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The intrinsic bottleneck of graphite intercalation compound mechanism in potassium-ion

batteries necessitates the exploitation of novel potassium storage strategies. Hence,

utmost efforts have been made to efficiently utilize the extrinsic pseudo-capacitance,

which offers facile routes by employing low-cost carbonaceous anodes to improve

the performance of electrochemical kinetics, notably facilitating the rate and power

characteristics for batteries. This mini-review investigates the methods to maximize the

pseudo-capacitance contribution based on the size control and surface activation in

recent papers. These methods employ the use of cyclic voltammetry for kinetics analysis,

which allows the quantitative determination on the proportion of diffusion-dominated

vs. pseudo-capacitance by verifying a representative pseudo-capacitive material

of single-walled carbon nanotubes. Synergistically, additional schemes such as

establishing matched binder–electrolyte systems are in favor of the ultimate purpose of

high-performance industrialized potassium-ion batteries.

Keywords: potassium-ion batteries, carbonaceous anodes, pseudo-capacitance adsorption, surface doping

activation, kinetic analysis

INTRODUCTION

Suffering from the geopolitical maldistribution of lithium resources, sodium-ion batteries (SIBs)
and potassium-ion batteries (PIBs) reach a hotspot in view of wider resource reserves compared
with lithium-ion batteries (LIBs) (2.09 wt% of K vs. 2.36 wt% of Na vs. 0.0017 wt% of Li)
(Carmichael, 1989; Larcher and Tarascon, 2015). Significantly, the PIB system has the lowest
negative potential (0.15V below the Li/Li+) (Komaba et al., 2015; Eftekhari et al., 2016; Wang
et al., 2018a,b) and satisfactory electrochemical kinetics in ionic diffusion kinetics and conductivity
theoretically (Okoshi et al., 2013, 2017; Komaba et al., 2015; Eftekhari et al., 2016; Su et al., 2016)
in non-aqueous electrolytes, ascribed to low de-solvation due to its weak Lewis acid character
(Okoshi et al., 2017; Lei et al., 2018). Similar to the behavior of LIBs in graphite (Wang, 2017),
the intercalation mechanism of PIBs involves three potassiation stages, generating the KC36 in
Stage III, KC24 in Stage II, and finally the KC8 in Stage I (Jian et al., 2017) with 270mA h
g−1, which is far more stable than SIBs (Wang et al., 2013; Zheng et al., 2017). Nevertheless,
large Shannon ionic radius (K+

= 1.38 Å, Na+ = 1.02 Å, Li+ = 0.76 Å) and atomic mass
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(K= 39.10, Na= 22.99, Li= 6.94) (Shannon, 1976) have
decreased the theoretical capacity and induced high volume
expansion of 61% (Wen et al., 2015; Eftekhari et al., 2016; Zou
et al., 2017). Although some strategies enter into consideration
such as adopting expand graphite (An et al., 2018), implementing
solvent co-intercalation (SCI) (Wang et al., 2013, 2019; David
and Singh, 2014), and developing dual-carbon batteries (DCBs)
(Carlin et al., 1996, 2010; Beltrop et al., 2017; Fan et al., 2017; Ji
et al., 2017), essential kinetics deficiency is hard to surmount.

To address the irreversible expansion induced by equilibrium
graphite, amorphous carbons come into the focused sight (Xing
et al., 2017), which are admittedly classified as hard carbon (HC)
and soft carbon (SC). HC is proven to have a prolonged cycling
ability for its randomly oriented bend graphitic layers along the
c axis without observed expansion after a thorough potassiation
(Jian et al., 2016, 2017). On the contrary, SC is easily graphitized
with turbostratic domains although far from the commercial
graphite. SC presents obvious expansion to HC if undergoing
complete potassiation (Luo et al., 2015a; Wang et al., 2017).
Nonetheless, SC has a better rate performance than HC for more
aligned domains (Jian et al., 2017), regarded as the reason for the
better rate performance.

Pseudo-capacitance is the middle part of the battery and
electrical double-layer capacitors (EDLCs) (Jiang and Liu, 2019)
as shown in Figure 1a. In Figure 1a, Liu points out that the
current generation of batteries depends on the Faradic electron
transfer from the surface to the metal center based on the charge-
compensating ions by intercalation or adsorption. In contrast,
a pseudo-capacitor is different from EDLCs because it is not
electrostatic-induced and the transfer process of surface electrons
distinguishes the behavior from batteries. Pseudo-capacitance
can be classified into two categories—intrinsic and extrinsic.
The former (Chao et al., 2016) describes an inherent feature
of specific materials such as RuO2 and MnO2, which is on
the strength of Faradaic electron transfer. However, the latter
emphasizes the technological means of low dimension, nanoscale
size, and high surface area (Wang et al., 2007; Brezesinski
et al., 2009; Muller et al., 2015; Cook et al., 2016) among a
majority of materials, for instance, the single-walled carbon
nanotube (SWCNT) with surface-enriched potassium ions in
Figure 1b (Hersam, 2009; Kang et al., 2013), attributed to
the regular hexagonal arrangement of carbon atoms on the
surface. This non-Faradaic pathway provides a possibility to
utilize inexpensive carbonaceous anodes (Gogotsi and Penner,
2018) if proper surface treatments such as activization, doping,
and plasma processing have been undergone (Chao et al.,
2018).

These surface-dominated anodes uptake and absorb
potassium ions with fast reaction kinetics during the
electrochemistry process, avoiding the hindrance in the
intercalation mechanism, which is regarded as the primary cause
for high rate property and large capacity of PIBs undergoing
charging and discharging processes (Shin et al., 2011; Shao et al.,
2013; Chen et al., 2016; Long et al., 2016). As a consequence,
this mini-review analyzes the methods for distinguishing
the proportion of capacity contribution and summarizes the
application of pseudo-capacitance to PIBs very recently, aiming
to design a practical performance improvement approach.

ANALYSES AND APPLICATIONS OF
PSEUDO-CAPACITANCE

Generally, it is widely admitted that pseudo-capacitance is not
a pure Faradaic progress but a rapid reversible surface redox
reaction involved in EDLCs. The charge storage mechanism of
complex PIBs behaviors is composed of two typical contribution
progresses: surface-induced pseudo-capacitor process and
diffusion-dominated process (Brezesinski et al., 2009; Wen et al.,
2015; Xu et al., 2019b). Nonetheless, Faradaic and non-Faradaic
reactions are electro indistinguishable for jointly contributing
to the current parameter (Gogotsi and Penner, 2018). Most
researchers employ cyclic voltammetry (CV) to determine the
relative proportion of contribution from pseudo-capacitor and
diffusion-dominated processes. The peak current is proportional
to the square root of sweep rate describing the reversible

diffusion-limited state (i-v
1
2 ), whereas it is proportional to the

sweep rate (i-v) describing the capacitive state. A representative
power law relationship between the current and scan rate reveals
the charge storage mechanism in PIBs (Wang et al., 2007;
Torsten et al., 2010; Veronica et al., 2013):

i = avb

where a and b are constants. The b value can be figured out by
profiling the log(i)–log(v) curve. If b = 0.5, the Faradic diffusion
is predominant; while b= 1, the pseudo-capacitance assumes the
primary contribution (Sathiya et al., 2011; Lijun et al., 2014; Zou
et al., 2017). Furthermore, as for a fixed sweep rate, the specific
pseudo-capacitance contribution can be given in detail by the
following formula (Torsten et al., 2010; Wang Y. et al., 2016):

i = k1v+ k2v
1
2

where the parameter k1v represents the capacitive process while

the k2v
1
2 is in favor of the diffusion process as stated earlier.

Furthermore, Marveh maintains that compared with the CV
method, the step potential electrochemical spectroscopy (SPECS)
has wider adaptive range with prominent advantages. In high
sweep rates, SPECS presents precise characterization to depict
the process of electrical double layer on the surface of electrodes
(Forghani and Donne, 2018).

Recent works validate the validity of the pseudo-capacitance
algorithm based on the surface-dominated pseudo-capacitance
mechanism, which has been extensively applied in carbonaceous
anodes in PIBs by constructing high surface area or activating.

Doping and activating are highly feasible methods that
introduce abundant defects, expand specific surface area, and
promote the conductivity, meanwhile adding charge storage for
PIBs (Lijun et al., 2014; Share et al., 2016; Chen et al., 2017; Lei
et al., 2018; Xu et al., 2018).

Nitrogen-doped strategy has a practical significance eliciting
satisfying performance enhancements. According to the X-ray
photoelectron spectroscopy (XPS) results, pyrrole nitrogen (N-
5), pyridine nitrogen (N-6), and quaternary N (N-Q) are three N-
doping forms presented in Figure 2A, where N-5 andN-6 possess
high electrochemical activity and generate additional defects in
the surface of the graphene layer, hence promoting the adsorption
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FIGURE 1 | (a) Surface processes among battery, EDLC and pseudo-capacitance. (b) Diagram of the surface-dominated procedure for SWCNT; with permission

from Wiley. (c) Pseudo-capacity proportion of NCNF-650, NCNF-950 and NCNF-1100 with b value; with permission from Springer.

FIGURE 2 | (A) Surface defects induced by N-doping, O-doping and F-doping. (B) Relationship between pseudo-capacitance contribution proportion and sweep

rate based on recent researches (I) (Yang et al., 2018), (II) (Adams et al., 2017), (III) (Lei et al., 2018), (IV) (Chen et al., 2017), (V) (Wang et al., 2018).

quantity of potassium ions, accelerating the kinetic process (Li
et al., 2013;Wang et al., 2014; Xu et al., 2018). This differentiation
of N forms is ascribed to their constructions of respective
bonding electrons, resulting in different chemical activities.
However, N-Q, located in the internal surface of graphene
layer, bonding with three sp2 carbon atoms, is beneficial to
improve electrical conductivity (Yang et al., 2018). Notably, N-6
is regarded as the most effective doping precursor because it
replaces the carbon atomwith a nitrogen atom at the defect or the
edge of the graphite plane and occupies abundant active centers

to adsorb potassium ions (Ma et al., 2012; Ding et al., 2014; Xie
et al., 2017). Consistently, recent researches demonstrated that
N-6 defects decreases with temperature increasing; meanwhile,
the degree of graphitization rises, accompanied by the generation
of N-Q. Xu concludes that among three temperature-controlled
materials NCNF-650, NCNF-950, and NCNF-1100 derived from
poly-pyrrole nanofibers, the pseudo-capacitance contribution
of NCNF-650 occupies 90% at 1mV s−1 for abundant N-6
defects, while the others occupy 73 and 84% at 1mV s−1 as
displayed in Figure 1c with their b value (Xu et al., 2018). The
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b value increases with the temperature dropping, revealing the
degree deepening of pseudo-capacity, in accordance with the
quantity N-6 defects. Similar results are obtained in Xie’s report;
nonetheless, Xie indicates that enhancement of electrochemical
performance is a comprehensive result associated with N-6
defects, electrical conductivity, and transfer resistance. Three sets
of temperature-controlled experiments point out that PNCM-
700 is equipped with the best comprehensive performance
compared with PNCM-500 and PNCM-900. As for the function
of defects, Clement states that the D-bond from the Raman
spectrum is employed to describe the sp3 defect distribution,
which intensifies a six-fold rate performance to the un-doped
material (Clement et al., 2015; Share et al., 2016). The prominent
significance of N-doping is to spread out the interlayer spacing
and provide huge specific surface area to promote the pseudo-
capacitive effect.

Doping some other elements also achieves fair results.
Oxidation functional groups on the carbon surface polishes
up the wettability of carbon-based materials and advances the
pseudo-capacitance behavior (Tarun et al., 2010; Shao et al., 2013;
Wang X. et al., 2016; Wu et al., 2016; Xie et al., 2017; Wang
et al., 2018). Adams reported that oxidation groups increase
obviously on the surface capacitive storage while inducing the
capacity reduction contributed by the intercalation mechanism.
As a consequence, there is no significant enhancement to the
total capacity (Adams et al., 2017). In addition, mixed-doping P
and O doping (Ma et al., 2017) based on the triphenylphosphine
precursor obtains a satisfactory capacity of 474mA h g−1,
benefiting from expanding the interlayer spacing; N and F doping
immensely adds the conductivity distinctly (Ju et al., 2016; Share
et al., 2016; Adams et al., 2017).

Activated hollow carbon nanospheres (HCS) underwent HF
etching from C@SiO2 nanospheres in Wang’s work. Wang
emphasizes on the sharp increase on the surface area from 481.4
to 757.8 m2 g−1 after activating utilizing KOH as the activator.
Capacitive contribution occupies 71.2% at a sweep rate of 1mV
s−1, leading to 192.7mA h g−1 at 2A g−1 after 5,000 cycles with a
retention of 99.5% (Wang et al., 2018). Aforesaid data support the
rule that the pseudo-capacity contribution has the tendency of
positive correlation with sweep rate as summarized in Figure 2B.
This work claimed that activated hollow carbon expands the layer
spacing of the carbon anode and shortens the diffusion distance
of K-ions.

Nevertheless, surface-modified strategies, whether doping or
activating, may give rise to the decrease of initial Coulombic

efficiency (ICE) unsatisfactorily. Compensatory methods work
well in LIBs and SIBs (Suo et al., 2017) to establish appropriate
binder–electrolyte systems (BESs), which directly impact the
formation of solid electrolyte interphase (SEI), especially the
morphology features such as thickness, pore, and wrinkle.
Tailored BESs shape the SEI into a smooth and thin layer,
hence improving the transfer efficiency of ions on the phase
interface (Xu et al., 2019a). Similarly, employing KFSI and
KTFSI electrolyte (Eftekhari et al., 2016; Jin et al., 2016), adding
electrolyte additives (Wu et al., 2017), selecting hydrophilic
binders such as CMC, PANa, and SA (Komaba et al., 2015; Luo
et al., 2015b; Jin et al., 2016; Xu et al., 2019a), and utilizing pre-
potassiation technique (Yang et al., 2018) serve the same purpose
for superb PIBs.

CONCLUSIONS AND PERSPECTIVES

PIBs with carbonaceous anodes provide the possibility for
industrialization under controlled price. Facilely, surface
modifications such as doping and activating obviously enhance
the pseudo-capacitance contribution, speeding up the rate and
power performance based on a rapid electrochemical kinetics.

This non-insertion charge storage (pseudo-capacitance
absorption) integrates with both battery-type and capacitor-
type characteristics, exhibiting distinct redox separation peaks
including analogous linear capacitive voltage response. However,
the relationship between capacitive and sweep rate is only
authentic limited in a low and narrow sweep rate under the
CV separation method. Precisely, the SPECS is suitable for
a wider range of sweep rates, inducing detailed contribution
information for each potential point (Forghani and Donne,
2018). In addition, matching binder–electrolyte with anodes
accurately can synergistically promote specific capacity and rate
properties, deriving high-performance PIBs.
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