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Technical Article

Introduction
In this study, we are describing an in  vivo technique 
aimed at the documentation of tissue calcium deposits, 
resulting from calcium waves’ propagation. Light 
microscopy equipment, calcium chelators and a 
histological calcium staining kit are essential. Confocal 
Laser Microscopy has been recognized as the “Gold 
Standard” technique of choice to accurately visualize 
the calcium wave propagation phenomena.[1] The intent 
of the study is not to replace the established Confocal 
Technique, however instead, establish our technique as 
a complementary method.

Oxalic acid (OA) is a known calcium chelator, described 
as a diprotic acid. It has two negative charged areas, 
which are attracted to the positively charged calcium ion 

Ca++. When calcium chelators such as OA are introduced 
selectively in vivo into the tissue, an interesting series of 
events takes place starting with the conversion of the 
ionic cytosolic Ca++ into a salt such as calcium carbonate 
(CaCO3). The von Kossa staining is used to display the 
cytosolic calcium stores.

The published literature on oxalates calcium chelation 
dates back to the end of the nineteenth century,[2] when 
it was first observed how oxalates caused a decrease in 
the conduction of the neuromuscular apparatus. From 
the 1950’s until recently, intravenous  (IV) systemic 
calcium chelation was advocated as a cure for vascular 
diseases. Due to reasons beyond the scope of this 
communication, in 2008, clinical trials were halted in 
the United States.[3] The controversy continues with 
some researchers advocating for additional clinical 
trials for illnesses other than xenobiotics metal toxicity, 
with IV administration of ethylenediaminetetraacetic 
acid (EDTA) as the drug of choice.[4] The oral systemic 
chelation therapy is still utilized mainly in the treatment 
of heavy metals intoxication in children.[5] Targeted 
injections of chelators were experimentally done in vitro 
as early as 1961,[6] where a calcium chelator (EDTA) was 
utilized to dissociate the cardiac cells at the intercalated 
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disc area. Further, in 2012,[7] oxalates were injected in vivo 
in millimolar amounts in the cardiac sympathetic neural 
system of the dog’s heart. The goal was to evaluate 
if neural calcium chelation would have an effect on 
heart rhythm disturbances, that is, Atrial Fibrillation. 
Post publication of the electrophysiological findings, a 
review of the stained slides of the experiments began 
to show that the chelators had infiltrated the adjacent 
and subjacent atrial muscle. A pattern of heterogeneity 
of calcium chelation in the infiltrated myocytes began 
to emerge. This manuscript emphasizes the potential 
applications of these findings in intercellular cell 
signalling, such as calcium propagation.

Materials and Methods
After the in vivo oxalate injections, Haematoxylin and Eosin 
staining and von Kossa staining were carried on biopsied 
samples according to the procedure described by Sheehan 
DC and Hrapchak BB, and as referenced by The American 
Master Tech Von Kossa stain kit procedure.[8] von Kossa 
stains were performed on non‑buffered formalin fixed 
paraffin‑imbedded tissue sections, cut at 4 m thicknesses. 
The slides were deparaffinised using xylene, rinsed in 
distilled water and then placed in silver nitrate 5% solution 
for 40 minutes, under a 100‑watt incandescent lamp. These 
slides were then rinsed in distilled water, and placed in 
5% sodium thiosulfate solution for 2 to 3 minutes. Then 
they were rinsed in tap water, and placed in nuclear fast 
red for 5 minutes. Finally, the slides were dehydrated in 
fresh absolute alcohol, and then cleared in xylene and 
cover slipped. Additionally, control slides were placed in 
1% Hydrogen Chloride (HCL) solution for 5 minutes prior 
to the above von Kossa staining procedure, in order to 
confirm the presence of calcium. Calcium dissolves in acid, 
whereas urates or phosphates salts do not. The calcium 
presence was confirmed. The equipment used was a Leica 
DM2000 bright field transmission light microscope with 
4 FLUOTAR lenses (5X, 10X, 20X and 40X) and 2 N‑Plan 
lenses (2X and 60X high dry). Using Photographic Camera 
Moticam 1000 and 16mm lens mounted on TL 160 BS 
adapter, digital images were taken using corresponding 
Motic Images Plus software program. Images of the slides 
presented in this manuscript are originals, without any 
physical or digital alterations.

Oxalic Acid: Molecular Weight = 126‑ pH 1.6

For concentration of 100 mmol/L, dilute 126 mg in 10 ml 
of solvent.

Results
The infiltration of in vivo targeted delivery of calcium 
chelators, viz. OA into the atrial myocardium combined 
with the von Kossa staining technique resulted in 

images which demonstrate the process of chelation 
which changes the ionic Ca++ into a larger molecule, 
calcium carbonate (CaCO3). It has been reported that 
stress in the endoplasmic reticulum causes excessive 
release of calcium into the cytosolic space.[9] This 
sudden increase in cytosolic calcium, in turn, induces 
down regulation of the intracellular gap junction 
communication (IGJC), thereby trapping the chelated 
calcium at the gap junction. The technique hereby 
presented, could thus enable and expand research for 
the study of cell physiology, as it relates to intra‑ and 
intercellular calcium propagation. The display of the 
focal phenomenon in post chelated atrial myocardium 
[Figure 1], correlates with the prevalent calcium sparks 
and calcium wave theories.

Discussion
In cardiac cell‑to‑cell communication, it can be said 
that, “permeability of the nexus falls with increasing 
molecular weight of the compound”.[10] Our findings 
clearly suggest that intracellular calcium (now converted 
to CaCO3) is not allowed to permeate through the gap 
junctions. An interesting aspect of the study is the 
localization of calcium in the tissue samples, from the 
same longitudinal plane, showing a random or 
heterogeneous distribution. Others have addressed the 
question of an extracellular communication of calcium 
signaling as, “extracellularly mediated Ca2+  signaling 
also exists and this could be employed to supplement 
or replace gap junction communication.” The function 
of intercellular Ca2+ waves may be the coordination of 
cooperative cellular responses to local stimuli”.[11,12] 
Further, the tissue chelation process could be the stimuli 
needed to start this cooperative cellular response.

The unexplained randomness of chelated calcium in 
some cells, and not others in the same longitudinal 

Figure  1: Example of atrial myocardium showing focal random 
chelated calcium after injection of 100 mol/L of oxalic acid (stained 
black) ×5 magnification
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plane, could also be explained by the prevalent calcium 
sparks or calcium wave phenomenon. It has been stated 
that “these Ca2+ sparks appeared to recruit other sparks 
along the wave front so that the wave progressed in a 
saltatory manner.”[13] Furthermore, other researchers 
have found that nonlinear gap junctions enable long 
distance propagation of calcium waves.[14] It should be 
noted that in our nine individual studies, that all chelated 
samples exhibited a focal or heterogeneous pattern of 
calcium presence, whereas all control samples did not 
show evidence of calcium deposits. Further research is 
warranted to substantiate the findings biochemically, 
molecularly and functionally. Our studies focused on 
calcium chelation in the context of myocardial cells that 
resulted in the introduction in the medical literature of 
a technique that falls in a branch of cytology, known 
as Cell Biology. This in  vivo targeted cellular calcium 
chelation method was introduced in the medical 
literature for its effects on the calcium cardiac neural 
tissue, and subsequently for its utility as a cancer‑fighting 
hypothesis.[15]

In Jeon’s 2008 book “International Review of Cytology: 
A  Survey of Cell Biology ‘Intercellular Ca++ Waves: 
From Cultures to Living Tissues’,[16] discussing the state 
of the art of cellular Ca++ waves, the author states: “The 
question is whether Ca++ waves can also be observed in 
preparations somewhat closer to the in vivo situation or 
at least under conditions that allow some conclusions 
on the existence mechanisms, and role of Ca++ waves 
for the in vivo situation”. We have partially answered 
that question by documenting a snapshot of the in vivo 
saltatory phenomenon of the propagation of ionic 
calcium waves in the atrial myocardial cells.

This technique also introduces the field of cell 
physiology to the emerging complex field of cellular 
ionic calcium propagation, which is a reflection of cell 
function and calcium architecture. In the emerging field 
of bioelectric cells signals, a very recent publication 
correlates bioelectric cell membrane signal that can 
identify cells likely to develop into cancer.[17] In vivo 
targeted chelation (by interrupting the cell membrane 
signals) could become a useful provocative diagnostic 
tool, or perhaps a therapeutic mode in the cancer war. 
Do cancerous cells also exhibit a saltatory intercellular 
ionic calcium wave phenomenon? Is that a factor in the 
already documented unreliability of some chemotoxic 
treatments? The technique presented in this manuscript 
could further facilitate the correlation of therapy 
outcome with the saltatory calcium propagation 
phenomenon. However, further research is warranted 
for conclusive evidence.
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