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Abstract

Lower limb prostheses have traditionally been mechanically passive devices without electronic control systems.
Microprocessor-controlled passive and powered devices have recently received much interest from the clinical and
research communities. The control systems for these devices typically use finite-state controllers to interpret data
measured from mechanical sensors embedded within the prosthesis. In this paper we investigated a control system
that relied on information extracted from myoelectric signals to control a lower limb prosthesis while amputee
patients were seated. Sagittal plane motions of the knee and ankle can be accurately (>90%) recognized and
controlled in both a virtual environment and on an actuated transfemoral prosthesis using only myoelectric signals
measured from nine residual thigh muscles. Patients also demonstrated accurate (~90%) control of both the
femoral and tibial rotation degrees of freedom within the virtual environment. A channel subset investigation was
completed and the results showed that only five residual thigh muscles are required to achieve accurate control.
This research is the first step in our long-term goal of implementing myoelectric control of lower limb prostheses
during both weight-bearing and non-weight-bearing activities for individuals with transfemoral amputation.
Background
Lower limb amputation is a major cause of disability for
millions of people worldwide. It is estimated that there are
over 600,000 major lower limb amputees – transfemoral,
transtibial, or hip disarticulated patients – living in the
United States [1]. Individuals with a transfemoral amputa-
tion comprise approximately half of the major lower limb
amputee population and the majority of amputations are
caused by dysvascular disease. Transfemoral amputations
are often treated most effectively through use of a pros-
thetic leg.
There are three broad categories of prosthetic knees:

1) mechanically passive legs, 2) microprocessor-controlled
mechanically passive legs, and 3) microprocessor-controlled
mechanically active devices. Mechanically passive legs are
readily available from a number of manufacturers and vary
in costs and design complexity. In such devices, the move-
ment of the prosthetic joint(s) relies on the properties of its
mechanical components, such as hydraulic valves, linkage
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systems, pneumatic valves, or sliding joints. Prosthesis users
must make compensatory movements with their trunk,
pelvis, and residual limb to control the prosthesis; however,
no sensors are required. Microprocessor-controlled passive
prostheses employ sensors and a microcomputer for
closed-loop control [2-4]. A finite-state controller receives
kinematic and force information from the sensors attached
to the prosthesis, detects the gait phase, and adjusts the
mechanical impedance of the knee joint through a hy-
draulic damper [5] or by modifying a magnetic field [6].
The desired joint impedance is predetermined in each gait
phase based on normal gait studies. Studies show that com-
pared to the conventional passive prosthesis, the computer-
ized prosthesis with varied impedance allows reduced
energy consumption, improved smoothness of gait, and de-
creased hip work production during locomotion [7-9]. Nei-
ther mechanically passive, nor microprocessor-controlled
passive prosthetic legs can generate positive power. This
significantly impairs the ability of these prostheses to re-
store many natural locomotive functions, including ascend-
ing stairs and slopes and walking backwards, all of which
require significant net positive power at the knee joint,
ankle joint, or both [10-15]. Furthermore, mechanically
passive prostheses cannot be automatically repositioned
al Ltd. This is an Open Access article distributed under the terms of the Creative
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during non-weight-bearing situations; they need to be
manually manipulated by the user.
Microprocessor-controlled, mechanically active pros-

thetic legs have recently become commercially available,
and several additional prototypes are in various stages of
development [16-19]. These devices use a similar high
level control strategy to microprocessor-controlled mech-
anically passive prostheses; high-level state-based control-
lers interpret signals recorded from mechanical sensors
embedded in the prosthesis or from an orthotic placed on
the sound limb. The current state of the device then pro-
vides control information to lower-level position, force,
torque, or impedance controllers to ensure that the actu-
ator behaves properly. The capability of generating posi-
tive mechanical power greatly increases the number of
locomotion modes which may be restored to the patient;
however, improvements to the control system are required
before this potential can be realized.
Surface electromyographic (EMG) signals may be

decoded to provide an estimate of neural activation and
have been used to extract control information for upper
limb prostheses for many decades. EMG signals have also
been investigated for use with intent recognition for
microprocessor-controlled above and below knee pros-
theses [20-27]. Huang has shown that surface EMG sig-
nals can be decoded from transfemoral amputees to
predict up to seven locomotion modes with classification
accuracies of approximately 80%-95% [24]. Furthermore, it
was also found that information extracted from EMG sig-
nals were complementary to information extracted from
mechanical sensors. Simple sensor fusion improved the
accuracy and responsiveness of mode recognition [25].
One particular mode which seems to be ideally suited

for EMG control is during non-weight-bearing situa-
tions. The user may wish to reposition their prosthesis
to help dress themselves or prepare for transfers. Re-
searchers have previously proposed using EMG pattern
recognition to volitionally control knee movements for a
transfemoral prosthesis and noted high classification ac-
curacies for knee flexion and extension [28,29]. Other
signal processing techniques such as Kalman filtering
have also been proposed to track knee movements using
surface EMG signals measured from the thigh muscles
[30]. These previous studies were completed using
healthy control subjects and did not consider controlling
ankle movements. Ha et al. recently showed that EMG
signals from the quadriceps and hamstrings could be re-
liably decoded using quadratic discriminant analysis and
used with a knee impedance paradigm to control an am-
putee’s knee position [22]. This work showed that pa-
tients could accurately track a position command in a
virtual environment but it was not implemented on a
powered prosthesis. We recently completed preliminary
research which showed that both knee and ankle
movements could be accurately decoded using EMG sig-
nals measured from the residual thigh muscles of
transfemoral amputees [26]. That work was limited in
that it was only completed with four subjects in a virtual
environment. In this contribution, we extend our previ-
ous research by considering additional amputee patients
and demonstrating that the technique can be used to
control a powered knee prosthesis.

Methods
Two sets of experiments were completed between
September 2009 and Sept 2011 at the Rehabilitation Insti-
tute of Chicago. The Northwestern University Institu-
tional Review Board approved the studies, and written
informed consent was obtained from all study subjects.
Each experiment had two components. The first compo-
nent comprised an offline data collection procedure from
which the pattern recognition system was trained and
offline classification accuracy of the system was com-
puted. During this component, the patient was pro-
vided no real-time feedback and attempted to move
their phantom limb as instructed by a photograph
(Figure 1) displayed on a computer screen. The second
component comprised a real-time control experiment,
called the motion test, in which the patient controlled a
virtual (Experiment 1) or a physical (Experiment 2) pros-
thesis in real time.

A. Experiment 1: Non-weight-bearing Control in a Virtual
Environment
The data collection procedure for the non-weight-bearing
control within the virtual environment has been briefly de-
scribed previously [26] but is more thoroughly described
in the subsequent section. Six subjects with unilateral
transfemoral amputations (3 males, 3 females, mean (SD)
age 47.8 (15.9) years, number of years post amputation
26.3 (17.7) years) and six healthy control subjects partici-
pated in this study. Subjects were seated and the following
nine muscles were identified based on anatomical location
and palpation: semitendinosus, sartorius, tensor fasciae
latae, adductor magnus, gracilis, vastus medialis, rectus
femoris, vastus lateralis, and long head of the biceps
femoris. Nine adhesive, gelled silver–silver chloride elec-
trode pairs were placed over the muscles of interest with
an interelectrode spacing of approximately 3 cm (Figure 2).
All data were amplified by a factor of approximately 1000
using a Delsys Bagnoli-16 amplifier, digitized using a 16-
bit analog to digital converter, and transferred over a con-
troller area network (CAN) bus using the Prosthesis De-
vice Control Protocol [31].
Prior to any data collection, a therapist helped each pa-

tient to imagine performing the following movements:
knee flexion, knee extension, ankle plantar flexion, ankle
dorsiflexion, femoral rotation, and tibial rotation (Figure 1).



Figure 1 Photographs depicting the trained motions including A) knee flexion and extension, B) ankle plantar flexion and dorsiflexion,
C) femoral rotation, D) and tibial rotation.
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EMG signals were viewed in real-time to ensure that elec-
trodes were making good contact with the skin and signal
gain was set at an appropriate level. Custom software—
Control Algorithms for Prosthetic Systems (CAPS)—
instructed the subjects to perform the movements listed
previously. Data were also collected for a relaxation state
which corresponded to a no movement command. The
order that the trials were collected was not randomized
for the collection of the classifier offline data and eight
repetitions of 3 s each were collected for each motion.
Data from offline repetitions 1–4 were used to train a
Figure 2 Photographs depicting the electrode placement on the pati
pattern recognition system, and data from offline repeti-
tions 5–8 were used to compute classification accuracy.
The pattern recognition system used was based on

time-domain features extracted from 250 ms analysis
windows and classified by a linear discriminant analysis
classifier. Classifier decisions were made every 50 ms
which allowed for 200 ms to be retained in an overlap-
ping window scheme. This system has been used exten-
sively and been shown to provide good classification
performance for upper limb amputees [32]. Further-
more, this combination of feature-set and classifier has
ent’s A) anterior and B) posterior residual limb.
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shown promise in recognizing ambulation modes during
weight-bearing activities and performs equivalently to
non-linear artificial neural network classifiers [24]. The al-
gorithm and equations required for computing feature ex-
traction and classification are provided in Appendix A.
The pattern recognition system was evaluated on its

ability to provide high classification accuracy and real-
time controllability. Classification accuracy was defined
as the percentage of offline test data correctly predicted
by the pattern recognition system trained with the
offline training data. Real-time controllability was evalu-
ated by the patient’s performance when completing a vir-
tual environment motion test [32]. The motion test
required subjects to replicate motions displayed on a
computer screen while real-time position feedback was
provided by a virtual environment avatar. Performance
metrics for the motion test included motion completion
time, motion completion percentage, and motion selec-
tion time [26]. Motion completion time was the elapsed
time from movement onset until the subject successfully
moved the virtual limb through the complete range of
motion. The speed of the virtual limb was normalized
such that the patient could move the prosthesis through
the range of motion in a minimum time of 1 s when the
classifier correctly classified the movement (i.e. corre-
sponding to 20 correct decisions). The trial ended un-
successfully if a patient could not move the virtual limb
through the complete range of movement within 15 s.
Motion completion percentage was the number of suc-
cessfully completed motions divided by the total number
of trials. Motion selection time was the elapsed time
from movement onset to the first correct movement
classification.
The offline training data were used to create two pat-

tern recognition systems. The first pattern recognition
system was trained to recognize a 2 degree of freedom
(DOF) subset of all the collected movements: knee
flexion/extension, ankle plantar flexion/dorsi-flexion and
a no movement class. After the system was trained, the
patient completed a real-time control test using feedback
provided by the virtual limb. The motion test configur-
ation consisted of nine real-time trials of each of the
four movements (the no motion class was not tested)
which were presented in random order. The second pat-
tern recognition system was trained using the offline
training data to recognize all movements. This motion
test configuration consisted of 3 real-time trials of each
of the eight movements which were presented in a ran-
dom order.
An additional offline analysis was performed to deter-

mine the number of channels required to achieve ac-
ceptable pattern recognition accuracy for transfemoral
amputees only. Exhaustive searches of the optimal chan-
nel subsets ranging from lengths 1–9 were made for the
2 and 4 DOF pattern recognition system [33]. Optimal
channel subsets of length m were defined as the subset
of channels that produced the highest classification ac-
curacy when only m channels were used as input to the
pattern recognition system. Additionally, the classifica-
tion accuracies were evaluated when only data from the
rectus femoris and semitendinosus were used as this
configuration most resembled the EMG input to the two
channel system described by Ha et al. [22]. Due to time
constraints during the experiments, motion tests were
not performed for different channel subset lengths.

B. Experiment 2: Non-weight-bearing Control using a
Physical Prosthesis
Three of the six transfemoral amputee participants
returned to complete a second experiment to evaluate
their performance when controlling a powered knee pros-
thesis. A prosthetist created a transparent test socket for
each patient with stainless steel dome electrodes (Motion
Control Inc.) embedded on the interior socket wall at the
same electrode locations as Experiment 1. A male snap
was threaded on the exterior socket wall to provide con-
venient connections to the same Bagnoli-16 EMG ampli-
fier used in the previous experiment. Once again, data
were amplified by a factor of 1000, sampled by a 16 bit
analog-to-digital converter and streamed across a CAN
bus to CAPS software.
The powered knee prosthesis used in this experiment

was designed and fabricated at Vanderbilt University and
is similar to the prosthesis described in previous work
[22,34] except that the ankle actuation unit was removed
(Figure 3). The prosthesis weighed approximately 8 lbs,
was battery powered, and the knee was actuated using a
Maxon EC30 motor through a ball screw transmission.
The knee was attached to a Seattle Lightfoot. A vol-
itional impedance controller was created within CAPS
(Figure 4) and was very similar to architecture described
previously by the Vanderbilt Group. The pattern recog-
nition system described in Experiment 1 provided the
two mutually exclusive outputs ωk_emg and ωa_emg, corre-
sponding to knee and ankle velocities, respectively.
These velocities were integrated to provide an estimate
of the desired knee and ankle positions. A joint torque
command was generated according to the following
equation:

τi ¼ ki θi−θiemg

� �þ bi _θ ð1Þ

where i was an index corresponding to the knee or
ankle, k was an empirically determined virtual stiffness,
θ was the position measured from the prosthesis, θemg

was an estimate of the desired joint position, b was an

empirically determined virtual damping term, and _θ was
the joint velocity measured from the prosthesis.



Figure 3 Transfemoral amputee wearing the powered
knee prosthesis.
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When the prosthesis was initially powered on, the
tuning parameters (k and b) were set to 0 such that a
joint torque command of 0 Nm was sent to the de-
vice while training and testing data were collected.
The data were collected using the same procedure as
used in Experiment 1 except only knee flexion, knee
Figure 4 Architecture of the impedance controller used to generate t
extension, ankle plantar flexion, and ankle dorsiflex-
ion, and no motion data were collected. Next, the
myoelectric impedance control parameters were tuned
empirically. The values of kk and bk were slowly ad-
justed until the subject could move the knee through
the full range of motion at a comfortable speed with
a smooth kinematic profile. Since the prosthesis did
not contain an ankle actuation unit, the ankle tuning
parameters, ka and ba, remained at 0. These parame-
ters would also need to be adjusted in order to con-
trol an ankle actuation unit. Subjects practiced
controlling the knee for several minutes prior to com-
pleting motion tests with the physical prosthesis.
The motion tests were very similar to those de-

scribed in Experiment 1 except that the order of mo-
tions was not randomized; knee flexion and extension
were tested first. Subjects were cued by the experi-
menter to perform the appropriate motion and move
the knee joint through the full range of motion.
Ankle motion tests were completed with the pros-
thetic knee positioned at 90 degrees of knee flexion
(i.e. neutral position when sitting) and at 45 degrees
of knee flexion. Testing in the two different positions
allowed us to determine if the pattern recognition
system could still recognize ankle motions when the
knee was repositioned. Feedback was provided to the
subject by both the virtual environment and the phys-
ical prosthesis: the output of the pattern recognition
classifier was displayed on a computer monitor and if
the pattern recognition system erroneously decoded a
knee command, then the prosthesis would move in-
correctly. The performance metrics of the motion
tests were motion completion percentage and motion
completion time.
he torque command provided to the powered knee prosthesis.



Hargrove et al. Journal of NeuroEngineering and Rehabilitation 2013, 10:62 Page 6 of 11
http://www.jneuroengrehab.com/content/10/1/62
Results
A. Experiment 1: Non-weight-bearing Control in a Virtual
Environment
Both transfemoral amputee and able-bodied control partic-
ipants were able to control the knee and ankle of a virtual
prosthesis using signals recorded from thigh muscles.
Table 1 summarizes the classification accuracy and con-
trollability results of the 2 and 4 DOF pattern recognition
systems. Figure 5 shows the motion completion percent-
ages as a function of the time. The results showed that
there were no significant differences between overall classi-
fication accuracies or completion rates between subject
groups or number of DOFs that the patients could control
(p > 0.1, ANOVA). There was some evidence to suggest
that control subjects completed motions faster than ampu-
tee subjects (p > 0.05, ANOVA). Both amputees and con-
trol subjects selected motions faster for the 2 DOF control
system in comparison to the 4 DOF control system.
An offline channel reduction analysis on the trans-

femoral amputee dataset showed that classification error
reached a minimum when 4–6 channels were used in the
pattern recognition system (Figure 6). Further analysis re-
vealed that a selection of five muscles (semitendinosus, bi-
ceps femoris, sartorius, gracilis, and tensor fasciae latae)
resulted in a system with similar performance to the opti-
mal five-channel subset. For the 2 DOF system, classifica-
tion error was 12.3% (8.8), mean (SD), using the same five
muscles for each subject and 8.1% (5.6) using the optimal
Table 1 Virtual prosthesis performance metrics

Knee F/E and ankle DF/PF

Performance metric Amputee Control

(n = 6) (n = 6)

Classification accuracy, %

Overall 90.7 (6.4) 91.2 (5.5)

Hip/Knee 88.5 (10.9) 98.8 (2.0)

Ankle 88.1 (10.2) 81.4 (18.5)

Motion selection time, s

Overall 0.36 (0.17) 0.38 (0.21)

Hip/Knee 0.46 (0.28) 0.33 (0.15)

Ankle 0.25 (0.14) 0.47 (0.53)

Motion completion time, s

Overall 2.06 (0.56) 1.74 (0.52)

Hip/Knee 2.00 (0.85) 1.30 (0.14)

Ankle 2.14 (0.57) 2.23 (1.06)

Motion completion percentage, %

Overall 97.7 (3.2) 96.3 (7.8)

Hip/Knee 100.0 (0) 100.0 (0)

Ankle 95.4 (6.5) 92.6 (15.6)

F/E = flexion/extension, DF/PF = dorsi-flexion/plantar flexion.
All results are presented in mean (standard deviation).
five-channel subset. For the 4 DOF system, classification
error was 15.5% (6.9) using the same five muscles for each
subject and 13.0% (6.4) using the optimal five-channel
subset. Both of these classification error-rates were signifi-
cantly different (p < 0.05).When only the semitendinosus
and rectus femoris channels were used for the 2 DOF clas-
sifier (as described in [20]) the classification error was
18.6% (8.0) compared to 14.7% (6.9) using the optimal
two-channel subset. This classification error-rate was dif-
ferent was significantly different (p < 0.05).

B. Experiment 2: Non-weight-bearing Control using a
Physical Prosthesis
Three transfemoral amputees were able to successfully
control knee flexion and extension while wearing the
powered prosthesis. Averaged across subjects, the tuned
impedance parameters were a stiffness, k, of 0.7 (0.1) and
a damping factor, b, of 0.06 (0.02). Subjects performed
slightly better with the physical prosthesis in comparison
to using only the virtual environment (Table 2, Figure 7).
Importantly, the pattern recognition system could still reli-
ably decode ankle motions when the knee joint was
repositioned at a 45 degree angle.

Discussion
Accurate classification and controllability of knee and
hip movements was expected because the EMG signals
were recorded from physiologically appropriate residual
Knee F/E, femoral rotation, ankle DF/PF and ankle rotation

Amputee Control

(n = 6) (n = 6)

88.0 (3.9) 90.8 (4.7)

86.3 (9.3) 96.8 (2.7)

86.3 (5.8) 87.2 (7.9)

0.70 (0.41) 0.58 (0.32)

0.51 (0.35) 0.57 (0.34)

0.88 (0.85) 0.58 (0.46)

2.62 (0.67) 1.95 (0.55)

2.27 (0.63) 1.54 (0.34)

3.00 (0.87) 2.40 (0.88)

90.3 (6.8) 96.5 (5.5)

95.8 (7.0) 100.0 (0)

84.7 (11.1) 93.1 (11.1)



Figure 5 Motion completion percentage as a function of completion time for transfemoral amputee and able-bodied control subjects
for both the A) 2 and B) 4 DOF pattern recognition systems.

Table 2 Comparison of physical and virtual prosthesis
performance metrics

Performance metric Virtual prosthesis Physical prosthesis

Classification accuracy, %

Overall 90.7 (3.2) 92.0 (5.0)

Knee 92.7 (1.6) 93.0 (2.2)

Ankle 85.0 (7.4) 87.5 (10.2)
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limb muscles. Accurate classification and controllability
of ankle motions was unexpected; the muscles that con-
trol the ankle are located below the knee and were lost
as a result of amputation. Nonetheless, transfemoral am-
putees were generating distinct and repeatable co-
activity patterns even after an average time of 26.3 (17.7)
years post-amputation. These patterns were properly
interpreted by the pattern recognition system. This is
analogous to recognizing subtle differences in hand
grasp patterns using only the extrinsic forearm muscles
of transradial amputees [35].
There was no significant difference (p > 0.1) between

the performances of the able-bodied control participants
and the amputee participants in terms of overall classifi-
cation accuracy or motion completion rate for the 2 and
4 DOF pattern recognition systems. We believe this is
primarily because only above knee muscles were
Figure 6 Optimal channel subset analysis results for the
transfemoral amputee dataset.
sampled from the control subjects; however, we did ex-
pect that the control participants would perform slightly
better than the amputee participants because visual and
proprioceptive feedback make it easier to perform re-
peatable movements. There was some evidence (but not
statistically significant) to suggest that control subjects
completed motions faster than amputee subjects, but the
differences in time were very small (<0.5 s). We believe
Completion time, s

Overall 1.32 (0.1) 1.26 (0.1)

Knee 1.23 (0.3) 1.11 (0.1)

Ankle (all) 1.40 (0.3) 1.32 (0.1)

Ankle (knee at 90 deg) n/a 1.37 (0.3)

Ankle (knee at 45 deg) n/a 1.31 (0.2)

Completion rate, %

Overall 98.2 (3.2) 96.3 (4.3)

Knee 100.0 (0) 100.0 (0)

Ankle (all) 96.3 (6.4) 97.2 (4.8)

Ankle (knee at 90 deg) n/a 100.0 (0)

Ankle (knee at 45 deg) n/a 88.9 (12.8)

All results are presented in mean (standard deviation).



Figure 7 Cumulative motion completion percentage comparing
performance between the physical prosthesis and the virtual
prosthesis for three transfemoral amputees.
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that the therapist’s instructions prior to data collection
helped to compensate for the lack of feedback available
to the amputee participants. This is consistent with
upper-limb pattern recognition work in which we have
noted that patient training helps to improve control, es-
pecially for novice users [36,37]. Both amputee patients
and control subjects took longer to select motions for
the 4 DOF control system. We believe that the patients
had to think longer about which motion they were being
asked to control in the 4 DOF test.
Previous studies have demonstrated impressive offline

classification accuracies [28,29] or position tracking of
knee movements [30] with healthy control subjects. The
capability for transfemoral amputees to control knee
movements in a virtual environment has also been inves-
tigated but the patients were not wearing the prosthesis
[26]. In the current study, only 2 DOFs were evaluated
with the physical prosthesis. Saggital plane movements
of the knee and ankle were selected because there are
currently 2 DOF mechanically powered legs under de-
velopment. Although these results are preliminary, they
are promising. All subjects were able to reliably to con-
trol the knee in real time. Furthermore, the pattern rec-
ognition system properly interpreted ankle commands
when the prosthesis was repositioned to a 45 degree
angle, suspending freely in space. This suggests that
myoelectric signal changes resulting from dynamic load-
ing on the socket do not degrade lower limb pattern rec-
ognition performance. Further testing with additional
amputees is required to see if this result can be general-
ized across subjects. It also should be noted that only
changes in the knee angle were tested and not changes
in the position of the residual limb.
Proportional control estimates of knee velocity were

not incorporated into the control system, and the pa-
rameters of the myoelectric impedance controller were
adjusted empirically by the experimenter. Proportional
control signals may be added by taking a simple average
of EMG amplitudes [38] or by using a weighted average
of EMG amplitudes determined by principle compo-
nent analysis [22]. Smoother kinematic profiles may be
obtained by optimizing the selection of the impedance
parameters—the objective of ongoing research.
The channel subset analysis showed that only 4 chan-

nels of EMG data are required to achieve low classifica-
tion errors when only 2 DOFs are controlled. Using
fewer EMG channels simplifies the socket modification
required to collect the signals and reduces the chances
of a wire failure. The optimal channel subset was slightly
different across the six transfemoral amputees for the 2
and 4 DOF systems. Selecting the most common five
muscles, including the semitendiosus, biceps femoris,
sartorius, gracilis and tensor fasciae latae, resulted in a
system with only slight increases in classification error
above the optimal five-channel set. The performance
obtained when using only the semitendinosus and rectus
femoris channels was significantly different than using
the optimal 4–6 channel subsets. This is somewhat to be
expected since Ha et al. only investigated 1 DOF, a much
more simple system than the current study’s 2 and 4
DOF systems.
The benefits of intuitive non-weight-bearing control

are that it allows the patient to reposition the limb for
increased comfort or in preparation for a transition.
These pattern recognition systems are quite insensitive
to muscle crosstalk [33]; however they are sensitive to
electrode shifts with respect to the residual limb [39],
changes in residual limb position [40], and changes in
electrode impedance. These issues may be mitigated by
collecting more training data or altering the electrode
configuration [41]. The proposed algorithm was only de-
veloped for use during non-weight-bearing situations.
While this type of control is important, our ultimate
goal is to investigate the benefits of using EMG signals
to supplement mechanical sensor data in weight-bearing
situations. A different signal processing approach, such
as making use of neuromuscular mechanical sensor fu-
sion [25], is necessary for weight-bearing situations, es-
pecially when the patient is ambulating, as there may be
large movement artifacts on the signal or the electrodes
may even lose contact with the socket.
Conclusion
This work demonstrates the feasibility of extracting
neural information from above knee muscles that is suit-
able for controlling both knee and ankle movements of
powered lower limb prostheses during non-weight bear-
ing activates. To our knowledge, this is the first time
EMG signals from the residual muscles of transfemoral
amputees have been used to directly control both knee
and ankle movements. Current work is focusing on
modifying the powered knee prosthesis control system
so that neural information can be used during weight-
bearing activities.
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Appendix A
Time-domain feature extraction
The time-domain statistics proposed by Hudgins et al.
[42] consisted of the MAV, the number of zero cross-
ings, the number of slope sign changes, and the wave-
form length. These four statistics were computed for
each EMG input channel and are concatenated to form
a feature vector.

Mean absolute value
An estimate of the mean absolute value of the signal, x
(t), in analysis window i with N samples is given by:

�Xi ¼ 1
N
∑
N

n
x nð Þj j; i ¼ 1;…; Ið Þ

Where x(n) is the nth sample in analysis window i, and
I is the total number of analysis windows over the entire
sampled signal.

Number of zero crossings
A simple frequency measure can be obtained by
counting the number of times the waveform x(t) crosses
zero. To reduce the number of noise-induced zero cross-
ings, a threshold value of ε is included in the calculation.
Given two consecutive values of the signal, xn and xn+1,
the zero crossing count is incremented if:

xn > 0 and xnþ1 < 0f g or

xn < 0 and xnþ1 > 0f g and

xn−xnþ1j j≥ε

The value of ε is dependent on the system noise and
needs to be selected appropriately by examining the
noise levels of the data.

Slope sign changes
Another feature which may provide a measure of fre-
quency content is the number of times the slope of the
waveform x(t) changes sign. Once again a threshold value
ε must be used to reduce noise induced slope sign
changes. Given three consecutive values of the signal xn-1,
xn, and xn+1 the slope sign change count is incremented if

xn > xn−1 and xn > xnþ1g or xn < xn−1 and xn < xnþ1f gf

And

xn−xnþ1j j≥εf g or fjxn−xn−1j≥ε
The value of ε is once again dependent on the noise

and should be selected appropriately.
Waveform length
This feature provides information on the complexity of
the waveform in each analysis window. It is the cumula-
tive length of the waveform defined as:

li ¼ ∑
N

n¼1
Δxnj j

Where Δxn = xn-xn-1, is the difference between con-
secutive signal samples. The resultant value provides a
measure of waveform amplitude, frequency, and dur-
ation all within a single parameter.

Linear discriminant analysis (LDA)
A linear discriminant classifier is a simplified imple-
mentation of a Bayesian statistical classifier. The Bayes
classification rule states: assign the N-length pattern
x to the class,Ci so that the following inequality is
satisfied

P Ci xÞ > P Cj xÞ; for i≠jj����

However, these a posteriori probabilities cannot be dir-
ectly measured. Instead, Bayes’ Theorem

P x CiÞ ¼ P Cið Þp x CiÞ ¼ p xð ÞP Ci xÞjðjðjð

can be used to provide the solution by deriving the a
posteriori probabilities from estimates of the a priori
probabilities

P Cijxð Þ ¼ P Cið Þp xjCið Þ
P xð Þ

Where P(x|Ci) is the probability density function for
the samples within the ith class and p(x) is the probabil-
ity density function of the input space and is a constant
over all the classes. It is usually assumed that the prob-
abilities of the output classes P(Ci), are equal. Now ap-
plication of Bayes’ classification rule essentially becomes
evaluating

di xð Þ ¼ P Cið Þp x CiÞjð

for each of the M classes and choosing the maximum
value.
The LDA implementation simplifies the Bayesian clas-

sifier by assuming that all probability density functions
are Gaussian. The multivariate Gaussian probability
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density function for M classes of patterns can be
expressed as:

p x CiÞ ¼ 1

2π
N
2 Cij j12

exp −
1
2

x−mið ÞTC−1
i x−mið Þ

� �
; i ¼ 1;…;M

�����
 

Where mi is the N length mean vector for the ith class
and Ci is the N x N covariance matrix for the ith class. Now,

di xð Þ ¼ P Cið Þ
2π

N
2 Cij j12

exp −
1
2

x−mið ÞTC−1
i x−mið Þ

� �

Expressing this value in the natural logarithm form
and canceling constant terms yields

di xð Þ ¼ ln P Cið Þð Þ− ln Cið Þ− x−mið ÞTC−1
i x−mið Þ

Furthermore, by assuming that all the covariance
matrices are equal, the set of discriminant functions be-
comes

di xð Þ ¼ ln P Cið Þð Þ þ xTC−1mi−
1
2
mT

i C
−1mi

The classification now becomes a problem of M equa-
tions and N unknowns, where M is the number of clas-
ses and N is the length of the feature vector.d(x) could
also be expressed in terms of M x N weight matrix and a
M x 1 offset array

W ¼ C−1mi

B ¼ −
1
2
mT

i C
−1mi þ ln P Cið Þð Þ

d xð Þ ¼ xTW þ B

After the weights and the offset have been calculated
from an appropriate set of training data, feed-forward
classification using a LDA is computationally simple.
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