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Abstract: On the mesoscopic scale, granular matter is tessellated into contact loops by a contact
network. The stability of granular matter is highly dependent on the evolution of contact loops,
including the number and area evolutions of contact loops with different geometric shapes (which
can reflect the mechanical variables in the macroscale). For the features of numerous loops with
complex geometry shapes in contact network images, a contact loop recognition and determination
technique was developed in this study. Then, numerical biaxial compression tests were performed
by the discrete element method (DEM) to investigate how the meso-structural indexes evolve along
with the macro-mechanical indexes. The results show that the proposed Q-Y algorithm is effective in
determining the geometric types of contact loops from contact network images. The evolution of
contact loops is most active in the hardening stage, during which the number percentages of L3 (loops
with three sides) and L6+ (loops with six or more sides) show opposite evolution patterns. For the
area percentage, only L6+ increases while others decrease. Considering the meso-structural indexes
(number percentage and area percentage of loops) are sensitive to the change of macro-mechanical
indexes (deviatoric stress, axial strain, and volumetric strain) in the hardening stage. Multivariate
models were established to build a bridge between the meso-structure and the macro-mechanics.

Keywords: granular matter; DEM; contact network; meso-structure; macro-mechanics; multivari-
ate model

1. Introduction

The analysis of microstructure (such as particle rolling, contact sliding, coordination
number, and contact anisotropy, etc.) is helpful to explain the complex macroscopic
behaviors (such as strength and deformation characteristics) of granular materials [1–5].
However, establishing the relationship between microscopic variables and macroscopic
behavior requires an intermediate scale, namely the mesoscale [6,7]. It has been widely
accepted that the geometric arrangement and combination of particles determine the
macroscopic mechanical behaviors of particle assembly [8]. At the mesoscale, structural
features are accounted for with clusters of a few interacting particles. Therefore, the
structure of particle assembly can be divided into elementary “contact loops” (hereinafter
referred to as loops), which are enclosed by the contact branches of interacting particles [9].
The stability of assembly is highly dependent on the evolution of contact loops, which can
help understand the underlying mechanisms behind macroscopic observations [10].

The edge number of the contact loop plays an important role in the mechanical behav-
ior of assembly. For example, the increase in edge number will increase the freedom degree
of contact loops, causing a complex mechanical response of assembly [11–14]. However,
how to identify contact loops and determine their edge number from complex contact
networks has not been specifically described in relevant studies. For the assembly contain-
ing a large number of particles, the contact network has the characteristics of numerous
nodes and complex loop shape, which requires a higher recognition accuracy of the contact
loops. Based on the contact network, similar recognition methods of polygon loops include
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artificial recognition, classical image recognition techniques, and deep learning recognition
methods (which developed rapidly in recent years) [15]. However, artificial recognition is
inefficient and is not suitable for contact networks with a large number of loops. Classical
image recognition techniques have been developed and have high accuracy for images
with simple and good semantic results, but their algorithms need to be improved according
to the image characteristics. The deep learning recognition method can recognize polygon
types, but it needs a lot of samples to be labeled and trained before it can be applied [16].
Furthermore, the recognition of single or small numbers of images of contact loops with
complex geometric shapes is inefficient. Therefore, based on the characteristics of the
contact network, a new recognition method needs to be proposed to recognize the contact
loop and judge its geometric type.

To understand the evolution of contact loops, some studies have been carried out by
the discrete element method (DEM) [7,8,17,18]. For example, the shear dilatancy in the
biaxial compression test can be interpreted as the transformation of contact loops from the
small-dense structure to the large-loose structure [7]. However, the evolution representation
of contact loops is often qualitative and lacks quantitative representation, especially the
quantitative relationship between the structural indexes of contact loops at mesoscale and
the mechanical indexes of assembly at the macroscale. The purpose of this study is to put
forward a determination technique of contact loops with different geometric shapes and to
establish the quantitative relationship between structural indexes and mechanical indexes.
The structure of the paper is as follows. In Section 2, the recognition and determination
technique for contact loops based on contact network images is introduced. Section 3
analyzes the evolution of meso-structural indexes in the biaxial compression test based on
the above techniques. In Section 4, the quantitative relationship between meso-structural
indexes and macro-mechanical indexes was established, and thus the bridge between
meso-structure and macro-mechanics was also established. Finally, the conclusion and
prospect of future work are given in Section 5.

2. Contact Loop Recognition and Determination Technique

For the DEM simulation with contact data, the contact network can be discretized
into sub-domains (polygonal loops) by the “Delaunay triangulation” method and other
analytical methods [7,17]. However, these methods are not suitable for cases without
original contact data, such as contact network images obtained by 2D simulations and
experiments (Figure 1). It is necessary to propose a 2D contact loop recognition and
determination technique from the perspective of contact network images, which lacks
original contact data. Therefore, one of the purposes of this study is to recognize and
determine contact loops in contact network images without contact data.
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Figure 1. (a) Particle distribution image and (b) contact network image in the idealized 2D experi-
ments (lamellar particles distributed in monolayer representing the 2D particle assembly).

There are three main reasons for developing the 2D recognition and determination
technique. Firstly, contact forces in the 3D contact network are nonplanar. Such hierarchical
relationships are difficult to represent in the image, which is a great challenge for the
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segmentation and identification of contact loops. The 2D technique in this study is an
important basis for extending to future 3D researches. Secondly, much of the literature has
demonstrated that 2D DEM simulations and idealized 2D experiments (such as Figure 1b)
can reproduce the main mechanical features of mixed granular matters [19–21]. More
importantly, the 2D model allows one to explore the microstructures in an effective but
easier way than the 3D model [22]. For the evolution of the contact network, the effect of
the 2D model is more intuitive. Therefore, the 2D recognition and determination technique
is developed to investigate the meso-structure evolution of granular matters.

The principle of the 2D contact loop recognition and determination technique is
that the corner number in the polygonal loop equals the side number of these polygonal
loops. Therefore, the core of the technology is the recognition of corners. The existing
corner detection technologies are mainly divided into gradient-based, template-based, and
template-based gradient combinations. These algorithms include the FAST algorithm [23],
HARRIS algorithm [24], SUSAN algorithm [25], and other improvement methods for corner
detection. Based on the contact network image, we tested and compared the results of the
above three corner detection algorithms.

In Figure 2, the FAST algorithm and the SUSAN algorithm recognize the points on
the boundary as corners, resulting in a huge increase in the number of corners. However,
the recognition effect of the HARRIS algorithm is the opposite and results in the loss of
many corners. The traditional corner detection algorithm cannot obtain accurate corner
information in the contact network image. Therefore, this study proposes a Q-Y algorithm
to identify corners and then determine the geometric types of contact loops. The process of
the recognition and determination technique based on the Q-Y algorithm is as follows.
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Figure 2. The corner recognition results of (a) FAST algorithm, (b) HARRIS algorithm, and (c) SUSAN
algorithm.

Firstly, we segment the original contact network image and get separate connected
domains in Image I, wherein each connected domain represents a contact loop; secondly,
we assign different gray value to each connected domain and obtain Image II; thirdly, we
perform the morphological opening operation to integrate the divided edges of the two
adjacent connection domains to obtain an edge to form Image III; fourthly, we use the Q-Y
corner detection algorithm to perform corner detection on Image III to determine each
corner point and obtain Image IV; fifthly, we set a gray value uniformly for the adjacent
corner points as an intersection, and extract Image V containing only the intersection point;
sixthly, we perform morphological corrosion processing on each intersection of Image
V, and each intersection intrudes into the adjacent connection domain to obtain Image
VI; seventhly, the geometric type of each connection domain is determined according to
the principle that the number of sides is equal to the number of corners. The area of the
connected domains is calculated by the number of pixels in each connected domain, and
the statistical results (number and area of each geometric type) are obtained in the final
step. The above process is demonstrated in Figure 3.
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2.1. Contact Network Image Pre-Processing

The first step of the recognition and determination technique is image segmentation.
That is, each contact loop is separated from the other in the contact network image. Each
separated contact ring is regarded as a connected domain. The segmentation method
based on the OTSU algorithm [26] has always been regarded as the optimal method for
automatic image segmentation. The basic idea of this algorithm is to divide image pixels
into two groups by a threshold, and then determine the optimal threshold by the maximum
interclass variance between the pixels of two groups.

Suppose the grey levels of the contact network image is G = [0, L − 1] and the
probability of each grey level is Pi. The threshold t divides the image into two groups
G0 = [0, t] and G1 = [t + 1, L − 1]. The probabilities of the two groups are α0 =

t
∑

i=0
Pi

α1 = 1− α0

(1)


µ0 =

t
∑

i=0

iPi
α0

=
µE

0
α0

µ1 =
L−1
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i=i+1

iPi
α1

=
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(2)

where µE
0 and µE

1 are the expectations of G0 and G1, respectively; α0 and α1 are the proba-
bilities of G0 and G1, respectively. Therefore, the interclass variance of the two groups can
be expressed as

η2(t) = α0(µ− µ0)
2 + α1(µ− µ1)

2 = α0α1(µ0 − µ1)
2 (3)

If η2(t∗)= max
(
η2(t)

)
, then t∗ is the optimal threshold. If the value t∗ is not unique,

the average value of all t∗ is used as the optimal threshold. For the contact network image,
the OTSU segmentation method gives a more satisfactory segmentation result, as shown in
Figure 4.

In the segmented image, different grayscales are assigned to the segmented connected
domains. Since the existence of boundary lines of connected domains affects the effect
of corner detection, the image needs to be processed using the algorithm of binary open
operation to remove the boundary lines. The binary open operation includes corrosion cal-
culation and expansion calculation, which is a multiple-point pattern-based unconditional
simulation algorithm using morphological image processing tools [27,28].
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The corrosion calculation can cause a shrinkage erosion of the image’s boundaries
and is used to eliminate the small and meaningless areas. The definition of the corrosion
calculation is the probing of an image B with a probe S to find a region E inside the
image [29], which can be expressed as

E = BΘS =
{
(x, y)

∣∣Sxy ⊆ B
}

(4)

The expansion calculation is a pairwise operation of the corrosion calculation, which
can be used to fill certain voids in the target area as well as to eliminate small particles of
noise contained in the target area. The expansion calculation can be expressed as

E = B⊕ S =
{
(x, y)

∣∣∣S(x,y) ⊆ B 6= ∅
}

(5)

The corrosion calculation can corrode boundary lines, and the expansion calculation
can be used to fill the cavity in the target area and eliminate the noise contained in the
target area. The processing effect of the binary open operation is shown in Figure 5.
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2.2. Corner Detection

For the greyscale assigned image without boundary lines, there is a greyscale inside
the connected domain, two greyscales around the boundary (Figure 6a), and three or more
grey values around the corner (Figure 6b). The Q-Y algorithm for corner detection is
proposed based on this characteristic.
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If there are two or more grayscales within a certain range of the target pixel and they
are different from its grayscale, the point is considered as a corner pixel. The specific
process for corner pixel detection is as follows.

Step 1: Four pixels Nk
i around the target pixel Ni are selected to check the grayscales,

and the spatial positions of Ni and Nk
i are shown in Figure 7. If at least two pixels have

different grayscale from the target pixel, then the target pixel may be a corner pixel and
proceed to the next step; if not, then the next target pixel is checked.
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Step 2: The corner response function is used to check whether the pixels Ni screened in
Step 1 are corner pixels. If the corner response function is satisfied, the pixel Ni is regarded
as a corner pixel. The corner response function is expressed as:{

Ni = gi − gx
i

Nimax 6= Nimin 6= 0
(6)

where gi is the grayscale of Ni, and gx
i is the grayscale of the pixel Nx

i around Ni.
Step 3: The pixels meeting the corner response function constitute corner pixels. It is

worth noting that each corner may contain multiple corner pixels, as shown in Figure 8.
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Step 3: The pixels meeting the corner response function constitute corner pixels. It is 
worth noting that each corner may contain multiple corner pixels, as shown in Figure 8. 
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Figure 8. Recognition effect of the Q-Y algorithm. Figure 8. Recognition effect of the Q-Y algorithm.

In Figure 8, the Q-Y algorithm identifies more than 99% of corners, which has a
perfect recognition effect. For comparison, three common corner detection algorithms were
selected again, whose results are shown in Figure 9. The FAST algorithm [23] identified
only a few corners, the HARRIS algorithm [24] identified 80% of corners, and the SUSAN
algorithm [25] identified corners including numerous non-corners and lost a large number
of corners. The accuracy of these three algorithms is quite inaccurate compared to the Q-Y
algorithm.

2.3. Recognition and Statistics

The adjacent corner pixels are assigned to the same value and considered as a corner.
The above binary open operation affected the range of corner pixels, resulting in a decrease
in the accuracy of corner allocation. Therefore, the corrosion calculation is required for
Figure 8 so that every corner point can be allocated to the surrounding connected domains.
After all of the corners are allocated, the number of corners in all connected domains can
be obtained. Based on the principle that the number of corners in the connected domain
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equals the number of its sides, the geometric types of contact loops can be determined.
Additionally, the area of a contact loop is represented by the number of pixels. Finally, the
number and area of contact loops of each geometric type can be calculated. The above
process can be represented in Figure 10.
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The 2D contact loop recognition and determination technique can accurately de-
termine and count the geometric types and their areas of contact loops, which creates
conditions for quantitative analysis of contact network images.

3. Simulation and Analysis

The biaxial compression test was taken as an example and obtains the force chain
images through the DEM simulation in this section. Based on the recognition and determi-
nation technique introduced in Section 2, the meso-structural indexes were calculated, and
the relationships between the meso-structural indexes and the macro-mechanical indexes
are analyzed.

3.1. Biaxial Compression Numerical Model

Deluzarche and Cambou [30] indicated that volumetric contracting strains are dif-
ficult to obtain in 2D and suggested that 2D simulations should be restricted to dense
materials. To better reflect the strain responses, the dense assembly is adopted to match
this suggestion. The dense assembly is produced by isotropic compression. First, an initial
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rectangular area consisting of four rigid walls was established (Figure 11a), which con-
tained 10,000 round particles with uniformly distributed size (the minimum and maximum
diameters of particles are 0.8 mm and 1.2 mm, respectively). Then, particles in the initial
rectangular area were compressed isotropically. The servo control mechanism was used
to continuously adjust the positions of the rigid walls until a stable confining pressure
(σ0 = 20 kPa) was attained (Figure 11b). When the ratio of the mean unbalanced force to the
mean contact force was less than 10−5, the assembly was considered to reach equilibrium,
and a dense assembly was obtained.
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After the dense assembly was generated, the biaxial compression was used to apply
axial load. Biaxial compression means that confining pressures σ0 on the left and right
walls remain constant by the servo control mechanism, and the axial load is applied by the
downward movement of the upper wall (Figure 11c). The stress on the upper wall is the
principal stress, which is denoted by σ1. In this study, the moving rate of the upper wall
was maintained at 0.05 m/s. When the axial strain reaches 20%, it is considered that the
particle has compression failure, and the loading stops.

The biaxial compression simulations are conducted using the DEM program PFC2D

code [31]. The linear elastic contact model was used to describe the contact behavior
between particles, whose parameters were obtained according to previous experiments
and numerical simulations. Specifically, the interparticle friction coefficient (µp) is obtained
by consulting previous DEM simulations, and the wall-particle friction coefficient (µw)
is set as 0 to ensure that the particles around walls can roll and slide without resistance.
The value of normal-to-tangential stiffness ratio (kn/ks) is adopted as 4/3, which belongs
to the range of 1.0 to 1.5 of realistic granular materials [32]. Damping constant β = 0.7, as
suggested in Itasca [31], has been used for effectively dissipating the kinetic energy. The
values of the contact parameters are shown in Table 1.

Table 1. Contact parameters used in the DEM simulations.

Parameters Values

Interparticle friction coefficient, µp 0.5
Wall-particle friction coefficient, µw 0.0
Contact effective modulus, Ec (Pa) 1.0 × 108

Normal-to-tangential stiffness ratio, kn/ks 4/3
Damping constant, β 0.7
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3.2. Number Evolution of Loops

The variation of loop number Nl, deviatoric stress q (q = σ1 − σ0), and volumetric
strain εv with axial strain εa are shown in Figure 12. The deviatoric stress curve can be
divided into the strain hardening stage and the strain-softening stage (Figure 12a). The
curve of the loop number first decreases rapidly and then tends to be stable, and the
inflection point appears with the peak stress, indicating that the change of contact loop is
most active in the strain hardening stage. Figure 12b shows the assembly experienced the
shear contraction stage (εv ≤ 0) and the shear dilation stage (εv>0). The change of loops in
the shear contraction stage was more active than that in the shear dilation stage.
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Figure 12. The variation curves of (a) loop number, deviatoric stress, and (b) volumetric strain with axial strain.

In addition, the change of average coordination number Z was also explored. The
evolution of Nl is highly similar to that of Z (Figure 13a). This phenomenon can be explained
by Euler’s relation of 2D topology. In the particle system, the relationship between the
particle number Np, the contact number Nc, and the loop number Nl can be expressed
as Np + Nl

∼= Nc [33]. Based on Z = 2Nc/Np, the relationship between Z and Nl can be
expressed as Nl

∼= Np(Z/2− 1). For the assembly with a constant particles number, the
average coordination number is positively correlated with the loop number. In order to
show the relationship between the average coordination number and the loop number
better, we drew two diagrams and calculated the corresponding values of Z and Nl, as
shown in Figure 13b.
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Figure 13. (a) The variation curves of loop number and average coordination number with axial strain; (b) the diagrams of
the relationship between Z and Nl for two examples.

3.3. Evolution of the Meso-Structural Indexes of Loops

The contact network is a link between the strength and deformation of granular mat-
ters. The number and structure of contact loops are highly correlated with the strength of
the material, which can be used as a medium for carrying contact forces. Additionally, the
macroscopic deformation can be explained in terms of the evolution of contact loops, con-
sidering the local contact particles in a loop-like mosaic. The evolution of the contact loops
consists of the evolution of the number and area of loops with different geometrical types,
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which can be used to characterize the changes of the whole contact network. Therefore, the
number percentage and the area percentage of the contact loops with different geometrical
types are defined as the meso-structural indexes in this study.

Li denotes the contact loop with side number i (i = 3, 4, 5, . . . ). The number percentage
of Li is ωi = Ni/Nl , where Ni is the number of Li. In this study, the loops with the side
number ≥ 6 are grouped into one group based on previous studies [7], which is hereafter
referred to as L6+. Therefore, L3, L4, L5, and L6+ are counted separately in this paper and
their number percentage ω3, ω4, ω5, and ω6+ are calculated. The variation curves of
deviatoric stress, volumetric strain, and number percentage indexes with axial strain are
shown in Figure 14.
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Figure 14. The variation curves of (a) deviatoric stress, (b) volumetric strain, and number percentage indexes (ω3, ω4, ω5,
and ω6+) with axial strain.

Before the peak stress, ω3 decreased significantly, while ω6+ showed an obvious
opposite evolution. In the softening stage after the peak stress, the evolution rates of ω3
and ω6+ gradually stabilized. It is worth noting that the maximum curvature of ω3 and
ω6+ coincide with the minimum volumetric strain. In other words, the evolution rates of
ω3 and ω6+ have undergone tremendous changes in the conversion process of assembly
from the dense structure to the loose structure. However, ω4 and ω5 are basically constants
and are not affected by the evolution of deviatoric stress and volumetric strain.

The number percentage reflects the evolution of contact loops with different geometric
types, but it cannot fully reflect the distribution degree of contact loops in the contact
network. Therefore, it is necessary to introduce the area percentage of contact loops Ai,
which means the area ratio of Li in the contact network. Ai is defined as Ai = Si/ST, where
Si and ST are the area of Li and the contact network, respectively. The variation curves of
deviatoric stress, volumetric strain, and area percentage indexes (A3, A4, A5, and A6+) with
axial strain are shown in Figure 15. The evolution of Ai shows that only L6+ experiences
an area increase while the other kinds of loop contract. In fact, having more sides gives
rise to L6+ the ability to transform. The evolution of contact loops actually represents the
evolution of assembly volume in the 2D simulation. The evolution trend of A6+ and εv is
similar, indicating that L6+ is the main factor affecting volume evolution.
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4. Quantitative Analyses between Meso-Structure and Macro-Mechanics

Compared with the softening stage, the contact loops change more significantly in the
hardening stage, which should be used as the focus of force chain evolution. The quantified
analysis for the relationship between meso-structural and macro-mechanical indexes is
established in the hardening stage (εa ≤ 2.0%).

In this section, the macro-mechanical indexes (deviatoric stress, axial strain, and vol-
umetric strain) are used as dependent variables and meso-structural indexes (number
percentage indexes and area percentage indexes) are used as independent variables to
establish multivariate models. The independent variables could be reduced in dimension-
ality by the principal component analysis, and obtain the principal components [34,35].
Further, the multivariate models of the meso-structural and macro-mechanical indexes
can be obtained by establishing a multivariate regression equation between the principal
components and the independent variables.

4.1. Principal Component Analysis of the Meso-Structural Indexes

As there are eight independent variables, multicollinearity may occur in this high-
dimension analysis and compromise the statistical significance of independent variables.
Multicollinearity occurs when the absolute value of the Pearson correlation coefficient is
higher than 0.7 [36,37]. Pearson correlation coefficient (R) is defined as

R =

n
∑

i=1
(YP −YP)·(YA −YA)√

n
∑

i=1
(YP −YP)

2 ·
√

n
∑

i=1
(YA −YA)

2
(7)

where YP is the predicted value, and YA is the actual value. The statistical results of Pearson
correlation coefficients among the eight independent variables are shown in Figure 16.
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Figure 16 shows that the Pearson correlation coefficients of the diagonal can be higher
than 0.7, indicating that multicollinearity can occur if all the variables are used. When
multicollinearity occurs, the principal component analysis is suitable for the independent
variables [38]. The principal component analysis is a multivariate statistical method
that reduces multiple independent variables to a small number of principal components
through dimensionality reduction techniques [39]. The principal components can reflect
most information of the original variables and are linearly independent of each other. The
eight meso-structural indexes in the hardening stage (εa ≤ 2.0%) are shown in Table 2.
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Table 2. Mesostructural indexes in the hardening stage.

Axial
Strain

(%)

Meso-Structural Indexes

ω3 ω4 ω5 ω6+ A3 A4 A5 A6+

0 34.22% 40.80% 19.86% 5.13% 12.28% 38.49% 32.04% 17.19%
0.1 30.86% 44.14% 19.19% 5.80% 10.45% 40.43% 30.43% 18.69%
0.2 26.59% 45.89% 18.67% 8.85% 8.10% 37.76% 27.02% 27.13%
0.3 24.26% 45.21% 19.01% 11.52% 6.90% 33.49% 26.11% 33.50%
0.4 22.40% 44.57% 19.45% 13.58% 6.07% 30.85% 25.16% 37.92%
0.5 21.38% 44.62% 19.40% 14.61% 5.62% 29.12% 24.29% 40.97%
0.6 20.57% 44.81% 18.82% 15.79% 5.27% 28.03% 23.08% 43.63%
0.7 19.62% 44.49% 19.34% 16.55% 4.84% 26.90% 23.10% 45.17%
0.8 19.85% 43.39% 19.56% 17.20% 4.78% 25.35% 22.61% 47.26%
0.9 19.52% 43.23% 19.06% 18.19% 4.66% 24.80% 21.48% 49.06%
1.0 18.74% 43.00% 19.65% 18.60% 4.27% 23.77% 21.45% 50.51%
1.1 18.56% 42.76% 19.45% 19.22% 4.31% 23.34% 21.12% 51.24%
1.2 18.05% 42.60% 20.07% 19.28% 4.04% 22.77% 21.65% 51.53%
1.3 18.09% 42.32% 19.00% 20.60% 4.02% 22.26% 19.39% 54.32%
1.4 17.63% 42.62% 18.98% 20.77% 3.84% 22.22% 19.82% 54.12%
1.5 17.44% 42.15% 19.18% 21.23% 3.71% 21.52% 20.01% 54.75%
1.6 17.40% 42.07% 18.71% 21.82% 3.78% 21.38% 19.14% 55.70%
1.7 16.84% 41.81% 18.84% 22.51% 3.52% 20.85% 18.59% 57.04%
1.8 16.73% 42.29% 18.63% 22.36% 3.63% 21.18% 18.65% 56.54%
1.9 15.96% 41.37% 19.31% 23.37% 3.31% 20.40% 18.82% 57.47%
2.0 15.81% 41.71% 19.39% 23.10% 3.34% 20.08% 19.07% 57.51%

The original data matrix X = n× p = 21× 8 was established from the data in Table 2,
where n and p represent the number of samples and variables, respectively.

X =


x11 x12 · · · xn1
x21 x22 · · · xn2

...
...

. . .
...

xn1 xn2 · · · xnp

 (8)

According to the definition of the overall principal component, the covariance of the
principal component cov(F) is a diagonal array, which is expressed as

cov(F) =


f11 0 · · · 0
0 f22 · · · 0
...

...
. . .

...
0 0 · · · fnp

 (9)

The principal components F1, F2, . . . , Fp are uncorrelated with one another, which F1,
F2, . . . , Fp are called first, second, . . . , pth principal components, respectively. The percent-

age of the variance of the i principal component Fi in the total variance fi/
m
∑

j=1
f j(i = 1, 2, . . . , p)

contribution rate is called the contribution rate of the principal component Fi. The con-
tribution rate of the principal component reflects the ability of the principal component
to synthesize the original variable information, and can also be understood as the ability

to interpret the original variable [40]. The sum
m
∑

i=1
fi/

m
∑

j=1
f j of the contribution of the first

m (m ≤ p) principal components is called the cumulative contribution rate of the first m
principal components, which reflects the ability of the first m principal components to
explain the information of the original variables [41]. X is subjected to principal component
analysis. According to the total variance explained table (Table 3), the percentages of the
variance of the first three principal components are all greater than 10%, and the cumulative



Materials 2021, 14, 6542 13 of 19

contribution rate has reached 99.868%, so it is sufficient to extract the first three principal
components.

Table 3. Total variance explained of the first three principal components.

Component

Initial Eigenvalues Rotation Sums of Squared Loadings

Total
Variance

Percentage of
Variance (%)

Cumulative
Contribution Rate

(%)

Total
Variance

Percentage of
Variance (%)

Cumulative
Contribution Rate

(%)

F1 6.123 76.534 76.534 5.692 71.156 71.156
F2 1.243 15.536 92.070 1.247 15.581 86.737
F3 0.624 7.797 99.868 1.050 13.130 99.868

The extracted three principal components can remove implausible variables and
determine the contribution of each variable to each principal component by using the
component matrix. The component matrix is the coefficient of the factor expression of
each variable, expressing the degree of influence of the extracted component on the meso-
structural index. For the component matrix, the actual meaningful relationship between the
components and the variables is not obvious. To make the coefficients more significant, the
component matrix can be rotated so that the relationship between principal components
and variables is redistributed and the correlation coefficients are differentiated towards 0
to 1. The relationship between principal components and meso-structural indexes can be
derived from Table 3, and the rotated component matrix is shown in Table 4.

Table 4. Rotated component matrix between the principal components and variables.

Variables
Principal Components

F1 F2 F3

ω3 0.994 - -
ω4 - 0.960 -
ω5 - - 0.985
ω6+ −0.949 - -
A3 0.997 - -
A4 0.942 - -
A5 0.955 - -
A6+ −0.967 - -

By observing Table 4, it is found that each meso-structural index has a reasonable
value of 1 (i.e., greater than 0.4), so none of the eight meso-structural indexes need to be
deleted. The principal component F1, the highest percentage of contribution, is mainly
influenced by ω3, ω6+, A3, A4, A5, and A6+ indexes, which can reflect the effect of the area
percentages of all loops and the number percentages of L3 and L6+. The middle principal
component F2 and the third principal component F3 are mainly influenced by ω4 and ω5,
respectively, which reflects the effect of the number percentages of L4 and L5 is weak for the
macro-mechanical indexes. Based on the rotated component matrix and the standardized
coefficients (4.2), we can build the relationship between meso-structural indexes, principal
components, and macro-mechanical indexes are shown in Figure 17, which reflects the
contribution of meso-structural indexes to principal components and the effect of principal
components to macro-mechanical indexes. Additionally, the influence degree between
meso-structural indexes and principal components is quantized, showing as the component
score coefficient matrix in Table 5.
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Table 5. Component score coefficient matrix between meso-structural indexes and principal compo-
nents.

Variables
Principal Components

F1 F2 F3

ω3 0.233 −0.207 −0.090
ω4 −0.212 1.017 0.133
ω5 −0.120 0.163 1.027
ω6+ −0.144 −0.086 −0.027
A3 0.249 −0.265 −0.108
A4 0.150 0.094 −0.065
A5 0.151 0.028 0.102
A6+ −0.171 −0.006 0.022

The component score matrix indicates the relationship between each meso-structural
index and each component, with a high score on a component indicating the closer the
relationship between that indicator and that component. Based on the component score
coefficient matrix, the functions and values of the three principal components F1, F2, and F3
can be obtained (Table 6) and used in place of the meso-structural indexes for the next step.

F1 = 0.233xω3 − 0.212xω4 − 0.12xω5 − 0.144xω6+ + 0.249xA3 + 0.15xA4 + 0.151xA5 − 0.171xA6+ (10)

F2 = −0.207xω3 + 1.017xω4 + 0.163xω5− 0.086xω6+ − 0.265xA3 + 0.094xA4 + 0.028xA5− 0.006xA6+ (11)

F3 = −0.09xω3 + 0.133xω4 + 1.027xω5 − 0.027xω6+ − 0.108xA3 − 0.065xA4 + 0.102xA5 + 0.022xA6+ (12)

4.2. Establishment of Multivariate Model Based on Principal Components

The feedback of meso-structural indexes on macro-mechanics was achieved by estab-
lishing multivariate models of the three principal components F1, F2, and F3 with axial
strain εa, volumetric strain εv, and deviatoric stress q. Tolerance and variance inflation
factor (VIF) was used to determine whether equations of the multivariate models were
multicollinear, and the multivariate models were validated by variance analysis. The
partial regression coefficients of the models were examined to determine the influence
degree of the principal components on macro-mechanical indexes utilizing standardized
coefficients [42].
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Table 6. Values of principal components under different axial strain.

Axial Strain/% F1 F2 F3

0 2.92098 −2.36115 1.03283
0.1 2.2062 0.16253 −0.32189
0.2 1.25432 1.55719 −1.41124
0.3 0.72174 1.31898 −0.46048
0.4 0.29222 1.12591 0.71207
0.5 0.06105 1.18091 0.61629
0.6 −0.00741 1.11319 −0.88492
0.7 −0.27536 1.15016 0.50242
0.8 −0.27167 0.39496 0.98101
0.9 −0.22868 0.06347 −0.37464
1.0 −0.51139 0.19866 1.20855
1.1 −0.46837 −0.07702 0.66345
1.2 −0.68439 0.10974 2.32144
1.3 −0.48282 −0.5935 −0.60714
1.4 −0.55272 −0.33883 −0.58048
1.5 −0.59307 −0.5942 −0.09144
1.6 −0.49762 −0.87187 −1.35984
1.7 −0.62178 −0.9802 −1.03366
1.8 −0.60195 −0.71639 −1.56138
1.9 −0.79447 −1.06359 0.20003
2.0 −0.86479 −0.77897 0.44901

The multivariate model between the axial strain εa and the principal components F1,
F2, and F3 is shown as

εa = −0.505F1 − 0.311F2 − 0.104F3 + 1 (13)

The variance analysis of the Equation (13) indicates an F-value of 89.912 with a
p-value < 0.001, i.e., indicating that the multivariate model can be considered statistically
significant at the α = 0.05 test level. Table 7 shows the results of the partial regression
coefficient test. The p-values of all partial regression coefficients within the 95% confidence
interval (95%CI) are less than 0.05, indicating that the significance levels of the partial
regression coefficients are all in order. The standardized coefficients (β) for each principal
component indicate that it can be seen that the principal component F1 has the greatest
effect on the axial strain εa, and F2 and F3 have a small effect.

Table 7. Partial regression coefficient test results for Equation (13).

Principal
Components

β 95%CI p-Value

F1 −0.993 (−71.288, −65.210) <0.001
F2 −0.059 (−7.121, −1.043) 0.011
F3 −0.058 (−7.032, −0.953) 0.013

The multivariate model between the volumetric strain εv and the principal components
F1, F2, and F3 is shown as

εv = −0.279F1 − 0.31F2 − 0.104F3 + 0.341 (14)

The variance analysis of the Equation (14) indicates an F-value of 30.83 with a
p-value < 0.001. Table 8 shows the results of the partial regression coefficient test. The
p-values of all partial regression coefficients within the 95% confidence interval (95%CI) is
less than 0.05. The standardized coefficient (β) for each principal component shows that
the principal component F2 has the greatest effect on the volumetric strain εv, with the
second-highest influence degree of the principal component F1, and they are about three
times the influence degree of the principal component F3.
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Table 8. Partial regression coefficient test results for Equation (14).

Principal
Components

β 95%CI p-Value

F1 −0.596 (−0.373, −0.185) <0.001
F2 −0.663 (−0.405, −0.216) <0.001
F3 −0.223 (−0.199, −0.010) 0.032

The multivariate model between the deviatoric stress q and principal components F1,
F2, and F3 is shown as

q = −68.249F1 − 4.082F2 − 3.992F3 + 195.519 (15)

The variance analysis of the Equation (15) indicates an F-value of 753.49 with a
p-value < 0.001. Table 9 shows the results of the partial regression coefficient test. The
p-values of all partial regression coefficients within the 95% confidence interval (95%CI)
are less than 0.05. The standardized coefficient (β) for each principal component shows
that principal component F1 has the greatest influence on deviatoric stress q, being about
five times more influential than principal component F3, and principal component F2 is
more than three times the degree of influence of F3.

Table 9. Partial regression coefficient test results for Equation (15).

Principal
Components

β 95%CI p-Value

F1 −0.814 (−0.582, −0.428) <0.001
F2 −0.5 (−0.388, −0.233) <0.001
F3 −0.167 (−0.181, −0.026) 0.012

For Equations (13)–(15), the Tolerance = 1 > 0.2 and the VIF = 1 < 10, demonstrating that
there was no multicollinearity between the independent variables and no dimensionality
reduction was required. Additionally, the actual values and the calculated values of three
macro-mechanical indexes are fitted in Figure 18. For the fitting lines, the closer the slope
is to 1, and the closer the intercept is to 0, the better the fit is.
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Figure 18. The fitting results between the calculated values and the actual values for (a) strain and (b) deviatoric stress.

The above analysis results show that the parameter estimation, hypothesis testing,
and overall fit of the three multivariate models are good and statistically significant.

5. Conclusions and Outlook

A recognition and determination technique for 2D contact loops was proposed in this
study. Taking the biaxial compression test as an example, the meso-structural indexes were
calculated by the technique, and the relationships between the meso-structural indexes and
the macro-mechanical indexes are analyzed. The main findings are summarized as follows:
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(1) Based on the numerous and changeable polygonal loops in contact network images,
the proposed Q-Y algorithm is effective in determining the geometric types of contact
loops in contact network images.

(2) The change of contact loops is most active in the hardening stage, during which ω3
and ω6+ show opposite evolution patterns, while ω4 and ω5 are basically stable. The
area evolution of contact loops represents the volume evolution of the 2D assembly
and L6+ is the main factor affecting volume evolution.

(3) The variation of meso-structural indexes is active in the hardening stage, wherein the
multivariate models between meso-structural indexes and macro-mechanical indexes
were built.

The multivariate models in this study build a bridge between the mesoscale and
macroscale of granular matters. Additionally, the contribution rate of meso-structural
indexes to macroscopic mechanical indexes is quantified, which makes up for the deficiency
of qualitative explanation only in existing studies. Although the multivariate models have
a good verification effect, the multivariate models may have limitations due to the influence
of some factors (such as stress condition and particle shape), since these factors may change
the expression form of the multivariate models. Additionally, since the 2D recognition and
determination technique is an image processing-based algorithm, it is difficult to extend the
technique to 3D. Therefore, this study is limited to meso-structure and macro-mechanics of
2D DEM simulations.

Based on the techniques proposed in this study, it is suggested that the multivariate
quantitative models can be further improved by changing the influences factors in the
future in order to accurately feedback the macroscopic mechanical behavior of granular
matter through the mesoscopic contact network. Of course, if the quantitative relationship
between meso-structure and macro-mechanics can be verified experimentally, it would be
of great significance for this area of study.
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