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Simple Summary: Chemotherapy, radiotherapy and surgery are the primary therapies for cancer.
Even with these current treatment modalities, the death rate for many cancers is still high. Thus, there
is still an urgent need for new therapeutic approaches which are safer and more effective. Cancer
biomarker targeting is a promising strategy for cancer treatment. Cancer cells are distinguished from
normal cells by their unregulated differentiation and over or under-expression of certain biomarkers
or alteration of genetic material. In this review, we discuss phosphatidylserine biomarker-targeted
therapy and imaging modalities in pre-clinical and clinical studies. We also appraise chemotherapy,
radiotherapy and electric field-enhanced biomarker-driven therapeutic approaches.

Abstract: Cancer is among the leading causes of death worldwide. In recent years, many cancer-
associated biomarkers have been identified that are used for cancer diagnosis, prognosis, screening,
and early detection, as well as for predicting and monitoring carcinogenesis and therapeutic effec-
tiveness. Phosphatidylserine (PS) is a negatively charged phospholipid which is predominantly
located in the inner leaflet of the cell membrane. In many cancer cells, PS externalizes to the outer
cell membrane, a process regulated by calcium-dependent flippases and scramblases. Saposin C
coupled with dioleoylphosphatidylserine (SapC-DOPS) nanovesicle (BXQ-350) and bavituximab,
(Tarvacin, human–mouse chimeric monoclonal antibodies) are cell surface PS-targeting drugs being
tested in clinical trial for treating a variety of cancers. Additionally, a number of other PS-selective
agents have been used to trigger cytotoxicity in tumor-associated endothelial cells or cancer cells
in pre-clinical studies. Recent studies have demonstrated that upregulation of surface PS exposure
by chemodrugs, radiation, and external electric fields can be used as a novel approach to sensitize
cancer cells to PS-targeting anticancer drugs. The objectives of this review are to provide an overview
of a unique dual-role of PS as a biomarker/target for cancer imaging and therapy, and to discuss
PS-based anticancer strategies that are currently under active development.

Keywords: cancer biomarkers; phosphatidylserine; saposin C; dioleoylphosphatidylserine;
SapC-DOPS; electric field; cancer imaging; enhanced cancer therapy

1. Introduction: Biomarkers in Cancer Imaging and Therapy

Cancer is expected to rank as the leading cause of death worldwide in the 21st cen-
tury [1]. Cancer can affect anyone regardless of sex, age or social status. In 2020, there
were an estimated 1.8 million new cancer cases diagnosed and 606,520 cancer deaths [2]. In
addition to the pain and suffering it causes, cancer can substantially diminish the patient’s
ability to maintain a normal lifestyle, often requiring prolonged periods of hospitalization
and informal care. These demands increase social and financial pressures on governments,
institutions and families.
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Chemotherapy, radiotherapy and surgery are the primary therapeutics in the cancer
clinic. Over the last decade, with a better understanding of the role of the immune system
in cancer development and progression, immunotherapy has become a promising addition
to the arsenal of cancer treatments [3–5]. Even with these current treatment modalities,
the death rate for cancer remains high. Thus, there is an urgent need for new therapeutic
approaches that result in better patient survival with fewer toxic side effects.

Imaging has an important role in personalized cancer medicine and is performed
widely for the detection and characterization of cancer, such as evaluating the stage of
the tumor, detecting disease recurrence, monitoring therapy progression, or post-therapy
surveillance [6–8].

According to the National Cancer Institute (USA), a biomarker is “a biological molecule
found in tissues or in the body fluids that sign for normal or abnormal process” [9]. Cancer
biomarker-targeting strategies show considerable promise for cancer treatment. While
conventional cancer treatments elicit significant off-target effects on normal, healthy cells,
drugs directed against biomarkers can specifically home in on cancer cells with fewer
off-target effects [10]. Cancer biomarkers are also important molecular signatures of the cell
phenotype that help in detection of cancer, even at an early stage. The biomarkers can be
proteins (EGFR [11] and HER2 [12]), nucleic acids (miR-2 [13], miR-155 [14], BRCA1 [15],
DAPK1 [16], and MGMT [17]), lipids (phosphatidylserine (PS) [18]), glycoproteins (α-
fetoketoprotein [11] and CA125 [11]) or carbohydrates (CA19-9 [11]).

This review specifically focuses on PS and its unique dual role as a diagnostic tool
(e.g., a cancer biomarker) and as a cancer therapeutic target. PS has shown promise for the
development of non-invasive imaging technologies to support diagnoses and evaluation of
treatment efficacy for cancer [19], inflammatory [20,21] and cardiovascular disease [22,23].
Owing to its biological flexibility, PS is generally superior to other membrane lipids for
imaging and therapeutic endeavors.

2. PS: Cellular Distribution and Roles

While only 3–10% of all cellular lipids [24], PS is found in both prokaryotic and eu-
karyotic cells and plays crucial roles in a variety of cellular activities including presynaptic
neurotransmitter release, post-synaptic receptor activity, mitochondrial membrane integrity
and stimulation of protein kinase C in memory generation [25–27]. Normal cells exhibit
most of their PS on the cytosolic side of the cell membrane (Figure 1). PS transfer between in-
ner and outer cell membranes is regulated by a group of ATPases, and amino phospholipid
translocases (flippases) [28]. Exposure of PS is classically known as a marker of apoptotic
cells, where PS acts as a “eat me” signal for PS receptors on immune cells and leads to
clearance of the cells by macrophages [29]. PS also plays a role in immune modulation. It
is known that PS exposure on cancer cells also leads to immunosuppression in the tumor
microenvironment, where it increases the activity of natural killer and dendritic cells and
shifts the polarization of tumor-associated macrophages (TAMs) into anti-inflammatory
(M2) macrophages [30,31].
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Figure 1. Schematic representation of phosphatidylserine (PS) and its distribution on normal and 
cancer cells. 
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leading to the surface exposure of PS on cell membranes [18,32] (Figure 1). The extent of 
PS exposure on the outer cell membrane differs significantly between different types of 
cancer cells. Interestingly, this variability is seen even within the same cancer type. For 
instance, while one subset of cells in a cell line demonstrates limited surface PS exposure, 
another subset of cells from the same cell line exposes high PS on cell membranes [18]. 
Cancer cells with low surface PS appear to be more sensitive to irradiation and chemo-
therapies such as gemcitabine (Gemzar)/nab-paclitaxel (Abraxane) [33,34]. On the other 
hand, cancer cells with higher surface PS are more sensitive to PS-targeting anticancer 
treatments, including saposin C embedded in a dioleoylphosphatidylserine nanovesicle 
(SapC-DOPS) [33–35]. PS is also a driver of cancer metastasis and immune escape [29]. 
Moreover, there is a positive correlation between surface PS exposure of tumors and their 
malignancy [36]. Therefore, the level of surface PS exposure on cancer cells may be im-
portant for diagnostic differentiation between different stages of the cancer and/or the 
susceptibility of the cancer to various treatments. 

Monitoring cell surface PS is a compelling approach to quantitatively assess tumor 
growth and progression because the standard cancer treatments, including chemotherapy 
and radiotherapy, can increase surface PS on endothelial and stromal cells in the tumor. 
Successful PS-targeted cancer cell imaging has been demonstrated by using different car-
riers [37,38]. Antibodies that specifically target PS, such as bavituximab and PGN635 (fully 
human PS-specific monoclonal antibody) and PS-binding annexins have been used in pre-
clinical studies as imaging agents, as summarized in Table 1. 

  

Figure 1. Schematic representation of phosphatidylserine (PS) and its distribution on normal and
cancer cells.

3. PS as a Cancer Biomarker
3.1. Heterogeneity in Surface PS Exposure on Membranes May Indicate a Susceptibility of Cancer
Cells to Cancer Treatments at Different Stages

In contrast to the normal cells, cancer cells are unable to preserve PS asymmetry,
leading to the surface exposure of PS on cell membranes [18,32] (Figure 1). The extent of PS
exposure on the outer cell membrane differs significantly between different types of cancer
cells. Interestingly, this variability is seen even within the same cancer type. For instance,
while one subset of cells in a cell line demonstrates limited surface PS exposure, another
subset of cells from the same cell line exposes high PS on cell membranes [18]. Cancer cells
with low surface PS appear to be more sensitive to irradiation and chemotherapies such as
gemcitabine (Gemzar)/nab-paclitaxel (Abraxane) [33,34]. On the other hand, cancer cells
with higher surface PS are more sensitive to PS-targeting anticancer treatments, including
saposin C embedded in a dioleoylphosphatidylserine nanovesicle (SapC-DOPS) [33–35].
PS is also a driver of cancer metastasis and immune escape [29]. Moreover, there is a
positive correlation between surface PS exposure of tumors and their malignancy [36].
Therefore, the level of surface PS exposure on cancer cells may be important for diagnostic
differentiation between different stages of the cancer and/or the susceptibility of the cancer
to various treatments.

Monitoring cell surface PS is a compelling approach to quantitatively assess tumor
growth and progression because the standard cancer treatments, including chemotherapy
and radiotherapy, can increase surface PS on endothelial and stromal cells in the tumor.
Successful PS-targeted cancer cell imaging has been demonstrated by using different
carriers [37,38]. Antibodies that specifically target PS, such as bavituximab and PGN635
(fully human PS-specific monoclonal antibody) and PS-binding annexins have been used
in pre-clinical studies as imaging agents, as summarized in Table 1.
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Table 1. Phosphatidylserine (PS)-targeting imaging modalities.

PS-Targeting Imaging

Type of Imaging
Modality

PS-Targeting
Antibody + Imaging

Compound
Results Cancer Type(s) Refs.

Optical Imaging Annexin V-Cy

A 2- to 3-fold stronger near-infrared
fluorescent signal was observed in
tumors of mice once treated with

pro-apoptotic drug, cyclophosphamide.

Gliosarcoma [39]

Optical Imaging PGN635+ 800CW
Successfully imaged the tumor 4 h

post-IV injection of PGN635-800 CW.
Highest signal observed at 24 h.

Glioblastoma [40]

Positron Emission
Tomography (PET) PGN635 + 89Zr

High accumulation 89Zr-PGN635 in
treated tumors undergoing apoptosis.

Tumor-to-blood ratios of up to 13.

Human colorectal
cancer

Breast cancer
[37]

PET
74As-labeled
bavituximab

Tumor–liver ratio was 22 for
bavituximab compared with 1.5 for an

isotype matched control chimeric
antibody 72 h after injection.

Prostate cancer [41]

Magnetic resonance
imaging (MRI) (9.4T)

PGN635 +
Superparamagnetic

iron oxide
nanoparticles (SPIO)

T2-weighted MRI detected a drastic
reduction in signal intensity and T2

values of tumors at 24 h.
Breast cancer [38]

Annexin V, a protein which binds PS, has been used for imaging of many cancers [42–44].
However, annexin V has a very short, 3 to 7 minute, half-life in blood, which further restricts
its use for clinical imaging [45]. To address this, Zhao et al. [40] developed PGN635, a
human monoclonal antibody against β2 glycoprotein 1 (β2GP1)-associated PS that has
a longer blood half-life (~16 h). They labelled the F(ab’) (2) fragment of PGN635 with
near-infrared dye, IRDye 800CW, and used it for optical imaging of U87 glioma xenografts
in a mouse model. They successfully imaged the tumor 4 h post-IV injection of PGN-800
CW, with the highest signal observed at 24 h. The image signal was further enhanced by
irradiation, where both PGN-800 CW tumor uptake and image contrast were pronounced
once the tumor was irradiated with 6 Gy [40]. Similar results were obtained by Gong et al.
following prostate tumor treatment with docetaxel [46].

Radiolabeled PS-targeted antibodies were also used to develop positron emission
tomography (PET) imaging techniques. PET imaging was used to assess the efficacy
of 89Zr-labelled PGN635 on tumor xenographs in mice. In those tumors, undergoing
apoptosis, a strong accumulation of 89Zr-PGN635 was detected, attaining 30% ID per gram
tissue with tumor-to-blood ratios of up to 13 [37]. In another study using the Dunning
prostate carcinoma rat model, 74As-labeled bavituximab was effectively used to visualize
the tumors [41]. In that study, PET imaging data showed that the tumor–liver ratio was 22
for bavituximab compared with 1.5 for the control, 72 h after injection [41].

3.2. SapC-DOPS Nanovesicles Can Target Cancer Surface PS

Different cancer cell lines can also be monitored using a system that includes PS
and SapC, which is an endogenous sphingolipid activator protein that plays an impor-
tant role in lysosomal enzyme activation and sphingosine and ceramide generation from
sphingolipid degradation [47–53]. SapC has strong binding affinity for PS at an acidic
pH [49–52,54,55]. It is known that tumors express abundant PS on the cell surface and have
a lower extracellular pH (pH~6) than normal tissues (pH~7) due to lactate secretion from
anaerobic glycolysis [56]. Therefore, the SapC-PS interaction provides a valuable, highly
selective system for targeted tumor imaging and therapy. Previous studies have shown
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that nanovesicles comprised of SapC and DOPS, SapC-DOPS can selectively target tumor
cells [24,34,47,57–62]. Our group has also shown that contrast agent-loaded SapC-DOPS
nanocarriers can be used to monitor and trace different cancer cell lines [61,63]. Successful
imaging of cancer cells with the PS-targeting SapC-DOPS nanocarrier system has been re-
ported using optical, magnetic resonance imaging (MRI), as well as single-photon emission
computed tomography (SPECT) [24,64,65], as described below. Figure 2 shows a schematic
representation of SapC-based imaging modalities.
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Figure 2. Schematic representation of saposin C-dioleoylphosphatidylserine (SapC-DOPS)-based
tumor imaging modalities. For in vivo and in vitro studies, SapC-DOPS nanovesicles can be labeled
with far-red fluorophore, CellVue Maroon (CVM) for optical imaging. For in vivo magnetic resonance
imaging (MRI) imaging, the gadolinium chelates, gadolinium-DTPA-bis(stearylamide) (Gd-DTAP-
BSA) or the ultrasmall superparamagnetic iron oxide (USPIO) can be incorporated and used as MRI
contrast agents. For in vivo positron emission tomography (PET)/single-photon emission computed
tomography (SPECT) imaging, SapC-DOPS can be combined with iodine-124 contrast agent.

3.2.1. Optical Cancer Imaging Using PS-Targeting SapC-DOPS Nanovesicles

Optical imaging has been widely used in pre-clinical cancer research [66,67]. In
particular, it is utilized to conduct research on cancer markers, drug pharmacodynamics
and to examine the effects of drugs in small animals [68]. The allure strength of optical
imaging is that it is economical, easy to manage, and provides real-time results.

CellVue Maroon (CVM) is a far-red fluorophore and Chu et al. [69] demonstrated that
CVM- tagged SapC-DOPS nanovesicles can be utilized for detecting brain tumors and
arthritic joints in mice. A rotational bed was used to obtain the multi-angle rotational optical
image. The results confirmed that optical imaging intensity depends on the optical imaging
angle, which varies with cancer type in different animal models. For example, the values
for the optical imaging angle in orthotopic and mut49 tumor-bearing mouse models were
determined to be 10◦ and 20◦, respectively. In the same study, Chu et al. showed that SapC-
DOPS nanovesicle-based optical imaging not only provided information about the disease
or the cancer site, it also enabled assessment of disease state and/or cancer progression [69].
Similar results have been reported by Kaimal et al. in their mouse xenograft models of
pancreatic adenocarcinoma, neuroblastoma and a murine rhabdomyosarcoma model [64].
However, while optical imaging is highly sensitive, it has significant limitations. For exam-
ple, optical imaging techniques have limited utility in human patients due to challenges
associated with signal detection of fluorescence probes in deep tissues. Another limitation
is autofluorescence that is generated in animal/human tissue and in ingested food. Studies
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are ongoing to circumvent these limitations; thus, Blanco et al. (see Section 3.2.3) demon-
strated that phenol-substituted membrane-intercalating lipophilic dyes and conjugated
iodinated lipophilic dyes can be incorporated into SapC-DOPS, allowing dual imaging of
glioblastoma (optical and PET imaging) [61].

3.2.2. Magnetic Resonance Imaging (MRI) Using PS-Targeting SapC-DOPS Nanovesicles

MRI is a broadly used method for tumor detection. Even though its sensitivity is low,
MRI has exceptional soft tissue contrast and excellent spatial resolution [70]. MRI was used
to selectively image neuroblastoma by utilizing iron oxide particles encapsulated inside
SapC-DOPS nanocarriers [64]. By tagging these vesicles with ultrasmall superparamagnetic
iron oxide contrast agent (USPIO) particles, Kaimal and his-coworkers monitored both
in vitro and in vivo delivery and uptake of the SapC-DOPS-IO vesicles. According to the
in vitro results, there is a significant increase on the R2 and R2

* relaxation rates (14.64 s−1,
26.74 s−1) once the cells are exposed to SapC-DOPS-IO for 24 h as compared to the control
cells (7.84 s−1, 11.04 s−1). According to an in vivo study conducted in mice, T2*-weighted
imaging at 7T shows that the signal intensity in tumors drops immediately after injection
of SapC-DOPS-IO, followed by a gradual further decrease before rebounding slightly 24 h
later. The drop in signal intensity is observed throughout the tumor. Inductively coupled
plasma atomic emission spectroscopy (ICP-AES) analysis shows that the concentration of
iron in the tumor of a mouse injected with SapC-DOPS-IO is approximately 5-fold higher
than the concentration of iron in the tumor of a free IO-treated mouse [64].

Winter et al. used paramagnetic gadolinium chelates, gadolinium-DTPA-bis(stearylamide)
(Gd-DTPA-BSA)-loaded SapC-DOPS vesicles as a targeted contrast agent for imaging
glioblastoma multiform tumors [63]. At 7T, Gd-DTPA-BSA/SapC-DOPS vesicles and Gd-
DTPA display a similar relaxivity of 3.32 and 2.80 (s·mM)−1, respectively. According to the
in vivo experiments using injection of Gd-DTPA-BSA/SapC-DOPS vesicles, the R1 values
before the injection of the tumor, contralateral normal brain, and sham-injected brain were
0.4676 ± 0.010 s−1, 0.5596 ± 0.003 s−1 and 0.5216 ± 0.034 s−1, respectively. Following
the injection, the average change in the tumor R1 value was 9.0 ± 2.3% (p < 0.05) at 10 h
post-injection, whereas the normal brain and the sham-injected brain showed no significant
change, 1.2 ± 1.5% and 1.4 ± 1.9% (p > 0.05). The tumor R1 was increased (7.9 ± 1.5%,
p < 0.05) compared to that for the normal and sham brains at 20 h post-injection, and it
became statistically indistinguishable from the controls at 24 h post-injection (4.7 ± 2.0%,
p > 0.05). Figure 3A shows the T1 maps of tumor cells before treatment and after 10 h
injection of Gd-DTPA-BSA/SapC-DOPS vesicles. The results indicate that there is a clear
reduction in the T1 relaxation time 10 h after treatment with Gd-DTPA-BSA/SapC-DOPS
vesicles as compared with the T1 value before the injection. Figure 3B shows the percent
change in T1 relaxation of sham tumor and sham normal brain treated with only SapC
DOPS. At 4, 10, and 20 h, the increase in T1 relaxation time is higher in the sham normal
brain, as compared with that in the sham tumor. By 24 h post-injection, the T1-weighted
signal is similar in both tissues. Figure 3C shows the percent change in T1 relaxation
after injection of Gd-DTPA-BSA/SapC-DOPS vesicle. At 4 and 10 h post-injection, the
T1 relaxation time change is higher in the tumor (−4.12%, −4.05%) and the tumor rim
(−3.81%, −4.94%), as compared with the T1 relaxation time change for the normal brain
(−0.76%, −1.84%).
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Figure 3. Use of saposin C-dioleoylphosphatidylserine (SapC-DOPS) as a carrier for magnetic
resonance imaging (MRI) contrast agents in a mouse brain cancer model. (A) High resolution MRI
of a glioma in a mouse. Tumor T1 relaxation time (s−1) maps before and 10 h after injection of
gadolinium-DTPA-bis(stearylamide) (Gd-DTPA-BSA)/SapC-DOPS vesicles. (B) Percent change in
T1 after only SapC-DOPS vesicle injection in the sham tumor and sham normal brain. (C) Percent
change in T1 after injection of Gd-DTPA-BSA/SapC-DOPS vesicle in the tumor, tumor rim cells and
normal brain.

3.2.3. Postron Emission Tomography/Single Photon Emission Computed Tomography
(PET/SPECT) Imaging Using PS-Targeting SapC-DOPS Nanovesicles

PET and SPECT are imaging techniques commonly used in the clinic. They are used to
detect gamma rays emitted from radioactive tracers given to the patients. The development
of radiotracers has accelerated since both PET and SPECT are very sensitive and widely
available.

A recent study by Blanco et al. used phenol-substituted membrane-intercalating
lipophilic dyes labeled SapC-DOPS with iodine-127 for PET imaging [61]. The labeled SapC-
DOPS colocalized with the bioluminescence signal in tumors and increased significantly
after 1 h following the injection. Control experiments with iodine-125 conjugated to
SapC-DOPS with the same phenol-substituted dye showed a 4- to 8-fold higher uptake in
glioblastoma, as compared with a lower uptake in the sham brains, and a very low uptake
in the thyroid. These results suggest that there is selective tumor targeting, and that there
is only minimal reporter degradation in blood [61].

4. PS in Targeted Cancer Therapies
4.1. Therapies Using PS-Specific Targeting Agents

Because it has diverse biological roles [25,71], PS has attracted attention as a distinct
therapeutic target among the other membrane lipids. The three major experimental PS-
targeting agents used for cancer localization and treatment are SapC-DOPS [34,64,72,73],
bavituximab, a monoclonal antibody that recognizes PS [74–76], PPS1D1, a PS-binding
peptide–peptoid hybrid [77,78], and BPRDP056, a zinc (II)-dipicolylamine-SN38 conju-
gate [79,80]. A summary of PS-targeted therapies is presented in Table 2.
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Table 2. Phosphatidylserine (PS)-targeted therapy modalities.

PS-Targeted Therapy

Type PS-Targeting Drugs or
Antibodies Mechanism Cancer Type(s) Refs.

Proteoliposomal
nanovesicles

Saposin C-
dioleoylphosphatidylserine

(SapC-DOPS)
(phase I and II clinical

trials)

Caspase-mediated apoptotic and
lysosomal-mediated cell death

Brain,
Colorectal, GI, Lung,

Breast, Skin,
Neuroblastoma,
Breast Cancer

[47,58,
59,61,
72,81]

Monoclonal antibody Bavituximab
(phase III clinical trial)

T-cell-driven adaptive immune pathway
activation through M1-TAMs

Prostate cancer
Non-Small-Cell Lung

Cancer
[74,82]

Peptide–peptoid
hybrid

PPS1D1
(Pre-clinical) Membrane disruption Lung Cancer [77,83]

Cationic liposomes
Phosphatidylcholine-

stearylamine
(Pre-clinical)

Caspase-mediated apoptosis Melanoma
Glioblastoma [84,85]

Zinc (II)
dipicolylamine-based

conjugate

Zinc (II) dipicolylamine
(Pre-clinical) Caspase-mediated apoptosis

Colorectal, Pancreas,
Prostate, Liver, Breast,

Glioblastoma
[80]

Combinational PS-Targeted Therapy

Modality
PS-Targeting
Antibody +

Chemo/Radiation
Detailed Description Cancer Type(s) Refs.

PS-targeting antibody +
chemotherapy 3G4 + gemcitabine

Significant reduction in primary tumor
growth and metastatic burden
14-fold increase in macrophage

infiltration over controls

Pancreatic Cancer [86]

PS-targeting antibody +
radiation 2aG4 + radiation

Focal irradiation increased the
percentage of tumor vessels with

exposed PS from 4% to 26%
91% reduction in tumor vascularity was

observed when 2aG4 was combined
with radiation therapy

Enhanced monocyte/macrophage
infiltration into the tumor mass

Lung Cancer [87]

PS-targeting antibody +
immune activators and
checkpoint inhibitors

mch1N11 + anti-PD-1
or anti CTLA-4

Elevated fraction of cells expressing
proinflammatory cytokines including
IL-2, IFN-γ, and TNFα, and increased

the ratio of CD8+ T cells to MDSCs and
Tregs in tumors

Breast Cancer
Melanoma Tumors [88,89]

In addition to its applications in imaging as described in the Section 3, the SapC-DOPS
nanodrug can also be used in anticancer therapy. At approximately 200 nm in diameter,
the formulated SapC-DOPS nanovesicles have been demonstrated to selectively target and
kill a variety of cancer cells including glioblastoma [90,91], pancreatic cancer [58,92], lung
cancer [81], skin cancer [72], breast cancer [59], and pediatric tumors (neuroblastoma and
peripheral nerve sheath tumor) [47]. SapC-DOPS induces cancer cell apoptosis [47,57,58,93]
and lysosomal-mediated cell death [90]. SapC-DOPS also induces cytokine production in
macrophages [94].

Bavituximab is a chimeric monoclonal antibody that binds to a complex of PS and
β2GP1 to activate a T-cell-driven immune pathway and also blocks PS immunosuppressive
signaling from tumor cells. Bavituximab binds Fc gamma receptors on myeloid-derived
suppressor cells (MDSCs), M2 macrophages and immature dendritic cells, which leads to
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increased production of TNFα and IL-12 immunostimulatory cytokines. Consequently, it
induces MDSC differentiation into M1-like macrophages and dendritic cells that cause the
induction of tumor-specific cytotoxic T cells [82]. The bavituximab–paclitaxel combination
has been used as a treatment for HER2-negative breast cancer in a phase I clinical trial.
Treatment was well tolerated and resulted in an overall response of 85% [76]. Recently,
bavituximab has been investigated in a phase III clinical trial for advanced stage lung
cancer. Unfortunately, the combination of bavituximab with docetaxel does not enhance the
efficacy comparing docetaxel alone in patients previously treated for non-small-cell lung
cancer (NSCLC). Furthermore, the addition of bavituximab does not significantly change
systemic adverse effects [74].

PS is specifically recognized by PPS1D1, a dimeric form of a peptide–peptoid hybrid.
The monomeric form, PPS1, consists of distinct positively charged and hydrophobic residue-
containing regions but is inactive. However, PPS1D1 displays strong cytotoxicity to lung
cancer cells with no significant effect on normal cells in vitro, and it reduces tumor growth
in vivo. Moreover, PPS1D1 significantly enhanced the efficacy of docetaxel in mice bearing
H460 lung cancer xenografts [77,78].

Phosphatidylcholine–stearylamine (PC-SA) is a cationic liposome which specifically
targets cancer cells. PC-SA induces apoptosis and shows potent anticancer effects as a
single agent against most cancer cell lines. Additionally, in combination with doxorubicin
(PC-SA-DOX), it results in a complete remission of B16F10 melanoma in C57BL/6 mice
without signs of toxicity [84]. PC-SA-DOX also shows immunomodulatory activity by
elevating Th1 cytokine levels in the tumor microenvironment, thereby facilitating treatment
of lung metastasis [85].

Zinc (II) dipicolylamine-SN38 conjugate, BPRDP056 is a novel compound whose
effect has been shown in pre-clinical studies with using variety of tumor models including
colorectal, pancreas, prostate, liver, breast and glioblastoma. Because it contains zinc
(II) dipicolylamine, BPRDP056 binds to cancer cell surface PS with strong affinity and
SN38 induces apoptotic cell death in cancer. BPRDP056 exhibits significant activity in
a dose-dependent manner and significantly inhibits the tumor growth compared to the
controls [79,80].

Mch1N11 is a PS-targeting antibody. It has been shown that the combination of
mch1N11 with the checkpoint inhibitors, anti-CTLA-4 or anti-PD-1 is superior to anti-
CTLA-4 or anti-PD-1 alone in a melanoma mouse model. Furthermore, this combination
increased the infiltration of CD4+ and CD8+ T cells into the tumor [89]. In another study, it
was demonstrated that the combination of mch1N11 with anti-PD-1 significantly increased
the antitumor activity with longer survival in a triple-negative breast cancer mouse model.
The combination of mch1N11 with anti-PD-1 check point inhibitor also significantly elevates
the number of tumor infiltrating lymphocytes and expression of pro-immune activating
cytokines while downregulating the expression of pro-tumorigenic cytokines [88].

4.2. Application of Electric Fields to Enhance PS-Targeted Therapies
4.2.1. General Considerations for Using Electric Field-Based Therapies

Electric fields and currents are helping fight cancer by destroying tumor cells without
harming normal cells, both as a replacement of conventional treatments and as an adjuvant
therapy [95,96]. Commonly, generating electric currents in a human or animal tissue by
electric field is achieved using a pair of conductive electrodes between which a potential
difference is maintained. When this potential difference is applied to cells or tissues, it
results in heating, where the dissipated energy can be calculated based on the current (I),
voltage (V) and duration of electric field application (t):

Energy = (V) (I) (t)

There are several important considerations that need to be considered to ensure
safety and efficacy of electric field therapy. It is critical to keep the dissipated energy as
low as possible to avoid thermal effects on the tissues. Additionally, electrodes that are
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implanted into specific areas of the body produce an electric field that could essentially
destroy all the cells in the vicinity of the target tissue, including both the tumor cells
and normal cells. Correct placement of electrodes requires knowledge of the dielectric
properties of the various tissue types and appropriate positioning of the conductors in
the setup. Other necessary biological properties of note when applying an electric field
to living organisms are: cell cycle phase, which affects the geometrical characteristics of
the cells; extracellular environment (electrolytes in the interstitial fluid) that determines
the molecular charge and the cell transmembrane potential; and ionic concentrations in
the intracellular compartments, because ions such as Ca2+, Na+ and K+ carry the electrical
current within the cells [97]. Below, we will review two common electric field-based
treatment modalities used in the clinic to treat various cancers, e.g., tumor-treating fields
(TTFields) and electroporation.

4.2.2. Tumor-Treating Fields

TTFields, an intermediate frequency (100–300 kHz) alternating electric field, were
approved by the FDA in 2011 for the treatment of adults with recurrent or newly diagnosed
glioblastoma multiforme (GBM) [98,99]. For these patients, TTFields devices are applied
to the scalp to deliver intermediate frequency alternating electric fields of low intensity.
The devises consist of four transducer arrays, each consisting of nine insulated electrodes.
Table 3 shows TTFields parameters that have been tested in a variety of cancer cell lines.

Table 3. Tumor-treating fields (TTFields) parameters used to treat different cancer cells.

Variables Tumor Type Results Refs.

Time/
Temperature EF Intensity Frequency

72 h/
18 ◦C 1.7 V/cm (100–500 kHz) F98 rat glioma

cells

A significant reduction in cell
viability was observed at all
applied frequencies, with the
maximal reduction at 200 kHz

[100]

72 h/
18 ◦C, 24 ◦C, and

28 ◦C
1.0 and 1.7 V/cm (100–500 kHz) U-87 MG

The maximum reduction in cell
viability was observed when the
cells were treated with 1.7 V/cm
(incubator temperature: 28 ◦C) at

200 kHz

[100]

72 h/
18 ◦C 1.7 V/cm (100–500 kHz)

A2780
human ovarian

cancer cells

A significant reduction in cell
viability was observed at all
applied frequencies, with the
maximal reduction at 200 kHz

[100]

72 h/
18 ◦C, 24 ◦C, and

28 ◦C 1.3 and 1.7 V/cm (100–500 kHz)
OVCAR-3

human ovarian
cancer cells

The maximum reduction in cell
viability was observed when the
cells were treated with 1.7 V/cm
(incubator temperature: 18 ◦C) at

200 kHz

[100]

24 h/
34 ◦C 1 and 2.5 V/cm (100–300 kHz)

B16F1
Mouse

malignant
melanoma

Maximum cell growth inhibition
was observed at intensities of 1.35

V/cm with 120 kHz frequency
[101]

24 h/
37 ◦C 0–3 V/cm (100–500 kHz)

MDA-MB-231
Human breast

carcinoma

Maximum cell growth inhibition
was observed at intensities of 1.75

V/cm with 150 kHz frequency
[100]

In 2004, Kirson et al. [101] showed that the inhibitory effect of TTFields is focused on
proliferative cells, while quiescent cells are not affected. The mechanism of action is not
fully understood; however, one theory suggests that TTFields (1–4 V/cm, 200 kHz, 24 h
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duration) act on rapidly dividing cells during metaphase, anaphase and telophase of mitotic
cell division. At this frequency, alternating external fields induce inhomogeneous internal
fields at the bridge between daughter cells, resulting in unidirectional forces that induce
dielectrophoresis, interfere with the orientation of tubulin in the mitotic spindle, and cause
mitotic catastrophe and mitotic cell death. The first clinical study that utilized TTFields was
reported in 2004 with 20 GBM patients. The treatment modality was well tolerated and did
not cause significant toxicity. The subsequent EF-11 phase III study showed that although
there was no improvement in the overall survival vs. standard of care chemotherapy, the
efficacy and activity of chemotherapy-free TTFields was comparable to chemotherapy, and
the toxicity and quality of life clearly favored the TTField treatment [102].

Overall, a combination of TTFields treatment with conventional chemotherapy or
radiation therapy is very promising in terms of prolonging the survival of patients as well
as resulting in fewer adverse effects, as compared to the traditional methods alone. So
far, the only adverse effect that has been reported is skin irritation under the transducer
array [103]. On the other hand, the potential benefits of improved survival and reduced
side effects are relatively modest considering the very large increase in treatment cost of
approximately 200,000 USD per patient in the USA [104].

4.2.3. Electroporation

Electroporation (or electropermeabilization) is a phenomenon which increases cell
membrane permeability via inducing an electric field across the cell membrane. This
permeabilization can be transient (reversible electroporation) or persistent (irreversible
electroporation), depending on the electrical field parameters such as magnitude, exposure
time, number of pulses [105]. Reversible electroporation is generally used in vitro to
help the penetration of macromolecules, which are not capable of passing across the cell
membrane by themselves.

Over the last three decades, irreversible electroporation (IRE) has been used to per-
manently permeabilize the cell membrane. The mechanism of electroporation has not yet
been elucidated. One mechanism is that the electric field polarizes the cell membrane by
changing the transmembrane potential across the cell membrane. The unstable membrane’s
shape is altered, forming nanoscale pores through the membrane [106,107]. Electroporation-
based cancer treatments are commonly used in the clinic and were first used as a treatment
of cancer in the late 1980s in the form of electrochemotherapy (the use of electroporation to
transfer non-permeant chemotherapy drugs into cells) [108]. Many in vitro or in vivo stud-
ies have shown that electrochemotherapy is a powerful, safe, low-cost treatment without
significant adverse effects. Electrochemotherapy has been used in the treatment of many
cancers, including melanoma, sarcoma, metastatic breast cancer and skin cancers [109–112].
Calcium electroporation is a novel anticancer treatment that has been investigated pre-
clinically and in clinical trials, showing promising outcomes [113,114].

4.3. Surface PS Modulation via Electric Fields Is a Novel Approach to Increase Efficacies of
Anticancer Therapies

Cancer cells that have high surface PS are more sensitive to PS-targeted treatments.
Our data also suggest that cancer cells that have low PS exposure are more sensitive to
radiation [34] or chemotherapeutics such as gemcitabine [33]. An important implication
of these results is that altering the level of PS exposure in cancer cells is a logical ap-
proach to sensitize cancer cells to PS-targeting drugs such as SapC-DOPS and bavituximab.
Wojton et al. [90] have shown that the combination of SapC-DOPS and temozolomide
(Temodar) in glioblastoma displays a strong synergistic effect, as compared with the thera-
peutic effects of temozolomide alone. The potential mechanism may be that induction of
apoptosis by temozolomide increases tumor PS exposure, thereby sensitizing GBM cells to
the cytotoxic actions of SapC-DOPS [90].
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PS externalization is regulated by increased intracellular calcium, which inhibits the
activity of flippases [18]. Induced electric fields (EF) in the cell membrane modulate cell
membrane potential [115], which alters the activity of calcium channels.

We have recently showed that EF can be used to modulate surface PS [116,117]. In these
experiments, a direct current (DC)-EF was applied to GBM cells via a parallel-plate capacitor
device with no direct contact between the cells or cell medium and electrodes (Figure 4). Our
data showed that application of DC-EFs of varying magnitudes (75–150 V/cm) resulted
in significant changes in the cell surface PS level in U87∆EGFR-Luc glioblastoma cells
(Figure 5) without effecting the total cellular PS levels [116,117]. In contrast to high-
power or direct-contact EF applications, this low-amplitude, non-contact electric field
modality does not affect the viability of normal, untransformed cells, and therefore can be
expected to have minimal side effects, in contrast to those of cytotoxic chemotherapies or
radiation. These data suggest that external non-contact DC-EFs might be a novel platform
for enhancement of GBM treatment efficacy.
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Figure 4. A custom system for direct current electric field (DC-EF) electrical stimulation of cells using
the low-amplitude electric field and capacitive coupling method. (A) Schematic of the setup, where a
cell culture plate is placed inside a parallel plate capacitor, and the electric field is perpendicular to
the substrate thus preventing directional cell migration. (B) A photograph showing the capacitor
with the cell culture plate inside. (C) Schematic of the boundary conditions and electrical properties
of the system.
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Figure 5. Schematic representation of phosphatidylserine (PS) modulation in cancer cells via external
electric field.

5. Conclusions and Future Directions

The important functional property of PS as a unique yet ubiquitous cancer cell
biomarker makes it an appealing target for the development of novel anticancer therapies
that could potentially be quick to translate into clinical applications. While many specific
biomarkers have been reported for different cancer cell types, the ubiquitous nature of PS
allows its application to target most cancers. Currently, there are several ongoing clinical
trials that aim to achieve better therapeutic outcomes, including the trials for SapC-DOPS
and bavituximab. Similarly, the unique properties of PS provide important advantages in
imaging applications, where PS-targeting modalities enable us to selectively image tumors
and will undoubtedly have a major role in future diagnostics applications.

In summary, emerging technologies that enhance PS-targeting treatment and imaging
efficacy have tremendous potential for future cancer diagnostics and treatment. The
analysis of the current literature also suggests that the highest therapeutic impact will likely
result from the combination of PS-targeting therapies with already approved therapies.
For example, altering surface PS exposure on cancer cells with electric fields may enhance
the efficacy of PS-targeting drugs to increase tumor cell death, while reducing the dose
of the more cytotoxic drugs. In the future, this novel type of EF field treatment must be
studied in vivo and in the clinic with different types of tumors. PS-targeting therapies can
be combined with chemotherapy [86], radiation [87], and immune checkpoint inhibitors
(including antibodies targeting CTLA-4, PD-1, and PD-L1) [88,89] to significantly improve
the outcome.
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106. Kotnik, T.; Rems, L.; Tarek, M.; Miklavčič, D. Membrane Electroporation and Electropermeabilization: Mechanisms and Models.
Annu. Rev. Biophys. 2019, 48, 63–91. [CrossRef] [PubMed]

107. Vorobiev, E.; Lebovka, N. Fundamentals of Electroporation, Theory and Mathematical Models for Simulation of PEE Processing.
In Processing of Foods and Biomass Feedstocks by Pulsed Electric Energy; Springer International Publishing: Cham, Germany, 2020; pp.
27–49.

108. Mir, L.M.; Belehradek, M.; Domenge, C.; Orlowski, S.; Poddevin, B.; Belehradek, J.J.; Schwaab, G.; Luboinski, B.; Paoletti, C.
Electrochemotherapy, a new antitumor treatment: First clinical trial. C R Acad. Sci. III 1991, 313, 613–618. [PubMed]

109. Skarlatos, I.; Kyrgias, G.; Mosa, E.; Provatopoulou, X.; Spyrou, M.; Theodorou, K.; Lepouras, A.; Gounaris, A.; Koukourakis, M.
Electrochemotherapy in cancer patients: First clinical trial in Greece. In Vivo 2011, 25, 265–274. [PubMed]

110. Sersa, G.; Miklavcic, D.; Cemazar, M.; Rudolf, Z.; Pucihar, G.; Snoj, M. Electrochemotherapy in treatment of tumours. Eur. J. Surg.
Oncol. 2008, 34, 232–240. [CrossRef]

111. Moller, M.G.; Salwa, S.; Soden, D.M.; O’Sullivan, G.C. Electrochemotherapy as an adjunct or alternative to other treatments for
unresectable or in-transit melanoma. Expert Rev. Anticancer Ther. 2009, 9, 1611–1630. [CrossRef]

112. Gehl, J. Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol. Scand.
2003, 177, 437–447. [CrossRef]

113. Falk, H.; Matthiessen, L.W.; Wooler, G.; Gehl, J. Calcium electroporation for treatment of cutaneous metastases; a randomized
double-blinded phase II study, comparing the effect of calcium electroporation with electrochemotherapy. Acta Oncol. 2018, 57,
311–319. [CrossRef]

114. Frandsen, S.K.; Gissel, H.; Hojman, P.; Tramm, T.; Eriksen, J.; Gehl, J. Direct Therapeutic Applications of Calcium Electroporation
to Effectively Induce Tumor Necrosis. Cancer Res. 2012, 72, 1336–1341. [CrossRef]

115. Taghian, T.; Narmoneva, D.A.; Kogan, A.B. Modulation of cell function by electric field: A high-resolution analysis. J. R. Soc.
Interface 2015, 12, 20150153. [CrossRef] [PubMed]

116. Kaynak, A.; Davis, H.W.; Narmoneva, D.; Kogan, A.B.; Qi, X. Electric Field Therapy for Glioblastoma: Modulation of Tumor Cell
Surface Phosphatidylserine Levels. In Proceedings of the 2018 BMES Annual Meetings, Atlanta, GA, USA, 17–20 October 2018.

117. Kaynak, A.; Davis, H.W.; Narmoneva, D.; Kogan, A.B.; Qi, X. Electric field-assisted phosphatidylserine exposure level alteration
in glioblastoma cells. In Proceedings of the 2019 BMES Annual Meetings, Philadelphia, PA, USA, 16–19 October 2019.

http://doi.org/10.1001/jamaoncol.2017.5082
http://doi.org/10.1158/1538-7445.Am2018-lb-257
http://doi.org/10.1371/journal.pone.0001135
http://www.ncbi.nlm.nih.gov/pubmed/17989772
http://doi.org/10.1146/annurev-biophys-052118-115451
http://www.ncbi.nlm.nih.gov/pubmed/30786231
http://www.ncbi.nlm.nih.gov/pubmed/1723647
http://www.ncbi.nlm.nih.gov/pubmed/21471545
http://doi.org/10.1016/j.ejso.2007.05.016
http://doi.org/10.1586/era.09.129
http://doi.org/10.1046/j.1365-201X.2003.01093.x
http://doi.org/10.1080/0284186X.2017.1355109
http://doi.org/10.1158/0008-5472.CAN-11-3782
http://doi.org/10.1098/rsif.2015.0153
http://www.ncbi.nlm.nih.gov/pubmed/25994294

	Introduction: Biomarkers in Cancer Imaging and Therapy 
	PS: Cellular Distribution and Roles 
	PS as a Cancer Biomarker 
	Heterogeneity in Surface PS Exposure on Membranes May Indicate a Susceptibility of Cancer Cells to Cancer Treatments at Different Stages 
	SapC-DOPS Nanovesicles Can Target Cancer Surface PS 
	Optical Cancer Imaging Using PS-Targeting SapC-DOPS Nanovesicles 
	Magnetic Resonance Imaging (MRI) Using PS-Targeting SapC-DOPS Nanovesicles 
	Postron Emission Tomography/Single Photon Emission Computed Tomography (PET/SPECT) Imaging Using PS-Targeting SapC-DOPS Nanovesicles 


	PS in Targeted Cancer Therapies 
	Therapies Using PS-Specific Targeting Agents 
	Application of Electric Fields to Enhance PS-Targeted Therapies 
	General Considerations for Using Electric Field-Based Therapies 
	Tumor-Treating Fields 
	Electroporation 

	Surface PS Modulation via Electric Fields Is a Novel Approach to Increase Efficacies of Anticancer Therapies 

	Conclusions and Future Directions 
	References

