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Abstract
The number of human LncRNAs has now exceeded all known protein-coding genes. Most studies of human LncRNAs have 
been conducted in cell culture systems where various mechanisms of action have been worked out. On the other hand, efforts 
to elucidate the function of human LncRNAs in an in vivo setting have been limited. In this brief review, we highlight some 
strengths and weaknesses of studying human LncRNAs in the mouse. Special consideration is given to bacterial artificial 
chromosome transgenesis and genome editing. The integration of these technical innovations offers an unprecedented 
opportunity to complement and extend the expansive literature of cell culture models for the study of human LncRNAs. 
Two different examples of how BAC transgenesis and genome editing can be leveraged to gain insight into human LncRNA 
regulation and function in mice are presented: the random integration of a vascular cell-enriched LncRNA and a targeted 
approach for a new LncRNA immediately upstream of the ACE2 gene, which encodes the receptor for severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent underlying the coronavirus disease-19 (COVID-19) pandemic.

Approximately ninety-eight percent of our genome is non-
coding. Contrary to initial descriptions of this vast sea of 
sequence comprising “junk DNA” (Ohno 1972), compara-
tive genomics and various next-generation sequencing stud-
ies have revealed millions of transcription factor binding 
sites (TFBS) (Vierstra et al. 2020) and tens of thousands 
of noncoding genes, most notably the class of long non-
coding RNAs (LncRNAs), defined currently as processed 
transcripts of length > 200 base pairs with no protein-coding 
capacity (Rinn and Chang 2020; Statello et al. 2021). The 
widespread transcription of LncRNAs and abundance of 
regulatory sequences such as enhancers support the concept 
of a genome that is largely functional (ENCODE Project 
Consortium 2012). Such a dynamic genome should not be 
surprising given the complex nature of gene expression and 
gene function necessary for embryonic and postnatal devel-
opment as well as disease processes.

Unlike coding genes, which are ultimately translated into 
proteins with conserved domains predictive of function, 

most LncRNAs lack conserved sequence motifs that foretell 
biological utility. Consequently, the study of LncRNA genes 
has been challenging, with few examples of well-defined 
functions in an in vivo setting (Rinn and Chang 2020; Sta-
tello et al. 2021). At a minimum, mechanistic insight into 
the biological role of an LncRNA requires an understand-
ing of (a) where the processed LncRNA accumulates in a 
cell (Kopp and Mendell 2018), (b) the molecular docking 
sites of an LncRNA for nucleic acid or protein association 
(McDonel and Guttman 2019), and (c) phenotypes (e.g., 
developmental, metabolic, transcriptomic) manifested fol-
lowing LncRNA loss-of-function in vivo (Sauvageau et al. 
2013). It should be noted that in some cases, the mere act 
of transcribing the LncRNA confers functionality on the 
expression of an adjacent transcription unit, with the pro-
cessed LncRNA perhaps having an independent role (Ali 
and Grote 2020; Anderson et al. 2016; Paralkar et al. 2016). 
Mature LncRNAs, or regulatory elements embedded within 
the LncRNA locus, may activate or repress local gene tran-
scription (Gil and Ulitsky 2020). Further, a number of 
LncRNA loci are host genes for other genic units such as 
microRNAs that provide another level of finely-tuned gene 
expression (Sun et al. 2021).

Most wet-lab studies of human-specific LncRNAs are 
confined to cells in a dish. For example, a frequently reported 
role of human LncRNAs in vitro relates to their competi-
tion with mRNAs for microRNA binding. These so-called 
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competing endogenous RNAs fine-tune gene expression by 
“sponging” microRNAs that otherwise bind the 3’ untrans-
lated region of an mRNA, targeting the mRNA for degrada-
tion. However, interpretation of most data ascribing a com-
peting RNA function to LncRNAs is difficult in the absence 
of careful stoichiometric measures of the LncRNA, target 
mRNA, and associated microRNA (Denzler et al. 2014). 
Gene editing of a microRNA binding site (MREs) within an 
LncRNA represents a rigorous approach to invoke a compet-
ing endogenous RNA mechanism of action. Surprisingly, 
there are very few studies that target an endogenous MRE 
via editing tools such as CRISPR and none have yet to do 
so in the mouse (Bassett et al. 2014; Broughton et al. 2016; 
Ohtsuki et al. 2021). Given the expansive number of human-
specific LncRNAs reported to function as competing endog-
enous RNAs, largely through standard luciferase assays 
that interrogate an MRE out of normal sequence context, 
there should be increased efforts to formally demonstrate 
the importance of an MRE in vivo through genome editing 
approaches (Wu et al. 2017). This is of particular interest 
since mammalian MREs may carry functionally relevant 
single-nucleotide polymorphisms (Miller et al. 2014).

Growth, migration, differentiation, and MRE function-
ality should be assayed in cell culture or organoid model 
systems to gain some foundational insight into the biology of 
human-specific LncRNAs. However, illuminating the func-
tion of human-specific LncRNAs in the complex milieu of 
a multisystem organism requires a combination of evolving 
technologies in mouse genetics and genome editing. Herein, 
some strengths and weaknesses of mouse transgenesis and 
genome editing are briefly summarized in the context of 
elucidating expression and regulation of LncRNAs. Two 
examples are then presented as to how specialized transgen-
esis, combined with genome editing, may afford important 
insight into the biological role of human-specific LncRNAs 
in the mouse.

Transgenic Human LncRNAs in Mice

Traditional approaches to study gene regulation and func-
tion in the mouse involve pronuclear injection of a cDNA 
encoding a protein or a reporter gene such as beta galac-
tosidase under the control of a strong heterologous or cell-
restricted promoter (Brinster et al. 1989). Transgenic mice 
carrying the human hepatitis C virus regulated 1 LncRNA 
exhibited deleterious expression of the mouse sterol regula-
tory element binding protein and reduced lipid metabolism 
(Li et al. 2017). In a similar fashion, overexpression of the 
human colon cancer associated transcript 2 LncRNA caused 
chromosomal instability with resultant myeloid malignan-
cies (Shah et al. 2018). Although these examples offer some 
insight into the in vivo function of human LncRNAs, they 

are limited by the heterologous nature of the promoter driv-
ing widespread expression of the LncRNA. Moreover, even 
if the endogenous promoter were to have been utilized, 
distal regulatory regions may be absent from the transgene 
precluding full recapitulation of the LncRNA’s expression 
profile. To circumvent these constraints, artificial chromo-
some vectors have evolved to better capture all regulatory 
elements and avoid the ambiguity of a strong heterologous 
promoter which often directs supraphysiological levels of 
an LncRNA that otherwise exhibits low-level, cell compart-
ment-specific expression.

The development of yeast artificial chromosome (YAC) 
and bacterial artificial chromosome (BAC) vectors repre-
sented a significant advance in mouse transgenesis (Giraldo 
and Montoliu 2001; Heaney and Bronson 2006). Artifi-
cial chromosome vectors can harbor large (> 100 kilo-
bases) sequences, thus enabling the integration of human 
transgenes that exceed the cloning capacity of conventional 
vectors into the mouse genome. In addition, the transgene 
within an artificial chromosome will contain most, if not 
all, regulatory sequences, including enhancers and insula-
tors in their correct sequence context, ensuring proper spa-
tiotemporal expression of the transgene (Long and Miano 
2007). Relatively few human LncRNAs have been incorpo-
rated into the mouse genome through artificial chromosome 
transgenesis. The human X inactivation specific transcript, 
XIST, is 32 kilobases in length and the processed 19 kilo-
base transcript drives X chromosome dosage compensation 
in females through propagated hypoacetylation. The human 
XIST LncRNA was packaged in a 480 kilobase YAC for 
transfer into the mouse genome, and results revealed expres-
sion and X chromosome inactivation in the mouse, demon-
strating the conservation of XIST function between human 
and mouse (Migeon et al. 1999). The imprinted human H19 
LncRNA is a host gene for microRNA-675 (Cai and Cullen 
2007). This LncRNA was studied in the context of a 100 
kilobase artificial chromosome and found to be correctly 
expressed in the mouse, but incorrectly imprinted suggest-
ing species-specific mechanisms for methylation-dependent 
repression of H19 (Jones et al. 2002). Using a BAC scan-
ning reporter assay in mice, the human moesin pseudogene 1 
antisense (MSNPS1AS) LncRNA was found to be expressed 
in cortex, striatum, and cerebellum, and expression was 
ascribed to enhancer regions that overlap a series of single-
nucleotide polymorphisms implicated in autism spectrum 
disorder (ASD) (Inoue and Inoue 2016). These findings sug-
gest that elevated levels of MSNPS1AS, shown recently to 
provoke neuronal phenotypes considered important in ASD 
(Luo et al. 2020), may occur through altered enhancer activi-
ties. Of note, the BAC transgenes under study contained the 
variants associated with ASD; however, expression levels of 
MSNPS1AS were not assessed in the context of a wild-type 
allele (Inoue and Inoue 2016).
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While YAC/BAC integration of human LncRNAs has the 
advantage of native promoter and enhancer sequences for 
proper expression levels, pronuclear transgenes insert ran-
domly in the genome, often as concatemers and sometimes 
in more than one locus, complicating the genotyping of mice 
homozygous for the transgene (Nakanishi et al. 2002). The 
emergence of PacBio and Oxford Nanopore Technologies 
sequencing platforms (Amarasinghe et al. 2020) allows for 
the determination of the site of transgene integration as well 
as transgene copy number, thus permitting facile breeding 
strategies to distinguish heterozygous from homozygous 
mice (Nicholls et al. 2019). These third-generation sequenc-
ing platforms will be of great utility in pinpointing the inte-
gration site of many of the 95% of reported transgenes that 
remain unmapped in mouse models (Nicholls et al. 2019). 
Another challenge to overcome with random integration of 
a BAC/YAC carrying an LncRNA is the possible disruption 
of coding or noncoding genic units or regulatory sequences 
such as enhancers or individual transcription factor bind-
ing sites (TFBS). The disruption of regulatory cassettes is 
of particular concern given widespread transcription of the 
genome and the presence of millions of predicted TFBS 
(Jensen et al. 2013; Vierstra et al. 2020). Beyond the obvious 
perturbation in local sequence topology, random insertion of 
a transgene can result in loss of host genome sequence with 
unpredictable consequences (Suzuki et al. 2020). Finally, 
phenotyping of mice could be confounded by disruption of a 
genic unit exhibiting haploinsufficiency. To circumvent these 
limitations, it should be possible to target a human LncRNA 
and associated coding gene/regulatory regions to the corre-
sponding mouse region using a recombinase-mediated strat-
egy wherein an entire mouse genomic region is swapped out 
for the orthologous human sequence (Devoy et al. 2011). 
This method of orthologous gene replacement has yet to be 
done in the context of a BAC-containing human LncRNA, 
though we shall introduce a potentially important candidate 
below. However, before introducing this idea, the power of 
genome editing of LncRNAs is summarized.

Genome Editing of LncRNAs in Mice

The clustered regularly interspaced short palindromic repeat 
(CRISPR) platform of gene editing (Jinek et al. 2012) has 
forever transformed the development of genetically modified 
mouse models (Harms et al. 2014; Miano et al. 2016; Singh 
et al. 2015). Whereas germline transmission of a genetic 
modification in mice, using traditional embryonic stem cell 
targeting, can take a year or more (or never), a CRISPR 
edit enables germline transmission in a matter of just a few 
months (Miano et al. 2019). Since the initial reporting of 
CRISPR editing in mice (Shen et al. 2013), additional gene 

editing systems have been developed, including base editing 
and the very recent prime editing (Anzalone et al. 2020).

The absence of well-annotated functional motifs in most 
LncRNAs renders CRISPR targeting of this class of genes in 
the mouse challenging, though not insurmountable (Miano 
et al. 2019). Indeed, several LncRNAs have been targeted 
with CRISPR in rodents through large deletions of multiple 
exons or the entire LncRNA locus (Han et al. 2014; Zhou 
et al. 2021b; Zhuang et al. 2021). The approach of remov-
ing such large sequences runs the risk of deleting regula-
tory elements or small intronic RNAs that may compromise 
accurate interpretation of phenotypes. Alternatively, smaller 
deletions such as in the promoter region or a single exon 
of an LncRNA have been reported that minimize the risk 
of removing other functionally important sequences (Allou 
et al. 2021; Li et al. 2021; Saba et al. 2021). In addition, 
CRISPR-mediated insertion of a polyadenylation signal that 
arrests transcription of an LncRNA can be used to address 
the role of active transcription in LncRNA function (Allou 
et al. 2021; Anderson et al. 2016; Ballarino et al. 2018). An 
alternative approach to permanently silence transcription 
of an LncRNA is through strategic nucleotide substitutions 
across a key TFBS (Choi et al. 2020). Using the prime edit-
ing platform (Anzalone et al. 2019), a recent study showed 
that a single-nucleotide substitution in a TFBS nearly extin-
guished expression of an LncRNA. Interestingly, this single 
base change also nullified the expression of a divergently 
transcribed protein-coding gene (Gao et al. 2021). The latter 
finding highlights the need for careful deliberation over the 
specific strategy implemented in gene editing of an LncRNA 
in mice (Miano et al. 2019). For example, there could be a 
TFBS embedded inside the LncRNA locus that controls the 
expression of another locus independent of the transcribed 
LncRNA (Ali and Grote 2020). As of this writing, there has 
been no report of the editing of a human-specific LncRNA in 
mice. Below, we introduce two examples of human-specific 
LncRNA integration in the mouse and how genome editing 
may unveil important regulatory and functional features of 
each LncRNA.

A Humanized Mouse Model for SENCR

The Smooth muscle and Endothelial cell-enriched migration/
differentiation-associated long Non-Coding RNA (SENCR, 
pronounced sen-sər) was first reported in early 2014 from 
an RNA-seq study of human coronary artery smooth muscle 
cells (Bell et al. 2014). This 3-exon LncRNA overlaps the 
5’ end of Friend Leukemia Integration 1 (FLI1), a member 
of the E26 transformation specific family of DNA-binding 
transcription factors. SENCR and FLI1 display similar pat-
terns of tissue-specific RNA expression (Fig. 1). However, 
data thus far suggest that the RNA expression of one is 
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independent of the other (Bell et al. 2014). Further, whereas 
FLI1 is a nuclear transcription factor, most SENCR tran-
scripts are cytoplasmic suggesting each gene product exerts 
distinct functions (Bell et al. 2014). Knockdown studies 
combined with RNA-seq revealed functions of SENCR 
related to the maintenance of a non-motile, differentiated 
smooth muscle cell phenotype (Bell et al. 2014). A sub-
sequent study demonstrated SENCR to promote the com-
mitment of human embryonic stem cells to an endothelial 
cell lineage (Boulberdaa et al. 2016). SENCR also facilitated 
endothelial cell proliferation and migration, key processes 
in angiogenesis (Boulberdaa et al. 2016). In this context, 
patients with critical limb ischemia or premature coronary 
artery disease showed reduced levels of SENCR in ischemic 
tissue or in endothelial cells derived from blood vessels, 
respectively (Boulberdaa et  al. 2016). The latter report 
provided some intriguing insight into the in vivo function 
of SENCR. However, these proposed functions and others 
require validation and further study of SENCR in an animal 
model.

To date, there has been no compelling evidence for a 
mouse ortholog of human SENCR. CRISPR-directed SENCR 

deletion studies in an immortalized human endothelial cell 
line (EA.hy926 cells) were thwarted by the presence of four 
copies of the host chromosome 11 (unpublished). How-
ever, the in vivo function of SENCR could be revealed by 
its introduction into the mouse genome, with the assump-
tion that spatial expression and function of SENCR in the 
mouse would mirror SENCR expression and function in the 
human body. To begin to address these important points, a 
recent study reported the integration of a 217 kilobase BAC 
harboring the entire human FLI1 and SENCR genes into the 
mouse using the piggyBAC transposase system of transgene 
integration (Lyu et al. 2019). Studies in cultured human 
endothelial cells revealed an increase in SENCR expression 
under laminar flow conditions, which approximated the bio-
physical forces endothelial cells encounter with blood flow 
in vivo (Lyu et al. 2019). Notably, immuno-RNA fluores-
cence in situ hybridization experiments disclosed expected 
increases in SENCR expression where laminar flow condi-
tions exist across the aortic arch of the humanized mouse 
model (Lyu et al. 2019). These results demonstrated the util-
ity of studying proposed functions of SENCR as a mediator 
of smooth muscle and endothelial cell homeostasis in vivo. 

Fig. 1   Tissue RNA profile of SENCR and FLI1. Data obtained from the GTEx portal website (https://​www.​gtexp​ortal.​org/​home/)

https://www.gtexportal.org/home/
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In addition, the opportunity now exists to uncouple FLI1 
and SENCR through BAC editing in the background of a 
Fli1 null mouse. Since genetic loss of Fli1 is embryonic 
lethal (Spyropoulos et al. 2000), the expectation is human 
FLI1 will rescue the lethal phenotype. One important caveat 
to the BAC editing of the FLI1/SENCR human transgene is 
the need for a single-copy BAC transgene. The piggyBAC 
system for in vivo BAC integration supports a single-copy 
integration event (Jung et al. 2016). However, transgene 
copy number and the site of integration will require third-
generation sequencing platforms (Amarasinghe et al. 2020) 
to determine the suitability for BAC editing and the breed-
ing of heterozygous mice to homozygosity for gene dosage 
effects. As discussed next, targeting a single-copy human 
LncRNA-mRNA gene pair to a defined locus obviates the 
need for such mapping studies.

An ACE2‑LncRNA Gene Pair 
and Development of a New Mouse Model 
for COVID‑19

Over the last two years, Severe Acute Respiratory Syn-
drome CoronaVirus-2 (SARS-CoV-2), the etiologic agent 
underlying the COronaVIrus Disease-2019 (COVID-19) 
pandemic, has ravaged the world, precipitating economical, 
sociological, and political upheaval as well as an unprec-
edented ‘infodemic’ that has hampered efforts to disseminate 
scientific facts regarding SARS-CoV-2 infection, COVID-
19, and the vaccination campaign (Tentolouris et al. 2021). 
Moreover, health care systems around the world have been 
overstrained, making prioritization of health care delivery 
ever-challenging. Cumulatively, as of January 27, 2022, the 
COVID-19 pandemic has resulted in 363,582,071 positive 
cases of SARS-CoV-2 infection and 5,629,317 deaths, 15% 
of which have occurred in the United States (https://​coron​
avirus.​jhu.​edu/​map.​html).

The receptor mediating SARS-CoV-2 entry into human 
cells is angiotensin-converting enzyme 2 (ACE2) (Zhou 
et al. 2020). There are at least three isoforms of human 
ACE2, spanning ~41 kilobases of DNA on the X chromo-
some, each of which appears to be under control of distinct 

promoters (Fig. 2). The longest isoform of ACE2 comprises 
19 exons, encoding an 805 amino acid protein. A slightly 
shorter isoform of ACE2 exists, encoding the same number 
of amino acids (Fig. 2). High-level expression of ACE2 pro-
tein is seen in human small intestine and kidney (Fig. 3A). 
Several human cell lines also express ACE2 protein, though 
levels of ACE2 are undetectable in vascular smooth muscle 
cells and endothelial cells (Fig. 3A). The latter cell type 
has been the focus of numerous studies given the mount-
ing evidence for SARS-CoV-2-induced endotheliopathy, 
considered an important contributor to the pathogenesis of 
COVID-19 (Goshua et al. 2020). The undetectable levels of 
ACE2 protein in human endothelial cells shown here is con-
sistent with a recent report that failed to detect ACE2 mRNA 
in several human endothelial cell types (McCracken et al. 
2021), but inconsistent with other reports (Hamming et al. 
2004; Targosz-Korecka et al. 2021; Wagner et al. 2021). 
These disparate findings highlight the ongoing controversy 
over whether endothelial cells are prone to SARS-CoV-2 
infection (Goldsmith et al. 2020; McCracken et al. 2021; 
Targosz-Korecka et al. 2021; Varga et al. 2020; Wagner et al. 
2021).

In addition to the two long isoforms of ACE2, there is at 
least one shorter isoform (Fig. 2). This shorter deltaACE2 
(dACE2) isoform is elevated following interferon stimulation 
of several human cell lines, including nasal epithelial cells 
(Onabajo et al. 2020). Similar induction of the dACE2 iso-
form is observed upon stimulation of Caco-2 cells (immortal 
colorectal adenocarcinoma cell line) with interferon alpha, 
interferon beta, or interferon gamma (unpublished). The 
dACE2 isoform lacks ~350 N-terminal amino acids and does 
not bind SARS-CoV-2 (Onabajo et al. 2020).

Interestingly, a non-overlapping antisense LncRNA, des-
ignated GS1-594A7.3, resides just upstream of the human 
ACE2 locus (Fig. 2). This LncRNA, which is poorly con-
served across vertebrate species (Fig. 2), is only 722 base 
pairs upstream of the longest ACE2 isoform, suggesting 
the ACE2-GS1-594A7.3 mRNA-LncRNA gene pair may 
share a common promoter. Evidence in support of such 
a bifunctional promoter exists with the partial overlap in 
RNA expression of ACE2 and GS1-594A7.3 across human 
tissues (Fig. 4). Rapid amplification of cDNA ends and 

Fig. 2   ACE2 locus. Modified UCSC Genome Browser (http://​
genome.​ucsc.​edu/) screenshot showing the three isoforms of ACE2 
and the upstream GS1-594A7.3 LncRNA. Vertebrate conservation 

(bottom green track) reveals conservation of ACE2 coding exons, 
but a notable lack of conservation in the two exons of GS1-594A7.3 
(cream-colored rectangles overlapping exons)

https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
http://genome.ucsc.edu/
http://genome.ucsc.edu/


286	 A. R. Ghanam et al.

1 3

long range qRT-PCR validated the annotation of GS1-
594A7.3 as an independently transcribed LncRNA (unpub-
lished). Of intriguing importance is the finding that the 
GS1-594A7.3 LncRNA is confined largely to the nucleus of 
several human cell lines (Fig. 3B–C). This observation sug-
gests that GS1-594A7.3 possesses the potential to regulate 
ACE2 levels in cis. However, repeated attempts to CRISPR 
edit this LncRNA in cultured cells have been unsuccess-
ful, likely because of the known difficulties in establishing 
stable cell lines in Caco-2 and Calu-3 cells and their state 
of aneuploidy.

X-ray crystallographic analysis of the receptor binding 
domain of SARS-CoV-2 bound to human ACE2 (Lan et al. 
2020) revealed critical contact residues that are not con-
served in the mouse ACE2 protein, rendering mice resist-
ant to SARS-CoV-2 infection and disease (Lan et al. 2020). 
Accordingly, several humanized ACE2 mouse models for 
SARS-CoV-2 infection and COVID-19 exist (Lutz et al. 
2020). Most of these mouse models were generated through 

pronuclear transgenesis (Table 1). As discussed earlier, 
limitations of mouse transgenesis include the unknown 
site of integration and copy number of transgene. Moreo-
ver, the majority of humanized ACE2 mouse models uti-
lize chimeric or cell-specific promoters that likely do not 
fully recapitulate the human ACE2 pattern of expression in 
humans (Table 1), though at least one of these models has 
proved useful for testing vaccines and therapeutics (Chen 
et al. 2021; Hoffmann et al. 2021). To control the inherent 
limitations of transgenesis and more closely approximate the 
endogenous expression profile of human ACE2, two models 
targeted exon 2 of the endogenous mouse Ace2 locus with 
a human ACE2 cDNA (Table 1). These knockin models not 
only safeguard against multiple copies of the transgene, but 
also take advantage of the mouse Ace2 regulome, thus better 
modeling the true spatiotemporal pattern of ACE2 protein 
expression. However, there may be differences between pro-
moter/enhancer sequences in the mouse Ace2 regulome ver-
sus the human ACE2 regulome. Moreover, the GS1-594A7.3 

Fig. 3   ACE2 protein expres-
sion and localization of GS1-
594A7.3 LncRNA. A Western 
blotting shows ACE2 protein 
(molecular weight 120 kDa) 
in the indicated cell lines and 
human tissue types. B Cellular 
localization of GS1-594A7.3 
LncRNA by two RNA-FISH 
methods, (i) ViewRNA which 
combines fluorescence in situ 
hybridization and sequential 
branched-DNA amplifica-
tion in HEK-293 cells and (ii) 
biotin-labeled probes in Caco-2 
cells pre-treated with a siRNA 
control (ii) or a siRNA targeting 
exon 2 of GS1-594A7.3 (iii). 
Scale bar is 10 µm. C Real-time 
quantitative PCR with standard 
curve to determine nuclear and 
cytoplasmic abundance of GS1-
594A7.3 LncRNA with GAPDH 
as internal control
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LncRNA appears to be a human-specific LncRNA as there 
is no similarly arranged LncRNA in the mouse, and analy-
sis of sequencing data around the 5’ region of mouse Ace2 
has failed to reveal transcription of an LncRNA. Since 
there presently is no evidence for a mouse Ace2- associated 
LncRNA, humanized BAC transgenic studies, as described 
above for the SENCR LncRNA, offer a unique opportunity 
to assess the expression and function of GS1-594A7.3 in 
the mouse.

Beginning in the summer of 2020, this lab set out to 
develop a new humanized ACE2 mouse model in order to 
capture the entire human ACE2 locus (Fig. 2) as well as 
the upstream GS1-594A7.3 LncRNA. However, rather than 
risk random integration of the BAC harboring the ACE2-
GS1-594A7.3 mRNA-LncRNA gene pair (BAC clone 
CTD-2522M16), a different strategy was used. The basic 
approach involves the swapping in of the entire human 
ACE2 locus for the mouse Ace2 locus. A CRISPR-mediated 
method has been used for targeting large sequences, such as 
BACs, to define gene loci in the rat genome (Yoshimi et al. 
2016). An alternative method, and the one we adopted, uses 

recombinase-mediated genomic replacement (RMGR) in 
mouse embryonic stem cells, which are then implanted into 
the blastocyst for generation of chimeric mice (Wallace et al. 
2007). In this model, all human ACE2 coding exons and non-
coding introns are present in their proper sequence context, 
allowing for all isoforms, including the interferon-induced 
dACE2 (Fig. 2), to be expressed. Important validations are 
required, including correct spatiotemporal expression of 
ACE2 mRNA and ACE2 protein using molecular probes and 
scRNA-seq; susceptibility of mice to SARS-CoV-2 infec-
tion and attending pathology in the lung, blood, intestinal 
tract, and brain; phenotyping homozygous ACE2 mice for 
evidence of developmental defects, altered blood pressure 
regulation or behavioral deficits due to loss of the mouse 
Ace2 locus and unannotated critical noncoding genes that 
are unable to be rescued by the human ACE2 locus; and, 
most importantly, the expression and localization of the 
GS1-594A7.3 LncRNA.

Beyond the targeting of a single-copy transgene to a 
defined locus, there are several advantages to this more 
fully humanized ACE2 mouse model. First, the definitive 

Fig. 4   Tissue RNA profile of ACE2 and GS1-594A7.3 LncRNA. Data obtained from the GTEx portal website (https://​www.​gtexp​ortal.​org/​
home/). Insets show heat maps of RNA expression for each transcript in human tissues

https://www.gtexportal.org/home/
https://www.gtexportal.org/home/
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role of the upstream GS1-594A7.3 LncRNA can be stud-
ied with genome editing, either through deletion of the 
entire LncRNA locus, insertion of a polyadenylation sig-
nal sequence in the first exon, or more subtle editing of 
a TFBS as reported in other mouse models of LncRNA 
regulation (Choi et al. 2020; Gao et al. 2021). The hypoth-
esis would be that loss of GS1-594A7.3 LncRNA will 
alter normal expression of human ACE2, rendering mice 
either more or less susceptible to SARS-CoV-2 infection 
and COVID-like symptoms. Second, a more representa-
tive human ACE2 expression profile would likely reflect 
the nuanced expression of this receptor, especially under 
conditions that model human comorbidities (e.g., type 2 
diabetes, hypertension, and obesity), where the risk for 
severe COVID-associated pathology and death is high. 
Third, mechanisms underlying so-called long COVID 
(Nalbandian et al. 2021) may be illuminated with the cor-
rect spatiotemporal expression of human ACE2 and multi-
system infection and pathology; the increasingly problem-
atic ‘long COVID’ has been barely touched upon in mouse 
models. Finally, several noncoding variants associated 
with altered ACE2 expression (Bakhshandeh et al. 2021; 
Brest et  al. 2020) can be addressed with conventional 
CRISPR, as was done for a variant in the atherosclerosis-
associated risk allele, SORT1 (Wang et al. 2018). Alter-
natively, coding and noncoding single-nucleotide variant 
modeling can be accomplished in and around the human 
ACE2 locus, with low on-target and off-target collateral 
damage, using the prime editing platform (Anzalone et al. 
2019; Gao et al. 2021). No currently published humanized 
ACE2 model affords such versatility.

Challenges, Limitations, and Alternative 
Approaches to Humanized BAC Mice

The study of human-specific LncRNAs has been confined 
mainly to cell culture models. However, most cell culture 
systems are either transformed or phenotypically altered 
with poor reproduction of their natural in vivo state. Fur-
ther, cells in a dish lack correct integration with neighbor-
ing cell types encountered in an in vivo setting as well as 
neuronal- and circulatory-derived inputs. To circumvent 
these limitations, whole organ or human embryonic stem 
cell-derived organoid model systems have been developed 
to interrogate human LncRNAs. For example, the human-
specific LncRNA, SMILR, was investigated in organ cultures 
of human saphenous vein grafts to define its role in mediat-
ing smooth muscle cell proliferation (Mahmoud et al. 2019). 
Meanwhile, the PAUPAR LncRNA was studied in human 
organoids and shown to regulate cortical differentiation (Xu 
et al. 2021). These ex vivo model systems represent a higher 
order level of investigation over simple, two-dimensional 
cell culture models. In order to realize whether what is 
observed in vitro or in organ culture models applies to a 
complex living animal, humanized BAC rodent models offer 
another level of exploration.

To be sure, there are several limitations and challenges 
with humanized BAC transgenic mouse experiments. 
First, BAC transgenesis, whether via pronuclear injection 
or RMGR, requires highly skilled methods of handling 
and delivery into the mouse genome with no guarantee 
of targeting or germline transmission. Beyond academic 
cores, commercial vendors can perform these genetic 
manipulations, typically at a cost >$30,000. Second, some 
LncRNAs (e.g., the 363 kilobase STXBP5-AS1) exceed 
the cloning capacity of BAC vectors, thus requiring larger 

Table 1   List of published humanized ACE2 rodent models for study of SARS-CoV-2 and COVID-19

Transgenic Reference PMID

Chimeric promoter
 Mus CAG-hACE2 Tseng et al. (2007) 17108019
 Mus HFH4/FOXJ1-hACE2 Menachery et al. (2016) 26976607
 Mus CAG-hACE2 Asaka et al. (2021) 34463644

Cell-specific promoter
 Mus KRT18-ACE2 (2.5kb human KRT18 promoter) McCray et al. (2007) 17079315
 Mus Ace2-hACE2 (9kb mouse Ace2 promoter) Yang et al. (2007) 17974127
 Rat Tagln-hACE2 (2.8kb mouse Tagln promoter) Rentzsch et al. (2008) 18809792
 Mus Syn1-hACE2 (0.5kb rat Syn1 promoter) Feng et al. (2010) 19926873
 Mus Nphs1-hACE2 (8.3kb mouse Nphs1 promoter) Nadarajah et al. (2012) 22475818

Knock In Reference PMID

Mus hACE2 (hACE2-IRES-tdTomato-WPRE at Ace2 exon2) Sun et al. (2020) 32485164
Mus hACE2 (hACE2 at Ace2 exon2) Zhou et al. (2021a) 33636719
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cloning capacity vectors such as YACs (see above). The 
latter limitation serves as a reminder that annotation of 
many LncRNAs may be incomplete with rapid amplifica-
tion of cDNA ends needed to fully extend the LncRNA 
transcript at both the 5’ and 3’ ends (Freedman and Miano 
2017). Third, phenotypic analysis of a mouse carrying a 
human LncRNA can be challenging if insertion of the 
BAC disrupts a critical regulatory or coding sequence or 
if human-specific sequences such as enhancers or other 
genic units within the BAC create an unrelated phenotype 
to that of the LncRNA. Fourth, BAC models of human 
LncRNAs may confer phenotypes not easily discerned in 
the mouse (e.g., cognitive functions). Fifth, human LncR-
NAs may not fully recapitulate their spatiotemporal pat-
tern expression profile in the mouse, due to the absence of 
human-specific regulatory cassettes or cofactors. Finally, 
the random, multicopy integration of BAC transgenes in 
the mouse requires mapping analysis using, for example, 
third-generation sequencing platforms, in order to opti-
mize breeding schedules and learn of any potential genetic 
confounders such as disruption of a protein-coding gene or 
regulatory sequence. Where conserved LncRNAs exist, we 
suggest replacement of a mouse locus with the orthologous 
human sequence using RMGR, as described for the ACE2-
GS1-594A7.3 mRNA-LncRNA gene pair, as an alternative 
approach to pronuclear injection of a BAC for the study 

of human LncRNA expression regulation and function in 
the mouse. In addition to a single integration event at a 
known genomic location, thus facilitating genotyping of 
heterozygous intercrosses for the generation of homozy-
gous animals, RMGR renders the mouse more amenable 
to genome editing strategies (Fig. 5). The development of 
new mouse models, coupled with genome editing, holds 
promise for advancing our understanding of the expres-
sion and function of human LncRNAs under normal and 
pathological conditions.
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Fig. 5   Schematic of two meth-
ods of generating humanized 
BAC transgenic mice. Hypo-
thetical LncRNA-mRNA gene 
pair within a human BAC (top). 
At least two methods exist for 
incorporating a BAC-containing 
LncRNA transgene into the 
mouse genome (arrows). One 
involves standard pronuclear 
injection with attending random 
integration, often as multiple 
copies (right arrow). An alterna-
tive method is recombinase-
mediated genomic replacement 
(RMGR) (left arrow). Features 
of each method are indicated at 
bottom. See text for details
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