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Natural killer cells (NK cells) are the first line of the innate immune defense system, primarily
located in peripheral circulation and lymphoid tissues. They kill virally infected and
malignant cells through a balancing play of inhibitory and stimulatory receptors. In pre-
clinical investigational studies, NK cells show promising anti-tumor effects and are used in
adoptive transfer of activated and expanded cells, ex-vivo. NK cells express co-
stimulatory molecules that are attractive targets for the immunotherapy of cancers.
Recent clinical trials are investigating the use of CAR-NK for different cancers to
determine the efficiency. Herein, we review NK cell therapy approaches (NK cell
preparation from tissue sources, ways of expansion ex-vivo for “off-the-shelf” allogeneic
cell-doses for therapies, and how different vector delivery systems are used to engineer
NK cells with CARs) for cancer immunotherapy.

Keywords: natural killer cells, CAR-NK cells, immunotherapy, NK cell expansion, lentiviral delivery, AAV delivery,
killer immune receptors, GMP manufacturing
NATURAL KILLER CELL BIOLOGY

Human natural killer (NK) cells are innate cytotoxic lymphoid cells derived from CD34+ precursors
originating from hematopoietic stem cells (1, 2) and play an essential role in tumor surveillance.
Unlike T cells, NK cells can kill malignant cells in an antigen-independent manner and have shown
promise in a number of clinical trials involving both solid and hematological cancers (3). NK cells
do not require HLA matching. Their ability to act in an antigen-independent manner makes them a
viable option for an “off the shelf” therapy that can be manufactured on a large scale and easily
distributed to cancer patients.

NK cells are subdivided into two populations based on their relative expression of CD56 (neural
cell adhesion molecule; NCAM) and CD16: immature CD56bright CD16neg NK cells, and mature
CD56dim CD16pos NK cells (4). The CD56bright population accounts for 10% of NK cells circulating
in the blood and are located primarily in lymph nodes. Immature CD56bright NK cells have an
immunoregulatory function and produce cytokines, such as interferon-gamma (IFN-g), TNFa,
TNF-b, IL-10, and GM-CSF (5). In contrast, the mature CD56dim CD16pos population accounts for
up to 90% of the circulating NK cells (6). The key function of mature CD56dim CD16pos NK cells is
natural and Ab-mediated cell cytotoxicity. Mature CD56dim NK cells express high amounts of killer
cell immunoglobulin receptors (KIRs) (7).
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The mechanism for the transition from CD56bright to
CD56dim is still widely unknown, but the change in surface
markers is a major indicator for transitioning to maturity (2, 7).
CD16, CD27, CD56, CD57, and perforin are all markers for NK
cell maturation (7, 8). CD27 is a marker of immature NK cells,
associated with the TNFa receptor group and found on three
times as many immature CD56bright as mature CD56dim (7).
Inversely CD57 and perforin are markers for terminal maturity
and are highly expressed on mature NK cells (7, 9).

Located throughout the body, NK cells represent 5-20% of all
lymphocytes in the blood and organs with high concentrations in
the bone marrow, spleen, liver, lungs, skin, kidneys, uterus, and
secondary lymphoid tissue (8, 10). The tissue-specific location
has been shown to have a significant impact on NK cell
functionality and cytokine production. Mature NK cells in the
lung are shown to produce higher amounts of granzyme B, a
serine protease associated with cytotoxicity, than those NK cells
found in the lymph nodes or gut (8).

NK cells secrete a number of pro-inflammatory cytokines,
such as TNF and IFN-g that stimulate an adaptive immune
response and prevent tumor angiogenesis (5). The production
levels of IFN-g and TNFa from NK cells can be stimulated
through various cytokines such as IL-12, IL-15, and IL-18 (8).

NK cells function by killing virally infected, stressed, and
cancerous cells in an antigen-independent manner (1, 2, 8).
Additionally, NK cells work to activate other immune cells using
co-stimulatory signals (2). NK cell’s cytolytic function is based
on an array of activation and inhibitory signals (Figure 1) as
well as self-major histocompatibility complexes (MHC) class I
molecules (1, 2). NK cells recognize target cell MHC class I
molecules which bind to the NK cell KIRs allowing the NK to
identify “self.” This self-identification inhibits the cytotoxic
activity against normal cells (1, 2, 7). In addition to
preventing cytotoxic function, this binding also prevents
inflammation and helps with the “licensing” of the immature
NK cells (7). Tumor cells often downregulate MHC class I
expression to avoid lysis by cytotoxic T cells. Additionally, DNA
damage and cellular stress upregulates tumor ligands’
expression on malignant cells, which are recognized by NK
cell-activating receptors (Figure 2). NK cells will trigger cell-
mediated lysis (1) if a cell down-regulates its MHC class I
molecules and upregulates activation ligands.

Once a cell is designated as infected, stressed, or cancerous,
NK cells work to kill it through a direct release of cytolytic
granules containing perforin and granzyme B. The contents of
cytolytic granules are released from the cell via degranulation
(Figure 2). The granules from the NK cell form a synapse with
the target cell, releasing the cytolytic contents. Perforin and
granzyme B are key components of cytolytic granules and
trigger apoptosis through caspase-dependent and independent
mechanisms. Perforin aids in the entry of the granzyme B into
the target cell, which ultimately leads to target cell death (11).

In addition to direct lysis of malignant or virally infected cells,
CD56dim CD16pos NK cells mediate antibody-dependent cellular
cytotoxicity (ADCC). ADCC is triggered when NK cells
recognize an antibody opsonized target cell. The binding of
Frontiers in Immunology | www.frontiersin.org 2
CD16 with the Fc portion of IgG antibodies trigger the release
of perforin and granzyme B which lyse the target cell (11). ADCC
is provoked by several therapeutic monoclonal antibodies
(mAbs) and may enhance the homing and efficacy of NK cell
therapy (12).
NK CELL-BASED STRATEGIES IN
CLINICAL TRIALS TARGETING
DIFFERENT INDICATIONS

Autologous and allogeneic NK cell therapies have shown great
potential in preclinical studies and clinical trials. Different
strategies are considered in clinical trials using NK cells for
cancer therapies, including utilizing an agonist to NK cell
activation receptors (mABs; transtuzumab, rituximab, etc., +
IL-2 and anti PD1) or by blocking NK cells inhibitory receptor
signals with mABs to KIR (NKG2A-CD94 or with CTLA-4 and
PD-1 checkpoint inhibitor) (13). Recent findings demonstrate
the potential of allogeneic NK cells for hematological
malignancies and solid tumors (14). Unlike T cells, NK cells
do not induce graft-versus-host-disease (GVHD) and their
alloreactivity is enhanced under KIR mismatch with HLA
ligands on cancer cells (15). Several clinical trials have
highlighted the safety of the allogeneic transfer of NK cells
(16). Allogeneic NK cells were used to target different cancers
including hematological malignancies, lymphoma, leukemia, and
solid tumors such as melanoma, neuroblastoma, gastric cancers,
ovarian and breast tumors (Table 1).

An “off the shelf” NK cell therapy solves the one-donor, one-
patient limitation that makes -autologous cell therapy processes
labor-intensive. A critical step to enable allogeneic NK cell-based
therapies would require a healthy donor source for NK cells and
expanding to clinically relevant doses. Most clinical trials of
NK cells require large numbers of cells for infusion, ranging
from 5×106 to 1×108 CD3negCD56pos NK cells per kilogram body
weight (5).
SOURCES OF NATURAL KILLER CELLS
FOR IMMUNOTHERAPY

NK cells for therapy can be acquired from various sources such
as umbilical cord blood (UCB) (17), peripheral blood (PB) (18,
19), human embryonic stem cells (hESCs) or induced
pluripotent stem cells (iPSCs) (20) as well as cells lines such as
NK-92 (21). To date, most of the NK cell clinical trials are based
on UCB-NK cells, PB-NK cells, and the lymphoma-derived NK
cell line NK-92. There are critical challenges in the
manufacturing process of the final therapeutic cell doses. For
example, isolation and expansion of PB-NK cells and UCB-NK
cells result in a mixed composition (22). The cell line NK-92 is
derived from a cancer patient with non-Hodgkin lymphoma;
thus, the cells need to be irradiated before infusion, limiting the
December 2021 | Volume 12 | Article 732135
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NK cell persistence (23). In contrast to these limitations, hESC-
NK cells and iPSC-NK cells are more homogenous and can be
generated in sufficient cell numbers for allogeneic clinical use
(24). Pluripotent (hESC/iPSC) derived NK cells can result in
Frontiers in Immunology | www.frontiersin.org 3
allogeneic therapy providing a standard cell-based treatment
option for different diseases (24–26). Processing workflow of
NK cell isolation from different donor sources through
expansion for adaptive transfer is described (Figure 3).
FIGURE 1 | NK cell surface receptors and ligands on tumor cells are involved in tumor recognition. NK cells express a set of stimulatory (or activation) receptors as
well as inhibitory receptors to recognize healthy cells and aberrant cells such as virus-infected or a potential tumorigenic cell through MHC-1 receptor appearance.
FIGURE 2 | Phenotypic and functional properties of immature (left) and mature (right) NK cells. Immature NK cells express CD56bright, absent, or CD16dim, low KIR,
and CD27 and are also known as NKregulatory that exhibit low cytotoxicity, but high cytokine production. Mature NK cells, in contrast, express CD56dim, high CD16,
high KIRs, and CD57 and are also knows as NKcytotoxic that exhibit high cytotoxicity and low cytokine production.
December 2021 | Volume 12 | Article 732135
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TABLE 1 | Completed allogeneic NK cell clinical trials.

onsor/
borators

Dates Locations / Outcome

sei
ity

Study Start:
October 17,
2017
rimary
Completion:
September
27, 2018
Last
Update
Posted:
January 16,
2019

• Division of
Gastroenterology,
Department of Internal
Medicine, Yonsei
University College of
Medicine, Seoul, Korea,
Republic of

sung
l Center

Study Start:
August
2014
Last Update
Posted:
December
3, 2015

• Samsung Medical
Center, Seoul, Korea,
Republic of

ul
al
ity
al
en Cross
ation

Study Start:
September
2010
Primary
Completion:
August
2012
Last Update
Posted:
August 19,
2013

• Seoul National
University Hospital, Seoul,
Korea, Republic of

.
on Cancer
• Bayer
care
aceuticals,
yer
g Pharma

Study Start:
September
2006
Primary
Completion:
July 22,
2019
Last Update
Posted: July
31, 2019

• University of Texas MD
Anderson Cancer Center,
Houston, Texas, United
States

.
on Cancer

Study Start:
May 2006
Primary
Completion:
April 2014
Last Update
Posted: May
8, 2015

• UT MD Anderson
Cancer Center, Houston,
Texas, United States
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NCT Number Title NK Cell
source

Status Conditions Interventions Clinical trial
phase

Population Sp
Colla

1 NCT03358849 Phase 1 Clinical Trial
to Evaluate the Safety
of Allogeneic NK Cell
("SMT-NK") Cell
Therapy in Advanced
Biliary Tract Cancer

Not available Completed:
No results
posted

• Advanced Biliary
Tract Cancer

• Biological:
Natural killer cell

Study Type:
Interventional
Phase:
Phase 1

Enrollment:
9
Age:
18 Years to
75 Years
(Adult,
Older Adult)
Sex:
All

• Yo
Univer

2 NCT02008929 to Evaluate the
Efficacy and Safety of
MG4101(Ex Vivo
Expanded Allogeneic
NK Cell)

Allogeneic
expanded NK
Cells

Completed:
No results
posted

• Hepatocellular
Carcinoma

• Biological:
MG4101

Study Type:
Interventional
Phase:
Phase 2

Enrollment:
5
Age:
20 Years to
69 Years
(Adult,
Older Adult)
Sex:
All

• Sa
Medic

3 NCT01212341 Allogeneic Natural
Killer (NK) Cell Therapy
in Patients With
Lymphoma or Solid
Tumor

Allogeneic NK
Cells

Completed
- No results
posted

• Malignant
Lymphomas
• Solid Tumors

• Biological:
Allogeneic NK cells

Study Type:
Interventional
Phase:
Phase 1

Enrollment:
18
Age:
18 Years
and older
(Adult,
Older Adult)
Sex:
All

• Se
Nation
Univer
Hospi
• Gr
Corpo

4 NCT00383994 Immunotherapy With
NK Cell, Rituximab
and Rhu-GMCSF in
Non-Myeloablative
Allogeneic Stem Cell
Transplantation

Blood derived
NK Cells

Completed
No resultrs
posted

• Lymphoma
• Leukemia
• Transplantation,
Stem Cell
• Lymphoid
Malignancies
• Disorder Related to
Transplantation

• Drug: GM-CSF
• Drug: Rituximab
• Biological: NK
Cell Infusion

Study Type:
Interventional
Phase:
Phase 1

Enrollment:
6
Age:
Child,
Adult,
Older Adult
Sex:
All

• M.
Ander
Cente
Health
Pharm
Inc./B
Scher

5 NCT00402558 Alloreactive NK Cells
for Allogeneic Stem
Cell Transplantation for
Acute Myeloid
Leukemia (AML) and
Myelodysplastic
Syndrome (MDS)

Completed -
no results
posted

Completed
No results
posted

• Myelodysplastic
Syndrome
• Leukemia

• Drug:
Thymoglobulin
• Drug: Busulfan
• Drug:
Fludarabine
• Procedure:
Alloreactive NK
Infusion

Study Type:
Interventional
Phase:
Phase 1

Enrollment:
15
Age:
up to 70
Years
(Child,
Adult,
Older Adult)

• M.
Ander
Cente
n
s

m
a

o

s
t
e
r

D
s
r

a
in

D
s
r
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TABLE 1 | Continued

Sponsor/
Collaborators

Dates Locations / Outcome

Institut Paoli-
almettes

Study Start:
April 2013
Primary
Completion:
March 15,
2018
Last Update
Posted: July
12, 2018

• Institut Paoli-
Calmettes, Marseille,
France

National
ancer Institute
CI)
National

stitutes of
ealth Clinical
enter (CC)

Study Start:
January 29,
2011
Primary
Completion:
June 28,
2018
Last Update
Posted:
August 22,
2019

• National Institutes of
Health Clinical Center,
Five of 9 transplant
recipients experienced
acute graft-versus-host
disease (GVHD) following
aNK-DLI, with grade 4
GVHD observed in 3
subjects.

Seoul
ational
niversity
ospital

Study Start:
March 28,
2016
Primary
Completion:
June 2,
2017
Last Update
Posted: July
31, 2017

• Seoul National
University Hospital, Seoul,
Korea, Republic of

Memorial
loan Kettering
ancer Center

Study Start:
April 2,
2009
Primary
Completion:
January 7,
2019
Last Update
Posted:
January 10,
2019

• Memorial Sloan
Kettering Cancer Center,
New York, New York,
United States
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NCT Number Title NK Cell
source

Status Conditions Interventions Clinical trial
phase

Population

• Drug: G-CSF
• Drug:
Tacrolimus
• Drug:
Methotrexate
• Drug:
Interleukin-2

Sex:
All

6 NCT01853358 Phase I of Infusion of
Selected Donor NK
Cells After Allogeneic
Stem Cell
Transplantation

HLA identical
allogeneic NK
Cells

Completed-
Phase 1-No
results
posted

• Hematological
Malignancy

• Biological: NK
Cell infusion

Study Type:
Interventional
Phase:
Phase 1

Enrollment:
17
Age:
18 Years to
70 Years
(Adult,
Older Adult)
Sex:
All

7 NCT01287104 A Phase I Study of NK
Cell Infusion Following
Allogeneic Peripheral
Blood Stem Cell
Transplantation From
Related or Matched
Unrelated Donors in
Pediatric Patients With
Solid Tumors and
Leukemias

Allogeneic
Bone marrow
NK Cells

Completed
- Has
results

• Leukemia
• Lymphoma

• Biological:
Natural Killer (NK)
Cell Infusion
• Biological: Stem
Cell Infusion
- Pag

Study Type:
Interventional
Phase:
Phase 1

Age:
4 Years to
35 Years
(Child,
Adult)
Sex:
All

8 NCT02716571 Recruiting Blood
Donor With Allogeneic
Natural Killer Cell

Allogeneic
natural killer
cell

Completed:
No results
posted

• Healthy Volunteers • Other:
Leukapheresis or
Plasmapheresis

Study Type:
Interventional
Phase:
Not
Applicable

Enrollment:
90
Age:
20 Years to
60 Years
(Adult)
Sex:
All

9 NCT00877110 Anti-GD2 3F8
Antibody and
Allogeneic Natural
Killer Cells for High-
Risk Neuroblastoma

Allogeneic NK
Cells from a
family member
who shares
half of the
HLA proteins

Completed:
No results
posted

• Neuroblastoma
• Bone Marrow,
Sympathetic Nervous
System

• Drug:
cyclophosphamide,
vincristine,
topotecan ,allogenei
NK cells & 3F8

Study Type:
Interventional
Phase:
Phase 1

Enrollment:
71
Age:
Child,
Adult,
Older Adult
Sex:
All
•

C

•

C
(N
•

In
H
C

•

N
U
H

•

S
C
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TABLE 1 | Continued

Sponsor/
llaborators

Dates Locations / Outcome

t. Jude
dren's
earch
pital
ichigan

e University

Study Start:
October 13,
2016
Primary
Completion:
February 6,
2017
Last Update
Posted: July
17, 2017

• St. Jude Children's
Research Hospital,
Memphis, Tennessee,
United States

entre
pitalier
ersitaire de
ancon
ational
cer Institute,
ce

Study Start:
November
2009
Primary
Completion:
January
2013
Last Update
Posted: July
27, 2016

• University hospital of
Besançon, Besançon,
France

asonic
cer Center,
ersity of
esota

Study Start:
August
2010
Primary
Completion:
September
2015Study
Completion:
July 2016
First Posted:
August 13,
2010
Results First
Posted: May
18, 2017
Last Update
Posted:
February 6,
2018

• Masonic Cancer
Center, University of
Minnesota, Observations
support development of
donor NK cellular
therapies for advanced
NHL as a strategy to
overcome
chemoresistance

asonic
cer Center,
ersity of
esota

Study Start:
July 2010
Primary
Completion:
April 2014
Last Update

• Masonic Cancer
Center, University of
Minnesota, Some adverse
events reported - not
published
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NCT Number Title NK Cell
source

Status Conditions Interventions Clinical trial
phase

Population
C

10 NCT02301065 Analysis of T Cell and
Natural Killer (NK) Cell
in Relation to Viral
Infections in Pediatric
Stem Cell Transplant
Patients and Donors

Blood derived
FcRg-CD56
+CD3- NK
cells in
pediatric
allogeneic
HSCT patients
and healthy
donors

Completed:
No results
posted

• Hematologic
Malignancies

Study Type:
Observational
Phase:

Enrollment:
35
Age:
up to 21
Years
(Child,
Adult)
Sex:
All

•

Chi
Res
Hos
•

Sta

11 NCT02845999 Allogenic
Immunotherapy Based
on Natural Killer (NK)
Cell Adoptive Transfer
in Metastatic
Gastrointestinal
Carcinoma Treated
With Cetuximab

Haploidentical
Natural Killer
(NK) cells

Completed-
No Results
posted

• Gastrointestinal
Metastatic Cancer

• Biological:
allogenic
immunotherapy
based on Natural
Killer cells adoptive
transfer
• Biological:
cetuximab
• Drug:
Cyclophosphamide
• Drug:
fludarabine
• Drug:
interleukin-2

Study Type:
Interventional
Phase: Phase
1

Enrollment:
9
Age:
18 Years to
65 Years
(Adult,
Older Adult)
Sex:
All

•

Hos
Uni
Bes
•

Can
Fra

13 NCT01181258 Penostatin, Rituximab
and Ontak and
Allogeneic Natural
Killer (NK) Cells for
Refractory Lymphoid
Malignancies

Interleukin 2-
activated
Allogeneic
Natural Killer
Cells

Completed-
Has results

• Non-Hodgkin
Lymphoma
• Chronic
Lymphocytic Leukemia

• Drug: Rituximab
• Biological:
Interleukin-2
• Biological:
Natural killer cells
• Drug:
Cyclophosphamide
• Drug:
Methylprednisolone
• Drug:
Fludarabine

Study Type:
Interventional
Phase: Phase
2

Enrollment:
16
Age:
Child,
Adult,
Older Adult
Sex:
All

•

Can
Uni
Min

14 NCT01105650 Allogeneic Natural
Killer (NK) Cells for
Ovarian, Fallopian
Tube, Peritoneal and
Metastatic Breast
Cancer

Allogeneic
donor cells

Completed-
Has results

• Ovarian Cancer
• Fallopian Tube
Cancer
• Primary Peritoneal
Cancer
• Breast Cancer

• Drug:
Fludarabine
• Drug:
Cyclophosphamide
• Drug:
Cyclosporine

Study Type:
Interventional
Phase: Phase
2

Enrollment:
13
Age:
18 Years
and older
(Adult,

•

Can
Uni
Min
o

S
l

M
t

C

v

N

n

M

v
n

M

v
n

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


TABLE 1 | Continued

Sponsor/
Collaborators

Dates Locations / Outcome

Posted:
December
28, 2017

• David Rizzieri,
MD • Duke
University

Study Start:
April 2005
Primary
Completion:
April 2013
Last Update
Posted:
June 12,
2014

• Duke University Health
Systems" A 1-step, high-
yield process is feasible,
and results in high doses
of NK cells infused with
little toxicity. NK cell-
enriched DLIs result in
improved immune
recovery and outcomes
for some

• Masonic
Cancer Center,
University of
Minnesota
• Incyte
Corporation

Study Start:
July 28,
2014
Last Update
Posted:
December
5, 2017

• University of
Minnesota Masonic
Cancer Center,
Minneapolis, Minnesota,
United States

• Memorial
Sloan Kettering
Cancer Center
• National
Cancer Institute
(NCI)

Study Start:
August
2007
Primary
Completion:
July 2015
Last Update
Posted:
February 12,
2016

• Memorial Sloan
Kettering Cancer Center,
New Yor: Results not
conclusive as 4/6 patients
showed some adverse
events

• Green Cross
LabCell
Corporation

Study Start:
November
28, 2016
Primary
Completion:
September
27, 2018
Last Update
Posted:
September
26, 2019

• Seoul National
University Hospital, Seoul,
Korea, Republic of
• Seoul Asan Medical
center, Seoul, Korea,
Republic of • Samsung
Medical Center, Seoul,
Korea, Republic of and
others
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NCT Number Title NK Cell
source

Status Conditions Interventions Clinical trial
phase

Population

• Biological:
Natural killer cells
• Drug: IL-2
• Drug:
Methylprednisolone
• Drug:
Interleukin-2

Older Adult
Sex:
Female

15 NCT00586703 Safety Trial of NK Cell
DLI 3-5/6 Family
Member Following
Nonmyeloablative
ASCT

CD56-NK
cells from
mismatched
donors

Completed-
Has results

• Lymphoma • Device: NK-
CD56

Study Type:
Interventional
Phase:
Phase 1

Enrollment:
21
Age:
18 Years
and older
(Adult,
Older Adult
Sex:
All

16 NCT02118285 Intraperitoneal Natural
Killer Cells and
INCB024360 for
Recurrent Ovarian,
Fallopian Tube, and
Primary Peritoneal
Cancer

haploidentical
donor NK
cells and IL-2

Completed-
No results
posted

• Ovarian Cancer
• Fallopian Tube
Carcinoma
• Primary Peritoneal
Carcinoma

• Drug:
Fludarabine
• Drug:
Cyclophosphamide
• Biological: NK
cells
• Biological: IL-2
• Drug:
INCB024360

Study Type:
Interventional
Phase:
Phase 1

Enrollment:
2
Age:
8 Years
and older
(Adult,
Older Adult
Sex:
Female

18 NCT00526292 Chemotherapy and a
Donor Natural Killer
Cell Infusion in Treating
Patients With
Relapsed or Persistent
Leukemia or
Myelodysplastic
Syndrome After a
Donor Stem Cell
Transplant

Allogeneic NK
Cells from a
family member
who shares
half of the
HLA proteins

Completed:-
Has results

• Leukemia
• Myelodysplastic
Syndromes

• Biological:
natural killer cell
therapy
• Drug:
cyclophosphamide
• Drug:
fludarabine

Study Type:
Interventional
Phase:
Phase 2

Enrollment:
12
Age:
up to 120
Years
(Child,
Adult,
Older Adult
Sex:
All

19 NCT02854839 A Study of MG4101
(Allogeneic Natural
Killer Cell) for
Intermediate-stage of
Hepatocellular
Carcinoma

allogeneic
Natural killer
cells

Completed
No results
posted

• Hepatocellular
Carcinoma

• Biological:
MG4101

Study Type:
Interventional
Phase:
Phase 2

Enrollment:
78
Age:
18 Years to
80 Years
(Adult,
Older Adult
Sex:
All
)

)

)

)

)
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• Biological: CD3-
depleted/CD56+
selected natural
killer cells collected
from apheresis
products

Study Type:
Interventional
Phase:
• Phase 1
• Phase 2

Enrollment:
15
Age:
Child,
Adult,
Older Adult
Sex:
All

• University
Hospital, Basel,
Switzerland

Study Start:
January
2004
Primary
Completion:
March 2011
Last Update
Posted:
September
15, 2015

• Universitätsklinikum,
Frankfurt, Germany
• University Hospital,
Basel, Switzerland

• Biological:
aldesleukin
• Biological:
therapeutic
allogeneic
lymphocytes
• Drug:
cyclophosphamide
• Drug:
fludarabine
phosphate
• Procedure: in
vitro treated
peripheral blood
stem cell
transplantation

Study Type:
Interventional
Phase:
Phase 2

Enrollment:
21
Age:
2 Years
and older
(Child,
Adult,
Older Adult)
Sex:
All

• Masonic
Cancer Center,
University of
Minnesota

Study Start:
March 2005
Primary
Completion:
June 2008
Last Update
Posted:
December
28, 2017

• Masonic Cancer
Center, Minneapolis, :
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20 NCT01386619 NK DLI in Patients
After Human
Leukocyte Antigen
(HLA)- Haploidentical
Hematopoietic Stem
Cell Transplantation
(HSCT)

HLA
haploidentical
-CD3-
depleted/
CD56+
selected
natural killer
cells collected
from
apheresis
products

Completed
No results
posted

• Leukemia
Acute • Pre
Lymphoblast
Leukemia- Ly
• Myelodys
Syndromes
• Lymphom
• Neuroblas
• Rhabdom

21 NCT00274846 Donor Peripheral Stem
Cell Transplant in
Treating Patients With
Relapsed Acute
Myeloid Leukemia
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Blood derived
NK cells and
also stem
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same
allogeneic
donor
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Has Results

• Leukemia
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Umbilical Cord Blood
The umbilical cord is an abundant source of cytotoxic
CD56posCD16pos NK cells, with high lytic potential of cancer
cells (27). UCB-NK cells are isolated from cord blood after birth,
via venipuncture of the umbilical cord, and purification by density
gradient centrifugation (28). Alternatively, CD34 hematopoietic
stem cells can be isolated from UCB and differentiated to NK cells
(19, 29). NK cells generated from CD34 cells from HLA matched
umbilical cord blood units showed good tolerance, no GVHD or
toxicity (30). UCB is a readily available source with the potential to
manufacture multiple doses from a single frozen vial of NK cells
isolated from a healthy donor (21, 31). In addition, UCB NK cells
are of a younger and more proliferative phenotype relative to PB
NK cells (32, 33).

Peripheral Blood
Peripheral blood contains NK cells and is a reliable source of
CD34 progenitor cells from individuals undergoing GCS-F
mobilization (34). Isolating large numbers of PB NK cells and
hematopoietic stem cells is difficult as the percentage derived
from leukapheresis can be low and highly variable (22, 35, 36).
Further, cryopreservation of PB NK cells lowers the cytotoxic
ability (35, 37). Allogeneic NK cells can be isolated from PBMCs
by either CD3/CD19 depletion (38) or CD3 depletion and
subsequent CD56 enrichment (39). The second round of
purification based on CD3 depletion can also be implemented
post-expansion (39) to increase NK cell purity. An evaluation of
94 samples with CD3/CD19 depletion and 13 samples with CD3
depletion/CD56 enrichments for NK cell isolations in support of
8 clinical trials demonstrated limitations and benefits with NK
Frontiers in Immunology | www.frontiersin.org 9
cell isolation strategies (34). CD3/CD19 depletion resulted in a
mean NK cell recovery of 74% and viability of 96%. However,
CD3 depletion/CD56 enrichment resulted in a high NK cell
purity (90%), with 5% CD14 monocytes (38).

iPSC or hESC Derived NK Cells
Pluripotent stem cells (iPSC or hESC) are an unlimited source
for the derivation of human NK cells for therapy. NK cells
derived from iPSC/hESC result in a homogenous population,
which can be expanded on a large scale and can be genetically
modified (40). NK cells are generated from different iPSC cell
lines (41–43) on stromal feeders using IL-3, IL-7, IL-5, Stem cell
factor (SCF), fms-like tyrosine kinase receptor-3 ligand (FLT3L)
(24). NK cells derived this way are homogenous and express
CD56, KIR, CD16, NKp44, NKp46, and are capable of killing
tumor cells (24). Similar to iPSCs, hESCs can also be
differentiated to NK cells based on stromal cell-mediated
differentiation, involving CD34+CD45+ cell sorting and NK
cell differentiation with IL-3, IL-5, IL-7, fms-like tyrosine
kinase receptor 3 ligand (FLT3L), and Stem cell factor
(SCF) (26).

Recently a stromal-free process for iPSC NK cell generation
has been established based on embryoid bodies (EB) as self-
stromal cells are formed inside the EB (40). Feeder-dependent
hESC/iPSC was adapted to a feeder independent system before
EB generation (44). To generate EBs, hESC/iPSC are seeded in
APEL media containing SCF, BMP4, VEGF, Rocki (rho kinase
inhibitor). In the second and final step, NK cells are generated by
transferring EBs to gelatin-coated wells containing NK cell
differentiation media with IL-3, SCF, IL-7, and IL-15. After
A B

DC

FIGURE 3 | Sources of Natural killer cells for immunotherapy. NK cells for cell therapy applications can originate from different sources: Peripheral blood NK cells
(PB NK cells) (A), allogeneic umbilical cord blood NK cells (CB-NK Cells) (B), NK cell cancer cell lines (NK-92) (C), human embryonic stem cells (hESC) and inducible
pluripotent stem cells (iPSCs) (D). Advantages and limitations with the different NK cell sources vary as described in the NK cell isolation section.
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four weeks of culture, differentiated NK cells stained positive for
CD45 and CD56 markers were harvested (40).

NK Cancer Cell Lines
Among the available NK cancer cell lines, only NK-92 cell line
has shown antitumor activity in a variety of tumors and has
worked well in pre-clinical studies (21, 45). Furthermore, NK-92
cancer cell line has received FDA approval for clinical phase
patient trials (46, 47). The NK-92 cancer cell line is well
characterized and robust clinical protocols are available for
cGMP manufacturing (48). These cells can be genetically
engineered, but with a variable efficiency of 4% - 95% (49) and
expanded to substantial numbers. However, NK-92 cancer cell
line requires irradiation prior to infusion, as it is cytogenetically
abnormal. Select advantages and disadvantages with NK cells
derived from different tissue sources are shown in Table 2.
NK CELL EXPANSION FOR THE
CREATION OF ALLOGENEIC DOSES

Regardless of how the NK cells are sourced, every method of NK
cell expansion can be classified as either a feeder-cell-based system
or a feeder-free system. A multitude of cells and cell lines are used
as feeders to stimulate allogeneic NK cell expansion. K562 leukemia
cells have been successfully used in this regard for several decades
(50) and are the most used and well-characterized example. Other
examples including EBV transformed lymphoblastoid (EBV-LCL)
(51), HEK293 (52), autologous irradiated PBMCs (53), Jurkat cells
(54), the Wilms tumor cell line, HFWT (la5), RPMI1866 (55),
MM170 (56), and Daudi (57) have also been applied with varying
degrees of success. Strategies to prime and propagate NK cells using
EBV-transformed lymphoblastoid cells and irradiated PBMCs
continue to show promise, but protocols employing K562 cells
remain superior in terms of both the magnitude and speed of
expansion. Still, many groups attempt to improve the outcome
even more by supplementing the culture with antibodies, such as
OKT-3 (58, 59) and other cyto-stimulants, such as PHA,
ionomycin (53), and concanavalin A (60). One group has even
claimed an extremely robust average of 50,000-fold expansion in 21
Frontiers in Immunology | www.frontiersin.org 10
days (about 3 weeks) using a modified K562 line that expresses
membrane-bound IL-21 (61). A potential pitfall of employing
feeder cells is that they are associated with a multitude of
regulatory concerns. These cells must be stringently qualified
using cumbersome assays and viral testing to ensure that they
are free of microbial contaminants, such as mycoplasma (62).
Moreover, additional actions need to be taken to ensure that the
final product is free from the feeder cells. This has encouraged
researchers to develop and employ several feeder-free systems in
the cultivation of NK cells.

To date, there has been a clear trade-off in that feeder-free
systems alleviate many regulatory concerns but result in much
lower yields. Several cell-free methods can be explored to activate
and stimulate NK cells, including cytokines, and antibodies.
Cytokines represent the most widely studied and earliest feeder-
free method for activating NK cells. IL-2 is the most potent NK
cell stimulant and elicits immunostimulatory signaling, increases
cytokine release (63), promotes cell motility (63), and enhances
cytotoxicity (64). More recently, many alternative immunogenic
cytokines have garnered attention for NK stimulation, including
interleukins-15, -21, -12, -18, and -27. Much like IL-2, IL-15
stimulates NK cell proliferation, immunostimulatory receptor
expression, and cytotoxicity (65, 66), which makes it a great
candidate to be used as an NK stimulant in a stand-alone
fashion. In addition, it boasts several benefits over IL-2. Marks-
Konczalik and colleagues reported that IL-15 inhibited activation-
induced cell death that results from continuous IL-2 stimulation
(67)and unlike IL-2, IL-15 does not induce activation and
proliferation of Tregs (68), which results in peripheral tolerance
and potentially leads to a more robust anti-tumor response.
However, there is a tradeoff, research conducted by Felices et al.
recently demonstrated that sustained IL-15 signaling results in
exhausted NK cells and a loss of in vitro and in vivo efficacy (69).
Several groups have tried to stimulate NK cells with lower doses of
IL-2 or IL-15 in combination with some of the other cytokines or
they have developed cytokine schedules to alleviate some of the
drawbacks associated with persistent stimulation with the one
cytokine over the entire expansion protocol (70). IL-21 alone is
not sufficient to stimulate significant NK-cell expansion (71, 72),
however, there is a synergistic proliferative effect when IL-21 is
TABLE 2 | Advantages and drawbacks of NK Cells from different sources.

The Source of NK Cells Advantages Drawbacks

Peripheral Blood derived NKs (PB-NKs) High expression of CD16+ Low number of NK Cells in PB
Highly cytotoxic Lower or no expression of CXCR4
Expression of CD57, a marker of terminal differentiation of NK Cells

NK-92 cancer cell line Cell line product -easy to obtain Need for irradiation before injection
Clinically approved Tumorigenesis potential
CD16 negative Safety concerns

Umbilical Cord Blood derived NKs (UCB-NKs) High expression of CXCR4 Reduced cytotoxicity (against K562 tumor cell line)
Minimize GvHD Low numbers
Ready reconstitution after transplant Immaturity of NK cells

Placental blood derived NKs (p-NKs) Placenta rich source for NK cells Low cytolytic activity
Easily, readily available

iPSC derived NKs (iNKs) Resource to generate unlimited numbers relevant for therapy Complex differentiation steps
Minimal immune rejection Clinical effectiveness still to be proven

Safety issues
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combined with other immunostimulatory cytokines like IL-2 and
IL-15 (71, 72). Furthermore, the addition of IL-21 to NK cell
culture has been associated with increased immunostimulatory
cytokine production (73) and upregulation of perforin and
granzyme A and B (74), leading to enhanced NK cell
cytotoxicity (75, 76). IL-12, IL-18, and IL-27 are slightly less
characterized but have also displayed the ability to positively
contribute to NK cell expansion, especially when used in
conjunction with the IL-2 or IL-15. Research demonstrates that
IL-12 can have a synergistic effect with IL-2, which results in
enhanced NK cell cytokine secretion, proliferation, and cytotoxic
capacity (77, 78). IL-18 and IL-27 have recently been combined
with IL-15 to boost NK cell fold expansion (79). Another
advantage of combining the cytokines can result in a lower dose
of the individual cytokines, which can lead to a higher percentage
of memory NK cells (19). The combination of IL-12, IL-15, and
IL-18 drives preferential expansion of memory-like NK cells,
which exhibit heightened responses when they encounter tumor
cells (79–81) and longer lifespans following engraftment (79–81).
An additional benefit of these cells is an increased capacity to
produce immunostimulatory cytokines upon secondary challenge.
This memory response is an intrinsic quality that is passed on to
all cellular progeny (79–81).

Apart from these most common feeder-cell and feeder-free
cytokine systems, several groups have moved towards strategies
that are a hybrid of the two. Several groups have engineered
feeder cells that express immunostimulatory signaling molecules,
such as 41BB, IL-15 (82, 83), and IL-21 (63, 84–86) on their cell
surfaces. These strategies have resulted in highly cytotoxic NK
cells that display both extremely high proliferative capacities (up
50,000-fold expansion) (61), extended survival, and the ability to
secrete immunogenic cytokines, leading many groups to adopt
these methods into their clinical protocols. This approach has
recently been taken one step further to avoid safety concerns by
stimulating NK cells with K562-mb21-41BBL cell lysates (87).

Most of the experiments and trials discussed in this review
have utilized small-scale, open methods for NK cell activation
and expansion, such as flasks and G-Rex vessels. However, these
methods are hampered by logistical hurdles, inconsistencies, and
safety concerns. To reach the desired cell numbers for allogeneic
manufacturing and clear all regulatory and safety hurdles
associated with drug approval, it will be necessary to develop
closed, and automated systems with large-scale capabilities.
Hence, clinical scale NK cell manufacturing development
suitable for effective allogeneic therapy production is a priority.
Several options have been explored, including a G-Rex-based
method that was developed under good manufacturing practice
(GMP) conditions and required little to no manual intervention
for the 8- to 10-day expansion and yielded 19 billion functional
NK cells (88). Another example of static culture is the use of
large, gas-permeable culture bags, which were successfully
applied in combination with feeder cells, antibodies, and
cytokines to yield an NK cell fold expansion of 15,000 (89). A
more recent trend for achieving clinical scale NK cell expansion
has been the use of bioreactors. In addition to large cell capacity,
these devices are highly adaptable for closed and automated
Frontiers in Immunology | www.frontiersin.org 11
manufacturing processes (Figure 4). Robust NK cell expansion
with the Xuri Cell Expansion System W25 (Cytiva) has been
demonstrated by several groups (90–92). The most common
approach is to expand the isolated NK cells in static culture
before transferring them to rocking bioreactors, which effectively
nourish high cell densities (90–92). These workflows were able to
generate 50 billion highly cytotoxic NK cells (91). Stirred tanks
are another type of dynamic culture bioreactor that has gained
favor in the NK cell therapy community. Pierson and colleagues
first demonstrated that the cultivation of NK cells in a 750ml-
stirred tank significantly outperforms that in a comparable static
vessel (93). Moreover, it was recently shown that NK cell
propagation in 2L stirred tanks scaled up exceptionally well to
50L stir tanks (94) making this platform an excellent fit for
allogeneic manufacturing workflows. Aside from the well-known
wave motion reactors and stirred tank reactors, there has also
been success using lesser-characterized reactors, such as the ZRP
Bioreactor 50M, which was able to grow massive amounts of
highly pure and functional NK cells (95).
NK CELL THERAPY PACKAGING AND
RELEASE TESTING

Once the desired expansion is achieved, a major challenge is the
downstream processing of these cells and preparing the allogeneic
doses. Manufacturing and storing these “off-the-shelf” doses
remotely, requires cryopreservation, which is often problematic
in the case of NK cells. In addition to a loss in cell viability, it is
common to see a significant drop in cytotoxicity after thawing.
This functional loss routinely corresponds to a reduction in the
expression of CD16 on NK cell surfaces (63). However, many
groups are attempting to mitigate these issues with different
strategies. A few more promising examples are to expose
thawed cells to IL-2 immediately, thereby restoring their
cytotoxic capacity (60), using twice as many cells in the dose to
compensate for the reduced function per cell (96), and inoculating
the NK cells immediately after thawing them (37, 96). A separate,
but related concern, is a 6-fold decrease in motile NK cells
following cryopreservation (37). Efforts to develop effective
cryopreservation solutions that preserve NK cell numbers and
functionality are currently a priority to carry this field forward.

Beyond viability and cytotoxicity issues following the
cryopreservation and recovery cycle, there is a multitude of
other criteria that should be considered before confidently
releasing the NK cells for administration as a therapeutic dose.
Safety is the overarching theme for most of these considerations.
Several of these requirements are focused on confirming that
there are no undesirable trespassers in the dose, such as
endotoxins, mycoplasma, bacteria, or feeder cells if they were
used for expansion. Confirmation that the dose consists of the
desired cellular population is also highly important in preventing
the onset of adverse effects that these cellular contaminants can
cause. This can be done by setting a minimum requirement for
the percent of CD56pos/CD3neg cells and a maximum allowed
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Heipertz et al. NK and CAR-NK Cell Therapies
amount of CD3pos T cells, CD19pos B cells, and CD14pos

monocytes that can safely be released in a dose. These are the
key regulatory principles that agencies across different
geographical locations will require for cell therapies. Several
additional ideas could be incorporated to further ensure
therapeutic efficacy. An example of this could be flow
cytometric characterization of activating receptors, such as
NCRs, NKG2D, NKG2C, NKG2E, 2B4 and the inhibitory
receptors NKG2A and KIRs. In addition, indicators of cytotoxic
capabilities, CD16 and CD25, markers of differentiation status,
CD62L, CD45, HLA-DR, CD69, and CD57, and functional
analysis of IFNg or TGF-b can be included (20) (Figure 5). It
may also be beneficial to modify the cellular requirement based
on the characteristics of the disease state. The tumors and
surrounding microenvironments pose significant obstacles that
are directly opposed to the proper function of adoptive cell
therapies, such as NK cell therapies (97). While many of
the escape mechanisms are identified, there is often no way to
identify which ones a particular tumor is employing. Thus,
understanding the individual challenges associated with each
tumor through a standardized molecular imprint could go a
long way in cultivating the most effective cell therapy or
combination therapy.
CAR-NK ENGINEERING

When NK cells are engineered with a tumor-specific chimeric
antigen receptor (CAR), superior NK cell elicited cytotoxicity
and improved cell infiltration into the tumor microenvironment
are noticed. Genetic modification of NK cells by transducing
with CAR receptors directed against tumor specific antigens may
enhance both NK cell tumor specificity and NK cell persistence.
CARs are engineered receptor proteins that recognize a target
antigen on tumor cells and are successfully used in T cell therapy
for lymphoid leukemias. Most of the CAR-T trials are restricted
to autologous therapies, which are cumbersome, although
Frontiers in Immunology | www.frontiersin.org 12
strikingly efficient in targeted tumor cell killing (98). The
development of allogeneic CAR-T cells is challenging, as these
treatments must be specifically tailored to avoid graft versus host
diseases (GVHD) and elimination by the host immune system
(99). In contrast, several advantages are recognized with CAR-
NK cell therapy over CAR-T cell therapy clinical approaches.
First, there are less side effects such as low/no GVHD (100),
cytokine release syndrome (101) and neurotoxicity (102).
Second, CAR-NK cells can also eliminate tumor cells efficiently
in a CAR-independent manner through their stimulatory and
inhibitory receptors and CD16-mediated ADCC (103).
Therefore, several researchers are exploring different
approaches to genetically engineer NK cells with CARs to
augment the efficiency of NK cells to kill tumors (104).

NK cells are successfully engineered to express CARs against
several tumor-specific antigen targets and are shown to be
efficient for in vitro and in vivo killing of tumor cells in
experimental investigational studies. Human iPSC-derived NK
cells engineered with specific CAR constructs demonstrated
significantly enhanced targeted anti-tumor activity in an
ovarian cancer xenograft model (105). Although autologous
NK cells can be generated in vitro, they have limited efficiency
against own patient’s tumor cells. There are currently 72 clinical
trials using CAR-NK cell lines and 35 primary CAR-NK
preclinical studies based on PubMed and Global data (www.
carnkreview.com) targeting different tumors (106). However,
only 5 studies are ongoing in phase I & II clinical trials at
www.clincaltrials.gov (Table 3). CAR constructs for NK cells
consist of three domains: an extracellular antigen recognition
domain, a transmembrane domain, and an intracellular
cytoplasmic signaling domain (Figure 6). The ectodomain
contains a single-chain variable fragment (scFv) derived from
an antibody recognizing the tumor antigen. The transmembrane
domain anchors the CAR structure to the effector cell membrane.
CAR recognition of specific antigen triggers intracellular
activation domain that results in the killing of the target cells.
From the limited number of CAR-NK trials so far, no significant
adverse events are noted, and the CAR-NKs showed robust
FIGURE 4 | Bioreactors offer several advantages to the clinical manufacturing of cell therapies. The shift from static vessels on the left toward dynamic bioreactors
on the right allows for several process improvements, such as scalability, automated and closed operation, digital integration, and intimate control of liquids. These
capabilities result in increased safety and consistency, reduced labor requirement and cost, and improved quality of cellular output.
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cytolytic activity. In the CAR-NK trials that fit the allogeneic and
off-the-shelf approach, CAR-NK cells from a single healthy
donor were expanded in cell culture for appropriate dosing.
The infused CAR-NKs persisted and expanded at a low level,
based on PCR results, for a year within the tumor
microenvironment in an ablative conditioning regimen. Most
engineered CAR-NK cells are directed against blood-related
malignancies, such as CD19 for B cell lymphomas, CD22 for
refractory B-cell lymphomas and solid tumors, NKG2D-ligand
for pancreatic cancers, and CD33 and ROBO1 specific BiCAR-
NK/T for malignant and metastatic solid tumors (107). Barriers
to a successful implementation of CAR-NK in solid tumors are
recently reviewed, including off-tumor effects, impaired antigen
recognition, poor cell trafficking, harsh tumor environment, and
immune evasion (108).
DELIVERY SYSTEMS TO ENGINEER
NK CELLS

A critical aspect of CAR-NK generation is the introduction of
genetic elements into NK cells, referred to as CAR-NK
engineering. Once the genetic element is introduced into NK
cells, the subsequent expansion of the CAR-NK cells with the
cytotoxic killing of the target tumor cell will be another important
consideration. The introduction of genetic material into NK cells
is carried out using either viral vectors (retrovirus, lentivirus, and
Adeno associated virus) or non-viral methods (mRNA and DNA).
Examples of the viral and non-viral vector delivery systems with
select pros and cons are shown in Table 4 and Figure 7.

Retroviral Vector Systems
Recent studies from the Rezvani laboratory at MDACC used
retroviral vectors to deliver anti-CD19 CAR into NK cells along
with IL-15 and inducible caspase 9. The CAR NK cells were used
to treat CD19 positive tumors; 7 of 11 patients (64%) had a
complete response (4 of 5 patients with CLL and 4 of 6 with non-
Hodgkin’s lymphoma). All 8 patients had an objective response
(73%) at 13.8 month follow-up (109). Gene transfer did not
change the function or phenotype of NK cells, nor did it change
Frontiers in Immunology | www.frontiersin.org 13
the proliferative or cytotoxic ability post engineering. Another
recent study used retroviral vector systems that ectopically
expressed iC9/CAR.19/IL15 to generate CAR-CD19-NK cells
from cord blood that persisted for a long time in the tumor
microenvironment (110, 111). In both studies, the retroviral
vector ectopically produced IL15 that is crucial for NK cell
survival and conditionally expressed a caspase 9 (iC9)- an
inducible suicide gene that could be activated to shut off the
system by eliminating transduced cells when needed. Though
retroviral vector systems have high transfection efficiency, the
cDNA can integrate into the NK cell genome causing insertional
mutagenesis and sometimes an induction of immune
response (112).

Lentiviral Vector Systems
Lentiviral transduction is the preferred choice to modify NK
cells. The lentiviral method allows transduction of primary and
non-activated NK cells, and unlike the retroviral vector system,
does not require dividing cells (113). Single lentiviral
transduction usually results in lower transduction efficiencies,
PB NK (<10%) or CB NK (<30%) (114). In Japan, a study led by
Dr. Ueda used a lentiviral system to express CAR-NK-GPC3 for
solid tumors of hepatocellular carcinoma (HCC) and ovarian
cancers that are treated in in vivo animal models with good
success (115). Recent studies have improved the efficiencies of
lentiviral delivery, by using statins to upregulate the low-density
lipoprotein (LDL) receptor on NK cells enhancing the
transduction efficiency by 30-50% (116).

Pseudotyped lentiviral particles are glycoproteins derived
from other enveloped viruses that enable the tropism of the
lentiviral. The ability to generate CAR-NK cells depends on the
envelope protein lentivirals express. Vesicular stomatitis virus G
glycoprotein (VSV-G) pseudotype particles showed the highest
transduction efficiency of primary NK cells compared to
retroviral vectors (117). Feline endogenous retrovirus envelope
protein RD114-TR was similar to VSV-G pseudotype particles
for primary human NK cells (118). Further, a Baboon envelope
pseudotyped lentiviral vector BaEV-LV was significantly better
than both the RD-114-TR and VSV-G pseudotyped lentiviral
vector (119). Choosing which LV pseudotypes VSV-G versus
RD114-TR versus BaEV-LV has the best transduction efficiency
FIGURE 5 | Natural killer cell-specific strategies for NK cell therapy release criteria. In addition to verifying that cell therapies are free from endotoxins, mycoplasma,
bacteria, and feeder cells, there is a multitude of cell markers that can be selected to ensure that the therapeutic population possesses desired phenotypic and
functional qualities. T cells, monocytes, and B cells must be removed for safety. Receptors and cytokines can then be evaluated to confirm that the outgoing cell
population is responsive, cytotoxic, and safe.
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TABLE 3 | On-going CAR-NK Clinical Trials.

Sponsor/
Collaborators

Locations

• Chongqing
Public Health
Medical Center
• Chongqing
Sidemu Biotech
• Zhejiang
Qixin Biotech

• Chongqing Public Health
Medical Center, Chongqing, China

• Asclepius
Technology
Company Group
(Suzhou) Co.,
Ltd.

• Department of Hematology,
Wuxi People's Hospital, Nanjing
Medical University, Wuxi, Jiangsu,
China

• Asclepius
Technology
Company Group
(Suzhou) Co.,
Ltd.

• Radiation Therapy
Department, Suzhou Cancer
Center, Suzhou Hospital Affiliated
to Nanjing Medical University,
Suzhou, Jiangsu, China

• Second
Affiliated
Hospital, School
of Medicine,
Zhejiang
University

• 2nd Affiliated Hospital, School
of Medicine, Zhejiang University,
Hangzhou, Zhejiang, China

• Nkarta Inc. • Colorado Blood Cancer
Institute, Denver, Colorado, United
States
• Peter MacCallum Cancer
Center, Melbourne, Victoria,
Australia
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NCT Number Title Status Conditions Source of NK Cells Interventions Clinical trial
phase

Population

1 NCT04324996 A Phase I/II Study of
Universal Off-the-shelf
NKG2D-ACE2 CAR-NK Cells
for Therapy of COVID-19

Recruiting • COVID-19 Cord blood :NKG2D
CAR- NK cells,ACE2
CAR-NK cells,
NKG2D-ACE2 CAR-
NK cells

• Biological: NK cells,
IL15-NK cells,NKG2D
CAR- NK cells,ACE2 CAR-
NK cells,NKG2D-ACE2
CAR-NK cells

Study Type:
Interventional
Phase:
• Phase 1
• Phase 2

Enrollment:
90
Age:
18 Years
and older
(Adult,
Older Adult)
Sex:
ll

2 NCT03940833 Clinical Research of Adoptive
BCMA CAR-NK Cells on
Relapse/Refractory MM
Study Documents:

Recruiting • Multiple
Myeloma

Engineered NK-92
Cells

• Biological: BCMA
CAR-NK 92 cells

Study Type:
Interventional
Phase:
• Phase 1
• Phase 2

Enrollment:
20
Age:
18 Years to
80 Years
(Adult,
Older Adult)
Sex:
All

3 NCT03940820 Clinical Research of ROBO1
Specific CAR-NK Cells on
Patients With Solid Tumors
Study Documents:

Recruiting • Solid
Tumor

ROBO1 Specific
CAR-NK Cells

• Biological: ROBO1
CAR-NK cells

Study Type:
Interventional
Phase:
• Phase 1
• Phase 2

Enrollment:
20
Age:
18 Years to
75 Years
(Adult,
Older Adult)
Sex:
All

4 NCT04887012 Clinical Study of HLA
Haploidentical CAR-NK Cells
Targeting CD19 in the
Treatment of Refractory/
Relapsed B-cell NHL
Study Documents:

Recruiting • B-cell Non
Hodgkin
Lymphoma

HLA haploidentical
CAR-NK cells
targeting CD19

• Biological: anti- CD19
CAR-NK

Study Type:
Interventional
Phase:
Phase 1

Enrollment:
25
Age:
18 Years to
75 Years
(Adult,
Older Adult)
Sex:
All

5 NCT05020678 NKX019, Intravenous
Allogeneic Chimeric Antigen
Receptor Natural Killer Cells
(CAR NK), in Adults With B-
cell Cancers
Study Documents:

Recruiting •

Lymphoma,
Non- Hodgkin
• B-cell
Acute
Lymphoblastic
Leukemia
• Large B-
cell Lymphoma
• Mantle
Cell
Lymphoma

allogeneic CAR NK
cells targeting CD19

• Biological: NKX019 Study Type:
Interventional
Phase:
Phase 1

Enrollment:
60
Age:
18 Years
and older
(Adult,
Older Adult)
Sex:
All
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should be an essential consideration for CAR-NK generation.
The advantages and disadvantages of different LV pseudotypes
have been recently reviewed (120, 121).

Adeno Associated Viral Delivery
Alternative viral vectors with a better safety profile are
adenovirus-associated virus (AAV) vectors. One way to
improve the efficiency of NK cell cytotoxicity is by blocking
their inhibitory receptors. Using CRISPR/cas9 driven delivery by
recombinant adeno-associated virus serotype6 (rAAV6), highly
efficient knockout of A Disintegrin and Metalloproteinase-17
(ADAM17) and programmed cell death 1 (PDCD1) genes in NK
Frontiers in Immunology | www.frontiersin.org 15
cells was accomplished (121). KO of ADAM17 and PDCD1
improved NK activity, cytokine production and cancer cell
cytotoxicity. These approaches demonstrate an easy-to-use
strategy for efficient gene editing and delivery with AAV vector
systems for NK cell therapies (121). However, one limitation
with AAV is its packaging capacity (~5kb) that limits a large gene
transfer. NK cells in general have a low propensity for viral
transduction, and higher cell death. Hence, commercially
available viral transduction enhancers such as LentiBOOST,
PGE2, PS, Vectofusin-1, ViraDuctin, Retronectin, Stauro and
7-hydroxy stauro are sometimes employed to improve
vector transduction.
FIGURE 6 | CAR-NK Molecule Delivery of genetic cargo into NK cells with CAR encoding retro (RV), lenti (LV), or adeno-associated (AAV) vectors. CAR molecule is
shown on the right side with single-chain variable fragment (scFv including VH and VL chains), hinge, transmembrane (TM), and signaling domain. Co-stimulatory
signaling domains are indicated in different colors.
TABLE 4 | Advantages and disadvantages with different gene delivery vectors.

Vector Advantages Drawbacks

Viral Vectors
Adenovirus • Deliver large dsDNA (~8kb) • Transient expression

• Elicit immune response

Adeno-associated virus • Deliver to dividing and nondividing cells
• ssDNA (~4kb)

• Difficulty producing vectors
• Limited transgene
• Elicit immune response

Retrovirus • Deliver to dividing cells
• Sustained vector expression
• ssRNA (~8kb)

• cannot transfect non-dividing cells
• Low transfection rate in vivo
• Elicit immune response
• Risk of insertion

Lentivirus • Deliver to non-dividing cells
• Genome integration into host
• ssRNA (~8kb)

• Possibility for insertional mutagenesis

Non-Viral Vectors
• Less/No insertional mutagenesis
• Low/No immunogenicity
• Can scale-up
• Can be chemically modified
• Relatively less expensive

• Less effective
• Transient expression
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Non-Viral DNA Transfection and
mRNA-Electroporation
Successful electroporation of DNA into the NK-92 cancer cell
line was shown, but not in primary NK cells from PBMCs or cord
blood (33). Recently, an improved method with NK cells
expanded with IL-2 was reported with 40% efficiency of
DNA plasmid transfer (122). Following DNA transfer by
electroporation, the viability of NK cells was lower, due to
harsh electroporation conditions, and the DNA transfection
efficiency was less compared to resting NK cells. The real
advantage of this approach is complex constructs can also be
transferred efficiently into the cells. Plasmid DNA of small
(~3.5Kb) and large sizes (~12.5Kb) are transferred with a
substantial increase of transfection up to 5-fold compared to
the standard electroporation approach (123).

Some researchers are exploring electroporation to express
CAR molecules on NK cells (124, 125). Unlike DNA
electroporation, mRNA electroporation of NK cells may be an
efficient alternative, but it induces only transient expression of
the transferred gene. mRNA electroporation efficiencies are
usually high (80-90%) for PBMCs or cord blood cells and
require cytokine stimulation such as IL-2 for post-transduction
expansion or the use of feeder cells that are engineered to secrete
IL2 for better viability of cells (126). Transfection efficiency with
mRNA by electroporation depends on the dose of mRNA (25-
200 ug/ml) (127). High dose of mRNA results in poor viability of
cells following transfection. In general, post electroporation
expansion is contraindicated with mRNA approaches as it
leads to dilution of the mRNA.
Frontiers in Immunology | www.frontiersin.org 16
Recently another charge-based chemical method has been tried
successfully to deliver CAR mRNA into non-dividing NK cells
using a nucleofection approach that showed high efficiency (128).
A specific advantage of using mRNA delivery system is the
transient expression of protein by mRNA, thus avoids the risk of
genome integration, least expensive to manufacture and savings of
time (129). Another strategy that has been less frequently used for
stable non-viral gene delivery is employing DNA transposons to
transduce NK cells which is cost effective, has large cargo (ex: CAR
in combination with activating receptors or cytokines) deliver
capacity with stable integration. Their disadvantages include
potential insertional mutagenesis and the transposon must be
delivered as DNA (130, 131). Despite the limitations described
above, the most successful non-viral gene delivery for primary NK
cells is still rapid transient expression by electroporation.

Engineering NK Cell Receptors
For CAR-engineered cells to act, identifying specific tumor
antigens as targets is a challenge, whether for T cells or NK
cells. Human NK cells have innate inhibitory receptors such as
KIRs and NKG2A molecules that recognize MHC class I and
evoke response through immunoreceptors tyrosine-based
inhibitory motif (ITIM). T cell immunoreceptor with
immunoglobulin and ITIM domain (TIGIT) is an inhibitory
receptor expressed on T and NK cells and is a promising
emerging target for cancer immunotherapy. TIGIT interacts
with ligands CD115 and CD112 expressed on tumor cells.
There is evidence that TIGIT blockade can help tumor
regression (132).
FIGURE 7 | Delivery technologies to engineer Natural killer cells. Modes of genetic cargo delivery into NK Cells by viral transduction and non-viral electroporation for
gene engineering of NK Cells. Specific advantages and limitations are noted below the arrows.
December 2021 | Volume 12 | Article 732135
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In contrast, activating receptors on NK cells such as NKG2D
and DNAX accessory molecule 1 (DNAM-1) play a crucial role
in tumor surveillance since this receptor has a wide range of
ligands that provide target specificity (133). Preclinical study
data using CAR-NKG2D is promising in colorectal cancer
patients (124) and multiple myeloma patients (134). Natural
cytotoxicity receptors (NCRs) like NKp30, NKp44, and NKp46,
can recognize multiple stress ligands in infection and oncogenic
transformation. Harnessing these receptors on NK cells and their
ligands on tumor cells is another new strategy to create CAR-NK
cells that can induce anti-tumor immunity.

With the advances made in viral and non-viral gene delivery
approaches to generate better CAR-NK molecules, there will be a
heightened focus on how these cells perform in clinical trials over
the next few years. These results will help determine whether
CAR-NKs can effectively target and kill tumor cells (135). The
viability of CAR-NK cells in the tumor microenvironment is
central to the success of therapy, in addition to the repeated
dosing of the cells. CAR engineering of NK cells primarily resides
between two choices of stable high expression by viral vectors or
rapid transient expression of non-viral delivery systems
using electroporation.
CONCLUSIONS AND PERSPECTIVES

NK cells are critical in immune surveillance of invading viruses
and kill tumor cells without the need of tumor specific antigen
presentation. Pre-clinical data from early phase clinical trials has
significantly increased our knowledge for the use of allogeneic
donor NK cells across a wide range of hematological malignancies
and solid tumors. Recent advances include developing NK cell
expansion protocols without the use of feeders, serum, activation
technologies, validation of NK cells from different tissue sources,
ability to selectively use donor NK cells with minimal HLA
Frontiers in Immunology | www.frontiersin.org 17
matching, genetic modification to create CAR-NK constructs,
and transfer of genetic material using viral and nonviral delivery
technologies. These advances point towards a true “off-the-shelf”
NK cell therapy. Despite impressive advances, there are multiple
outstanding challenges with NK cell therapies. Methods following
good manufacturing practices to generate large clinical doses from
a single healthy donor and selective expansion appropriate NK cell
subsets with best predictive KIR/HLA are needed. Additionally,
tumor immune evasion remains a large barrier. Once the NK or
CAR-NK cells are infused into the patient, the long-term
persistence of these cells in-vivo in the tumor microenvironment
needs to be ensured and monitored. Another limitation with NK
and CAR-NK cells is the memory property in vivo, which is not
fully understood as in the case of memory T cells in adaptive
immunity. Identifying novel CAR targets and generation of NK
specific CAR constructs will enable CAR-NK cell homing and
persistence in solid tumors contributing to breakthrough
approaches driving allogeneic NK therapies towards the next
frontier of cancer immunotherapy.
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