen-antibody binding context.

We further processed a biochip with increasing concentrations of LD positive control

serum. The highest signals were achieved at 1:100 X serum dilution, where 9 out of 16 targets

had a GC-FP signal above 10 (S1 Fig). At 1:50 X serum dilution, the GC-FP signal decreased or

plateaued.

Fig 2. Summary of the experimental workflow for detecting LD-relevant serum antibodies. After printing a biochip with antigen spots in the grating area, the

biochip is assembled to form a microfluidic chamber. Various reagents are flowed through the biochip during the microfluidic step, in which serum samples are flowed

through the biochip. For detection of serum IgG only, a fluorophore-labelled anti-IgG is applied to the chip after the serum sample. For detection of the combined signal

of IgG and IgM (secreted in the serum as a pentamer) against each target, fluorophore-labelled anti-IgM is added after the anti-IgG.

https://doi.org/10.1371/journal.pone.0228772.g002
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3.2 Chip stability: Effects of spot size, exposure time, and replicate processing

We investigated the effects of spot size and exposure time on GC-FP results. The signal gener-

ated by spots with 400 um diameter were not significantly different from spots with 200 um

diameter (t-test; not shown). Moreover, the GC-FP signal of IgG-containing spots at four dif-

ferent exposures times (2, 3, 9, and 15 seconds) were not significantly different from each

other (1-way ANOVA; not shown).

The GC-FP signals of three replicate chips were compared with negative control signals

(Fig 4). The same ten IgG targets: DbpA, P58, RevA, BmpA, P41, ErpL, BBA69, VlsE, DbpB,

and ErpY were found to be significantly higher than that of the negative control for all repli-

cates, although there was inter-chip variation in the mean GC-FP signal intensities.

3.3 Detection of low antibody titers in early Lyme disease

GC-FP analysis was used to analyze IgG and IgM antibody binding to B. burgdorferi antigens

in a patient with early LD. The patient sample scored negative by the STTT diagnostic algo-

rithm (negative EIA result; P41 and P23 detected on the IgM Western blot; P41 and P66

detected on the IgG Western blot). Serum reactivity to each antigen following exposure to

fluorescent anti-IgG and anti-IgM secondary antibodies on the biochip is plotted and com-

pared with the results from a negative control sample (Fig 5). After the addition of anti-IgG

secondary antibody, 2 out of 16 targets were detected with significantly higher signal than the

negative control: BBA65, BBA69. Additional application of anti-IgM secondary antibody led

to amplified signal for those two targets, as well as detection of 8 more targets: P58, BmpA,

P41, ErpL, VlsE, ErpY, BBA70, and BBA73, or a total of 10 out of 16 detected targets.

Fig 3. The GC-FP platform and its linear range of IgG antibody detection. (A) A GC-FP biochip coated with various amounts of IgG (0.306, 0.638, 1.275, and 1.785

ng/spot) was analyzed. The mean GC-FP signal ± Standard Deviation for each IgG concentration is plotted. Linear regression analysis of the plotted curve yields an R2

value of 0.96. (B) The GC-FP image of spots from lowest to highest IgG concentration (1–4) is shown along with the negative control spots containing 1.275 ng/spot BSA

(5). Qualitatively, IgG at 1.275 ng/spot and above is clearly visible above background signal.

https://doi.org/10.1371/journal.pone.0228772.g003
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3.4 Developing a GC-FP diagnostic algorithm

The GC-FP data from patient serum samples were used to generate ROC curves for 17 diag-

nostic targets: BBA65, BBA69, BBA70, BBA73, BmpA, DbpA, DbpB, ErpG, ErpL, ErpY, OspC,

OspD, P41, P45, P58, RevA, and VlsE (S2 Fig). Targets that yielded an area under the curve

(AUC)� 0.70 included BBA69, BBA70, BmpA, DbpA, DbpB, ErpL, OspC, OspD, P41, P58,

and VlsE. We achieved a peak sensitivity of 90% and specificity of 100% with several diagnostic

algorithms that scored positive with 2 out of 3, 2 out of 4, and 2 out of 5 targets (Table 3).

We compared the results of our GC-FP diagnostic test to the STTT and IgG Western blot results

(Table 4). Two recurring false negative samples (CDC #M and #K) led to 90% (18/20 samples)

instead of 100% sensitivity for our diagnostic algorithms. Both samples were derived from patients

with early LD who also had a negative STTT result. Of the serum samples tested here, the STTT

Fig 4. Inter-chip variation in GC-FP signal. The mean GC-FP signals ± Standard Error of the Mean is shown for three replicate biochips. The

corresponding signals from a biochip processed with negative control serum is also shown (red dot). Black bars indicate where replicate biochips

demonstrated significant difference from the negative control, and asterisks indicates a GC-FP signal significantly different from the negative control

(����, p<0.0001; ���, p<0.001; ��, p<0.01; �, p<0.05; 2-way ANOVA followed by Fisher’s LSD test for multiple comparisons).

https://doi.org/10.1371/journal.pone.0228772.g004

Fig 5. Detection of specific IgG and IgM antibodies in early LD. GC-FP was used to evaluate serum from a patient with

early LD but a false-negative result based on the STTT. The mean GC-FP signal ± Standard Error of the Mean for IgG

detection and additional IgM detection is plotted for 16 antigen targets. IgG against 2 out of 16 targets were detected with

significantly higher signal than the negative control: BBA65, BBA69. Additional detection of IgM antibodies led to

amplified signal for those two targets and 8 more targets: P58, BmpA, P41, ErpL, VlsE, ErpY, BBA70, and BBA73, or a

total of 10 out of 16 detected targets (����, p<0.0001; ���, p<0.001; ��, p<0.01; �, p<0.05; 2-way ANOVA followed by

Fisher’s LSD test for multiple comparisons).

https://doi.org/10.1371/journal.pone.0228772.g005
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achieved a sensitivity of 60% (12/20 samples) and specificity of 100%. The sensitivity dropped to

55% (11/20 samples) when only the IgG (not IgM) Western blot was used as the second-tier test.

3.5 Changes in serum profile after Lyme disease treatment

GC-FP signal was measured for acute and convalescent LD serum pairs to evaluate changes in

specific IgG antibody profile following a standard course of antibiotic treatment. Significant dif-

ferences between the acute and convalescent groups for each target analyzed are also reported

on S1 Table. A high GC-FP signal for targets of the acute sera was frequently paired with a

much lower signal for the corresponding convalescent sera (Fig 6). We calculated at least a

5-fold change in GC-FP signal for seven targets in the Biobank #640/681 patient samples

(DbpA, OspD, RevA, BmpA, OspC, ErpG, and DbpB), six targets in the Biobank #663/688

group (OspD, BBA73, BmpA, BBA65, BBA69, BBA70), and eleven targets in the Biobank #673/

682 group (DbpA, OspD, RevA, BmpA, FlaB, VlsE, OspC, ErpG, DbpB, P58, and BBA70).

4. Discussion

4.1 Quantitative analysis using the GC-FP biochip is highly sensitive and

can determine relative levels of IgG serum antibodies

We implemented a direct binding scheme to investigate the analytical sensitivity and linear

range of the GC-FP platform for detecting IgG. This strategy measures on-chip antibody-anti-

gen interactions, as well as the sensitivity of plasmonic fluorescence using minimal assay

Table 3. Optimal diagnostic algorithms using combinations of highly predictive antigen targets. Combinations of

3, 4, or 5 targets, in which detection of at least 2 targets scores positive for the infection, have been found to identify

Lyme(+) and Lyme(-) samples with high sensitivity and specificity. The diagnostic algorithms with the highest com-

bined sensitivity and specificity values are listed.

Criteria for Positive Diagnostic Score

� 2 of 3 Targets

Detected

� 2 of 4 Targets

Detected

� 2 of 5 Targets Detected

Sensitivity of Diagnostic

Algorithm(s):

90% 90% 90%

Specificity of Diagnostic

Algorithm(s):

100%% 100% 100%

BmpA,DbpB,VlsE BmpA,DbpB,OspD,

VlsE

DbpA,DbpB,ErpL,OspD,

VlsE

DbpA,DbpB,VlsE DbpB,ErpL,OspD,VlsE BmpA,DbpB,ErpL,OspD,

VlsE

DbpA,DbpB,P41,VlsE DbpA,DbpB,ErpL,P41,

VlsE

Groups of Targets with BmpA,DbpB,ErpL,VlsE DbpA,DbpB,ErpL,OspC,

VlsE

Maximum Sensitivity &

Specificity

DbpA,DbpB,OspC,

VlsE

BmpA,DbpB,ErpL,P41,

VlsE

DbpB,ErpL,OspC,VlsE BmpA,DbpB,ErpL,OspC,

VlsE

DbpA,DbpB,OspD,

VlsE

BmpA,DbpB,P41,VlsE

DbpB,ErpL,P41,VlsE

BmpA,DbpB,OspC,

VlsE

DbpA,DbpB,ErpL,VlsE

https://doi.org/10.1371/journal.pone.0228772.t003
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components. We were able to detect femtomoles of target, which is comparable to the dot-ELISA

[46]. A lower analytical sensitivity may be feasible by optimizing the antigen-biochip linkage

method to maintain antigen conformation and optimal antibody-antigen interactions [47].

Further application of the GC-FP biochip for multiplexed serum antibody detection

involves measuring how each antigen interacts with individual immune responses, which hetero-

geneously produce antibodies that bind various epitopes on B. burgdorferi proteins during infec-

tion [48, 49]. Generating a standard curve for absolute antibody quantitation is difficult for a

large set of targets and may not provide a satisfactory estimate of an individual’s polyclonal anti-

body profile. Since the diagnostic relevance of the GC-FP immunoassay is to detect antibody lev-

els within a clinical range, we determined the limit of detection by testing various dilutions of

positive control serum. By doing so, we evaluated the ability of GC-FP to distinguish between rel-

ative concentrations of specific antibodies and determined the minimum serum concentration

needed to obtain information about disease status. The findings suggest that a serum dilution of

1:100 X generates the optimal GC-FP signal, where further increases in serum concentration

yields marginal improvement and even diminishing returns due to increased background signal.

Thus, a major advantage of the GC-FP platform is that we can obtain information about LD sta-

tus with a small amount of serum (e.g. 5 μl serum needed to generate a 500 μl sample).

4.2 The GC-FP immunoassay is resilient to changes in experimental

parameters and provides consistent diagnostic results

Practical use of the GC-FP biochip in the clinic depends on system stability, including its resil-

ience to changes in ROI spot size and image exposure. Flexibility in these parameters over the

Table 4. Comparison of GC-FP biochip with STTT results. GC-FP results based on our diagnostic test were compared with STTT results and the standard IgG Western

blot results. The total number of serum samples in each group and subgroup is also reported.

Serum Sample Lyme Status STTT IgG

WB

GC-FP

CDC #F, CDC #G, CDC #H, CDC #I, Wadsworth #23, Wadsworth #24, Wadsworth #29, Wadsworth #43, Wadsworth #44,

Biobank #640, Biobank #673

+ + + +

(11)

Biobank #677 + + - +

(1)

– + + - -

(0)

CDC #K, CDC #M + - - -

(2)

Wadsworth #64, Wadsworth #66, Biobank #585, CDC #J, CDC #L, Biobank #663 + - - +

(6)

Biobank #681 Convalescent + + -

(1)

Biobank #682 Convalescent - - +

(1)

Biobank #688 Convalescent - - -

(1)

Biobank #526, Biobank #538, Biobank #610, Biobank #611, Biobank #664, Biobank #674, CDC #A, CDC #B, CDC #C, CDC

#D, CDC #E

- - - -

(11)

Total Samples: 34 [Lyme (+): 20 / Lyme (-): 11 ]

https://doi.org/10.1371/journal.pone.0228772.t004
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Fig 6. IgG serum profile following antibiotic treatment. The mean GC-FP signals ± Standard Error of the Mean for 16 antigens are shown for three acute

and convalescent serum pairs. The ROC cut-offs (red lines) provide a reference to determine whether a measured antibody binding response may be

considered “positive” for each serum sample. The fold change between acute and convalescent samples are also shown for each serum pair (bottom panel).

https://doi.org/10.1371/journal.pone.0228772.g006
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course of assay development would allow for a variety of targets and the ability to scale up the

number of targets if ROIs are placed in smaller areas and closer together. It is also important

to validate the consistency of GC-FP assay results and determine how many replicate chips are

required for a reliable result. For three replicate biochips, the identities of targets that gener-

ated detectable GC-FP signal (relative to the control) were consistent, although the magnitude

of signals varied for individual antigens across replicate chips. Inter-chip variation introduces

noise into the data that affects subtle comparisons between signal intensities and may be cor-

rected with optimized assay conditions. For comparisons where the difference in antibody lev-

els is prominent, however, inter-chip variation may be inconsequential. For example, if the

final diagnostic result is consistent, one replicate should be sufficient for LD diagnosis.

Some causes for variability may include image processing techniques and protein quality.

The GC-FP signal is determined by subtraction of average background signal followed by nor-

malization against the average signal of negative control spots (BSA protein). These steps are

thought to account for more drastic differences in overall chip intensity across independent

experimental runs, but minor differences across chips may remain and contribute to variation.

Inter-chip variability may be further decreased with rigorous control of reagent concentration

and quality [50].

4.3 GC-FP analysis may have better diagnostic sensitivity than the STTT

for early Lyme disease by detecting both IgG and IgM antibodies and

incorporating novel disease targets

The ability to detect early LD is a high priority to prevent symptoms of late-stage disease and

ultimately promote better outcomes [51]. Since B. burgdorferi antigens have been shown to be

highly polymorphic [48, 52, 53], LD diagnosis can benefit from multiplexed detection of many

different targets to increase sensitivity without losing specificity. Additionally, IgM-based

detection of some targets has demonstrated high sensitivity for early LD. These include targets

used in the IgM Western blot (OspC, BmpA, P41) [14] and other novel targets (BBA65,

BBA69, BBA70, BBA73) [42]. In a patient with early LD and negative STTT result, the GC-FP

biochip detected IgG against BBA65 and BBA69, which agrees with a previous study that

detected IgM antibodies against these two proteins [42]. The addition of anti-IgM reporter

antibody onto the same biochip increased the signal of these targets and led to detection of 8

other targets. These findings suggest potential value in combining IgG and IgM detection for

early LD cases. One caveat to sequential detection of multiple isotypes is cross-reactivity of

anti-IgM reporter antibody with IgG from patient serum or the anti-IgG reporter antibody.

Alternatively, separate biochips can be processed with serum samples blocked to prevent iso-

type cross-reactivity. Another consideration for including IgM-based detection is the penta-

mer structure of secreted IgM, which is prone to non-specific interactions and cross-reactivity

with extraneous antigens [24]. Hence, IgG-based detection is the preferred strategy for diag-

nosing LD with high specificity and accuracy. We anticipate that GC-FP detection of IgG

against targets that have demonstrated diagnostic potential for early LD, such as OspC and

OspF [54, 55], as well as the IR6 portion of VlsE [56, 57], may be useful to include in a multi-

plexed assay for sensitive and specific diagnosis.

4.4 Analysis of GC-FP data can be used to screen for diagnostic targets and

lead to new algorithms for determining disease status

In this study, we developed a method to systematically screen biomarkers and determine the

most predictive combinations of antigens for use in diagnostic scoring. ROC analysis to estab-

lish detection cut-offs was favored over comparing signals for each antigen to that of a pooled
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negative control serum. This is because serum reactivity (and cross-reactivity) to LD antigens

varied greatly between individuals. Pooled serum controls do not represent any single individ-

ual and may underestimate cross-reactivity to some antigens, causing low assay specificity.

Moreover, using a negative control reference sample involves statistical analysis with multiple

comparisons for each antigen of each sample, which can be cumbersome with increasing sam-

ple size.

While testing various combinations of targets, we found that the sensitivity and specificity

peaked at 90% and 100%, respectively. This was achieved for diagnostic algorithms that score

positive for at least 2 out of 3, 4, or 5 antigens. Sensitivity plateaued and specificity decreased

to 91% with combinations of 6 or 7 antigens. Thus, we did not try additional combinations of

more than 7 targets. Interestingly, several different combinations of 3, 4, or 5 antigens yielded

optimal results. Some antigens were also found in almost all the different optimal combina-

tions (e.g. DbpB and VlsE), which suggests high independent predictability for LD. Additional

antigens in the diagnostic algorithm increase sensitivity without decreasing the specificity.

A minimal diagnostic algorithm can decrease economic barriers to scaling up assay produc-

tion or afford space for detecting additional biomarkers relevant to non-Lyme diseases. How-

ever, our analysis of sensitivity and specificity was based on a limited set of serum samples that

also constitute the training set. Further analysis using a validation set of samples may allow us

to down select from the current set of diagnostic algorithms and determine the minimum

number of targets necessary. In this study, samples that satisfied any of the optimal diagnostic

algorithms were scored positive for LD. Although multiple algorithms were included in the

final diagnostic test, the digital nature of quantitative GC-FP data allowed us to perform the

scoring step quickly and generate a definitive output. A similar multi-step strategy could be

used to predict disease status in subgroups of patients, where a different set of targets is rele-

vant to each manifestation of disease (e.g. early, late, and convalescent LD, Lyme arthritis,

neuroborreliosis).

4.5 The potential use of distinguishing between acute and convalescent

serum samples in understanding treatment prognosis

Several lines of evidence have pointed to the undulatory nature of serum antibody levels over

the course of LD and during treatment [58–61], as well as potentially in post-treatment disease

[60, 62–64]. Animal studies have also been used to identify various markers, such as OspA,

OspC, OspF, and C6 peptide, that are associated with disease stage and treatment [54, 65]. It

should be noted that the presence of antibodies does not equate to active B. burgdorferi infec-

tion [64], although the antibody profile following treatment has been correlated with symp-

toms like neuroborreliosis [58] and Lyme arthritis [60]. LD-specific antibody titer generally

decreased after treatment and symptom resolution, but for some patients, they remained at

levels that were detectable on the Western blot [62, 66]. One study that used automated immu-

noblotting and software-assisted band analysis identified antibody targets (P28, P30, P31, P34)

that were less frequently observed in treated patients without LD symptoms than in treated

patients who report persistent LD symptoms [62]. Antibodies against C6 antigen have also

been found to decline in patients following treatment for early LD and resolution of symptoms

[59]. Thus, changes in the patterns of serum reactivity to antigens may be informative in

understanding the disease course and prognosis.

In this study, several targets demonstrated at least a 5-fold decrease in specific IgG titer lev-

els 76 to 99 days following treatment, which mirrors the pattern in acute and convalescent sera

of patients treated for acute syphilis [67]. As the standard course of antibiotics for LD usually

lasts 10 to 21 days [68], the time frame between the acute and convalescent serum samples in
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this study may be large enough to capture disease resolution. In contrast to this, a pattern of

increased serum antibodies in the convalescent samples has also been previously shown, which

seems to occur when the patient is in the process of mounting a peak immune response to the

bacteria [43]. Patients that have been treated during the earliest stages of LD may also never

reach a detectable IgG response to the infection [69]. Thus, detailed documentation of the clin-

ical history from tick bite, to symptoms, and to treatment and beyond for each sample is par-

ticularly important to extract prognostic information from serum antibody profiles and

ultimately benefit the effort to effectively address incomplete treatment, re-infection, post-

treatment symptoms.

4.6 Conclusions

Recent advances in sensitive molecular detection and high throughput screening of diagnostic

targets have brought new hope for improvements in LD diagnostic testing, which has been lim-

ited by low sensitivity for early disease and inability to distinguish active versus past infection.

The GC-FP immunoassay improves upon current diagnostic methods by affording a larger set

of definitive recombinant protein probes with experimental replicates. Thus, we were able to

screen for various biomarker targets and generate a diagnostic test that may be more sensitive

than the current standard. Moreover, we were able to observe serum profile changes in patients

that have been recently treated for Lyme disease. The strategy may eventually enable accurate

predictions of disease prognosis in addition to sensitive and specific diagnosis.

Supporting information

S1 Fig. Limit of detection for specific LD serum antibodies. Increasing concentrations of a

pooled LD positive control serum (1:1000 X, 1:100 X, and 1:50 X dilutions) were flowed across

a biochip spotted with 16 different antigens. The mean normalized GC-FP signal binding of

IgG to each antigen is plotted. The highest signals were observed at 1:100 X serum dilution, in

which 8 out of 16 targets had signal above 10 (arbitrary units).

(TIF)

S2 Fig. ROC curves of LD diagnostic targets. Data from 20 LD-positive and 11 negative con-

trol serum samples were included in a training set to generate ROC curves evaluating the inde-

pendent predictive abilities of 17 potential diagnostic targets: DbpA, P58, RevA, BBA65,

BmpA, P41, ErpL, BBA69, VlsE, DbpB, ErpY, BBA70, OspC, P45, ErpG, BBA73, and OspD.

(TIF)

S1 Table. Significant differences in IgG reactivity following treatment for acute LD. Acute

and convalescent paired samples from the Lyme Disease Biobank was used to evaluate serum

profile changes in patients treated for LD. GC-FP analysis was used to compare specific IgG

antibody levels for 16 antigens. Significant differences between the acute and convalescent

serum pairs for each target are reported (����, p<0.0001; ���, p<0.001; ��, p<0.01; �, p<0.05;

ns, not significant; 2-way ANOVA followed by Fisher’s LSD test for multiple comparisons).

(XLSX)
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