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ABSTRACT

Competitive gene set tests are commonly used in
molecular pathway analysis to test for enrichment
of a particular gene annotation category amongst
the differential expression results from a microarray
experiment. Existing gene set tests that rely on
gene permutation are shown here to be extremely
sensitive to inter-gene correlation. Several data sets
are analyzed to show that inter-gene correlation
is non-ignorable even for experiments on homoge-
neous cell populations using genetically identical
model organisms. A new gene set test procedure
(CAMERA) is proposed based on the idea of
estimating the inter-gene correlation from the
data, and using it to adjust the gene set test statis-
tic. An efficient procedure is developed for estimat-
ing the inter-gene correlation and characterizing
its precision. CAMERA is shown to control the
type I error rate correctly regardless of inter-gene
correlations, yet retains excellent power for detect-
ing genuine differential expression. Analysis of
breast cancer data shows that CAMERA recovers
known relationships between tumor subtypes in
very convincing terms. CAMERA can be used to
analyze specified sets or as a pathway analysis
tool using a database of molecular signatures.

INTRODUCTION

A gene set test is a differential expression analysis in which
a P-value is assigned to a set of genes as a unit. Gene
set tests are important because they permit differential
expression questions to be posed in terms of ensembles
of genes representing pathways or other biologically inter-
pretable processes. Although a great many statistical pro-
cedures for gene set testing have been proposed in the

literature, they fall into two major categories (1,2).
Using the terminology of Goeman and Buhlmann (1),
‘self-contained’ gene set tests examine a set of genes in
their own right without reference to other genes in the
genome (3–8), whereas ‘competitive’ gene set tests
compare genes in the test set relative to all other genes.
Self-contained tests are of interest for assessing the rele-
vance of an individual biological process to the experiment
at hand (8), whereas the competitive tests focus more on
distinguishing the most important biological processes
from those that are less important. Competitive tests are
overwhelmingly more commonly used in the genomic lit-
erature (9).
Most competitive gene set tests assume independence

of genes (1,9), because they evaluate P-values by permu-
tation of gene labels (2,10,11), or because they rely on
parametric approximations that are asymptotically
equivalent to gene permutation (12–16). A handful of
articles have demonstrated that competitive tests are sen-
sitive to inter-gene correlations, and even quite modest
correlations can dangerously inflate the apparent false dis-
covery rate (FDR) (9,10,17,18). Nevertheless, these
warnings do not seem to have limited the popularity of
such tests, probably because of the lack of satisfactory
alternatives that maintain the direct interpretation of com-
petitive tests.
A number of authors have concluded that gene set test

P-values should always be evaluated by permutation or
resampling of RNA samples, even when a competitive hy-
pothesis is of interest, because sample permutation pre-
serves the inter-gene correlation structure and therefore
protects the test against such correlation (9,17,19,20).
This strategy, however, cannot be applied to experiments
with small number of biological replicates and, even more
crucially, it inevitably alters the hypothesis that is being
tested and therefore affects the essential clarity and inter-
pretability of competitive gene set testing. The very
popular Gene Set Enrichment Analysis (GSEA) procedure
(20) is of this type. It uses sample permutation to test the
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significance of a competitive gene test statistic, resulting in
a hybrid test for which the null and alternative hypotheses
are difficult to characterize in terms of population param-
eters (1).
A different attempt is to de-correlate genes in the test

set (21), but such an approach requires the estimation of
a covariance matrix with many entries, so the method-
ology is likely to be limited in practice to experiments
with relatively large numbers, at least dozens, of replicate
samples. A related approach is to try to approximate
covariances between genes using random effects (22,23),
but this methodology is limited to special experimental
designs and is dependent on commercial statistical
software.
This article proposes a new competitive gene set

testing procedure that maintains the direct interpretation
of competitive tests associated with gene permutation
but remains valid even when the genes in the test set
are correlated. We call this new method CAMERA, an
acronym for Correlation Adjusted MEan RAnk gene
set test. The procedure is based on the idea of estimating
the variance inflation factor associated with inter-gene
correlation, and incorporating this into parametric or
rank-based test procedures. The procedure does not
assume any particular correlation structure and is
suitable for any experiment that can be represented by
genewise linear models, not just two-sample comparisons.
As only one correlation parameter is being estimated, the
procedure remains stable and correctly controls the type I
error rate even for experiments with only a small number
of biological replicates.

MATERIALS AND METHODS

Linear models

One of the advantages of competitive gene set tests is that
they can be applied just as easily to any genewise test
statistic, no matter how complex. There is no need to be
limited to two-group comparisons, for example. To be as
general as possible, we assume throughout this article
a linear model setup similar to that described previously
(8,24). Suppose that a gene expression experiment has
been conducted resulting in log-expression values ygi for
genes g=1, . . . ,G and RNA samples i=1, . . . , n. We
assume a linear model for the expected value of each ex-
pression value given the experimental design,

EðygiÞ ¼ �gi ¼
Xp
j¼1

�gjxij

where the xij are covariates or design variables specifying
which treatment condition is associated with each RNA
sample, and the �gj are unknown regression coefficients
representing expression log-fold changes (logFCs)
between conditions in the experiment.
Each gene is assumed to have its own variance,

varðygiÞ ¼ �
2
g . Expression values from different arrays are

assumed to be independent, but expression values for
different genes from the same RNA sample are generally
not. The correlations cor(ygi,yg0i)= rg,g0 are generally

non-zero. Note that the rg,g0 here represent residual cor-
relations between genes across replicate samples, after the
treatment effects�gi have been removed.

Genewise test statistics

We assume that a specified contrast �g ¼
Pp

j¼1 cj�gj of the
coefficients is of primary interest, and genewise statistical
tests will be conducted of the null hypothesis H0 :�g=0.
For example, the contrast might extract the logFC
between two specified treatment conditions. More gener-
ally, it might represent an interaction term, or any similar
quantity of interest to the study at hand. We will use the
notation zg to represent any genewise statistic used to test
this hypothesis. A number of different genewise statistics
will be considered. First, the least squares estimate �̂g
is the observed logFC. Second, the ordinary t-statistic
tg ¼ �̂g=ðvsgÞ, where sg is the residual standard error for
gene g and v is obtained from the covariates xij, is the
classic univariate test statistic. For a simple two-group
comparison, v2=1/n1+1/n2 where n1 and n2 are the
group sample sizes. Third, the moderated t-statistic
~tg ¼ �̂g=ðv~sgÞ, where ~sg is the empirical Bayes posterior
estimator of �g, generally outperforms the ordinary t-stat-
istic for genomic experiments (24). Under the null hypoth-
esis, ~tg follows a t-distribution on d+d0 degrees of
freedom (df), where d= n� p is the residual degrees of
freedom (df) from the linear model and d0 is the prior
df, the latter estimated as part of the empirical Bayes pro-
cedure (24). Fourth, a normalized version zg ¼ F�1Ftð ~tgÞ
of the moderated t-statistics is considered. Here, F and Ft

are the cumulative distribution functions of the standard
normal and t-distribution on d+d0 df, respectively. Under
the null hypothesis, zg follows a standard normal distribu-
tion. Finally, in the context of genomic experiments, it is
of interest to consider zg as the rank of ~tg amongst all
genes in the experiment.

Existing competitive gene set tests

In this article, we compare our new proposals to four
existing gene set tests: PAGE (13), sigPathway (2) and
two versions of the ‘geneSetTest’ procedure implemented
in the limma software package (25) of the Bioconductor
project (26). The two geneSetTest versions will be denoted
geneSetTest-modt and geneSetTest-ranks, respectively.
PAGE is implemented as a Python script obtained from
the authors. sigPathway is implemented in a Bioconductor
package of the same name. The software implementations
of PAGE and sigPathway do not support linear models
and, therefore, are restricted to two-group comparisons,
although generalizing the procedures to a linear model
context is straightforward in principle.

All four gene set procedures conduct global tests
comparing genes in the test set to genes not in the test
set using the genewise test statistics as observations.
Specifically, they determine whether the mean �z of the
genewise statistics is significantly different for genes in
the test set versus genes not in the set. PAGE uses
logFC as zg whereas sigPathway uses ordinary t-statistics.
geneSetTest can accept any genewise statistic, but is most
commonly used with moderated t-statistics. sigPathway
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and geneSetTest-modt evaluate P-values by randomly
permuting the gene labels. PAGE conducts a one-sample
z-test, treating �z as normally distributed, with the global
mean and standard deviation of the genewise statistics
across all genes in the experiment as population param-
eters under the null hypothesis. geneSetTest-ranks
conducts a Wilcoxon–Mann–Whitney (WMW) rank sum
test to compare the zg for genes in the set to those for
genes not in the set. This amounts to a two-sample z-test
using the ranks of the moderated t-statistics as zg.
geneSetTest-ranks has also been called ‘mean-rank gene
set enrichment’ (27). For results reported in this article,
sigPathway and geneSetTest-modt were set to use 10 000
gene permutations, a number sufficient to generate highly
repeatable P-values.

GSEA (20) differs from the other procedures con-
sidered in this article because it tests a hybrid hypothesis
and because it is designed to test a battery of gene sets
against one another rather than to test an individual gene
set against background. For these reasons, GSEA is not
included in the simulations but is compared to CAMERA
on an example data set. GSEA was implemented using
the R-GSEA script from http://www.broadinstitute.
org/gsea (16 February 2011, date last accessed).

Variance inflation under correlation

Consider a set of m genewise statistics z1, . . . , zm. The
variance of the mean of the statistics is

var �z ¼
1

m2

Xm
i¼1

�2i þ
X
i<j

�ij�i�j

 !
where �i is the standard deviation of zi and the rij are
the pairwise correlations. The second term represents the
increase in the variance of the mean that arises from
correlations between the genes. If the �i are all equal to
�, then

var �z ¼
�2

m
VIF

where VIF is the variance inflation factor 1þ ðm� 1Þ ��
and �� is the average of the rij. Note that VIF can be
greater or less than one depending on the sign of ��.
It cannot, however, be <0 or >m.

Two-sided t-test allowing for correlation

Consider two groups of genewise statistics, with means �z1
and �z2. The standard two-sample t-statistic for comparing
the two groups has the form T= �/{sp(1/m1+1/m2)

1/2}
where � ¼ �z1 � �z2 is the difference in means, sp is the
pooled residual standard deviation and m1 and m2 are
the sample sizes in the first and second groups,
respectively. The standard test assumes all observations
are statistically independent.

We now extend the t-test to cover the possibility
that observations in the first group are not independent.
Write �� for the average of all pairwise correlations
between genes in the first group. If �� is non-zero, the
t-statistic remains asymptotically standard normal if it

is redefined to be

T ¼
�

sp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VIF
m1
þ 1

m2

q
where VIF¼ 1þ ðm1 � 1Þ�̂ is the variance inflation factor
for the first group and �̂ is a consistent estimator of ��.
If m1+m2 is large, and � is estimated on d df, then T
is approximately t-distributed on d df, under the null
hypothesis of no mean difference between the two
populations.
Write G=m1+m2, and write �z and s for the mean and

standard deviation of all G z-values taken as a single
group. For the applications in this article, it is
convenient to express T in terms of the first group
and the global statistics by writing � ¼ ð �z1 � �zÞG=m2 and
s2p ¼ fðG� 1Þs2 � �2m1m2=Gg=ðG� 2Þ.

Wilcoxon rank sum test allowing for correlation

The WMW rank sum test is a well-known statistical test of
whether one set of values is highly ranked relative to
another, against the null hypothesis that all values are
exchangeable. We implemented the usual WMW test
following the formulas given in Section 8.10 of Zar (28),
including corrections for ties and for continuity. The usual
WMW test computes a standard normal statistic by
dividing the rank sum statistic RankSum by the square
root of its variance, var(RankSum)=m1m2(m1+m2+1)/
12. The z-statistic is then treated as standard normal.
The usual WMW test assumes that all the values being

ranked are statistically independent. We extended the
WMW test to allow for the possibility that the values in
the first group are correlated, while values in the second
group remain independent. If the values are normally
distributed, and values in the first group share pairwise
correlation �, then the variance of the WMW rank sum
statistic can be shown to be

varðRankSum; �Þ ¼
m1m2

2	
sin�1 1þ ðm2 � 1Þ sin�1

1

2

�
þðm1 � 1Þðm2 � 1Þ sin�1

�

2
þ ðm1 � 1Þ sin�1

�þ 1

2

�
:

This result can be derived from Equation (4.5) of
Barry et al. (29). In our extension of the WMW test,
var(RankSum;r) replaces var(RankSum) in the
denominator of the z-statistic, which is then treated as
t-distributed on d df, where d is a measure of the precision
with which � is estimated. Our test reduces to the usual
WMW when �̂ ¼ 0 and d=1.

Estimating the inter-gene correlation

Write Y={ygi} for the m� n matrix of expression values
for genes in the test set. Here, rows correspond to genes
and columns to RNA samples. We assume that the
expression values can be represented by genewise linear
models with n� p design matrix X={xij}. The rows of
the design matrix correspond to RNA samples and
the columns to coefficients of the linear model. There
are d= n� p df available for estimating the genewise
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variances �2g and the correlations �g,g0 between pairs of
expression values ygi and yg0i for the same sample i.
Our aim is to estimate the average correlation ��, where

the average is over pairwise correlations �g,g0. The first step
is to compute d independent residuals for each gene. Write
X=QR for the QR-decomposition of the design matrix,
whereQ is n� n and R is n� p. Here, R is upper-triangular
and Q satisfies QTQ= I. An m� d matrix of independent
residuals is obtained by U=YQ2, where Q2 represents the
trailing d columns of Q. Note that the matrix U is already
available as a by-product of fitting genewise linear models
to the expression values using standard numerical
algorithms. Extracting it requires no extra computation.
The residual standard error sg for gene g is equal to the

root mean square of the corresponding row of U. We
standardize each row of U by dividing by sg.
At this point, we could obtain the correlation matrix for

the m genes from C=UUT; however, this is a numerically
inefficient procedure if m is large. A numerically superior
algorithm is to compute the column means u��k of U. Then

dVIF ¼ m

d

Xd
k¼1

�u2�k

estimates the VIF. Note that 0 � dVIF � m, which is
concordant with the range of theoretical values for the
VIF. An estimate of the average correlation can be
obtained by solving dVIF ¼ 1þ ðm� 1Þ �̂� for �̂�. This �̂� is
in fact numerically equal to the average of all pairwise
correlations in the matrix C, although the need to
explicitly form these pairwise correlations has been by-
passed.
If m and d are both reasonably large, and �� is

relatively small, then dVIF is approximately distributed as
VIF� 
2d=d. This implies that the standard deviation ofdVIF is approximately VIF(2/d)1/2, and that the standard
deviation of �̂� is approximately VIF(2/d)1/2/(m� 1).

Simulations

Simulated data sets were generated with a total of
G=10000 genes and either two or three groups of
RNA samples. Log-expression values were multivariate
normal. Genewise variances �2g were generated from an
inverse-chisquare distribution on 4 df. Specifically,
�2g � s20d0=


2
d0

with d0=4 and s0=0.25, generating a
distribution typical of microarray experiments.

Breast cancer data

Expression profiles of human breast tumors were
downloaded from GEO series GSE3165. In order to
standardize on one microarray platform, only the 94
arrays of platform GPL887 (Agilent Human 1A
Microarray V2) were included in the analysis. Each
tumor was classified to one of six molecular subtypes,
namely basal-like, luminal A, luminal B, Her2, normal-
like and claudin-low (30). Expression values were
normalized and filtered as described previously (31).

Mammary epithelial cell data

Mammary epithelial cells and stroma cells from three
human patients were sorted into four cell populations.
RNA samples were profiled on two Illumina
HumanWG-6 V3 BeadChips, comprising 12 microarrays.
Expression values were normalized and filtered as
described previously (31). The data is available as series
GSE16997 in the GEO database (http://www.ncbi.nlm.
nih.gov/geo).

Mouse hemapoietic stem cell data

Hematopoietic stem cells were isolated from four strains
(one wild-type and three mutant strains) of inbred
laboratory mice. Cells were further sorted into long-term,
short-term and multi-potential progenitors. Between two
and four biological replicates were available for each strain
and cell type, making a total of 35 RNA samples from
12 experimental groups. RNA was hybridized to Illumina
Mouse WG-6 Version 2 microarrays. Intensity values were
normexp background corrected and quantile normalized
using control probes (32). Probes that failed to reach a
detection P-value of 0.05 on at least two arrays were
filtered as not expressed, leaving 25 308 probes.

Ortholog mapping of the molecular signatures database

The Molecular Signatures Database (MSigDB) v3.0 was
downloaded from http://www.broadinstitute.org/gsea/
msigdb (28 September 2010, date last accessed).
Ortholog mapping was used to prepare a pure human
version of the MSigDB for use with the human expression
data and a pure mouse version for use with the mouse
expression data. All gene symbols were updated to latest
official symbols using the human and mouse Bioconductor
annotation packages (26). The resulting pure human and
mouse gene set collections can be downloaded as R objects
from http://bioinf.wehi.edu.au/software/MSigDB. The
curated C2 gene set collection contains 3269 gene sets.
The human C2 gene sets average 85 genes (median 35,
maximum 2282) while the mouse C2 sets average 80
genes (median 34, maximum 1968). Inter-gene correlations
were computed for sets containing at least 5 genes (3265
human and 3240 mouse).

RESULTS

Competitive gene set tests

Suppose that a gene expression experiment has been
conducted, resulting in expression values for each of
G genes (or probes or transcripts) in each of n target
RNA samples. The total number of genes is assumed
to be large, typically representative of the entire genome.
The expression values should be at least roughly normally
distributed. Typically, they will be normalized log-
intensity values from microarrays. In order to be
completely general, we assume that the assignment of
experimental conditions to RNA samples can be described
by a linear model (See ‘Materials and Methods’ section).
This covers all common experimental situations. We
assume that genewise tests of differential expression have

e133 Nucleic Acids Research, 2012, Vol. 40, No. 17 PAGE 4 OF 12

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://www.broadinstitute.org/gsea/msigdb
http://www.broadinstitute.org/gsea/msigdb
http://bioinf.wehi.edu.au/software/MSigDB


been conducted, resulting in test statistics zg, one for each
gene g.

We assume that a particular set of genes is of prior
interest. This a priori specified gene set might represent
a molecular pathway believed to be relevant to the
experiment, or it might be a gene list from a previous
microarray experiment hypothesized to be related to the
current experiment. We want to test whether the genes in
the gene set are highly ranked in terms of differential
expression, that is, whether they tend to be associated
with higher than average values of the test statistic.
This type of test is inherently ‘competitive’ between
genes, because the genes in the set are being compared
with genes not in the set. We wish to test whether the
test statistics associated with genes in the set tend to
be more extreme than those associated with genes not in
the set.

The competitive null hypothesis

The hypotheses tested by competitive tests have often not
been explicitly stated, or else have been stated informally
in terms of test statistics as we have just done. It is often
unclear, therefore, exactly what is being tested. We now
give a formal statement, in terms of model parameters, of
what we consider to be a biologically meaningful null
hypothesis for a competitive gene test. Suppose that S
represents the indices of genes in the set of interest, and
S
c is the complementary set of indices of genes not in the

set. For a ‘non-directional’ gene set test, we consider the
null hypothesis to be that the average absolute-logFC of
genes in the set is the same as that for genes not in the set,
i.e. the mean j�gj for g2S is equal to the mean j�gj for
g2Sc. In intuitive terms, this means that genes in the set
are no more differentially expressed on average than genes
not in the set. The alternative hypothesis is that the
average logFC is greater in absolute size for genes in the
set than for those not in the set. Note that the hypotheses
are in terms of the true unobserved logFC, not the
observed expression log-ratios.

For a ‘directional’ gene set test, we consider the null
hypothesis to be that the average logFC of genes in the
set is the same as the average logFC of genes not in the set,
i.e. the mean �g for g2S, ��S, is equal to the mean �g for
g2Sc, ��c. The directional hypothesis allows for one-sided
or two-sided tests. Unless otherwise stated, all gene set
tests in this article will be two-sided directional tests
with alternative hypothesis ��S 6¼ ��c.

Note that these null hypotheses are more general than
supposing the genes in the gene set to be a random sample
from the genome or from all those genes on the array. This
is because the hypotheses make statements only about the
fold changes, not about variances or correlations or other
distributional aspects. Note also that the competitive null
hypothesis differs from the null hypothesis of self-
contained tests. A self-contained gene set test would test
the null hypothesis that the logFCs �g are all zero for g2S
(8), whereas the competitive null hypothesis may be true
even when all or most genes in the set is differentially
expressed.

P-values from gene permutation

Competitive gene set tests are usually conducted by
permuting gene labels. Typically, the gene set test statistic
is the average zg for g2S, which we will denote as �zS. A P-
value is assigned by drawing random gene sets of the same
size m from the genes on the array. For the one-sided
directional test ��S ¼ ��c versus the alternative ��S � ��c,
the P-value is the proportion of the gene sets, combining
the random sets S* with the original S (33), for which the
mean statistic �z�S � �zS. For a two-sided test, the P-value is
twice the minimum of the two one-sided P-values.
The genewise test statistic zg might be an ordinary two-

sample t-statistic (2), or a moderated t-statistic (24), or the
estimated logFC (13). Any relevant genewise statistic
could be used. The need to draw random gene sets to
estimate the P-value is computationally intensive and
can be short-circuited in two ways. First, one can
replace the zg by their ranks across all the genes on the
array, in which case the permutation P-value can be
approximated very accurately using the well-known
WMW rank sum test (27). Second, if the zg are roughly
normal, then the permutation P-value can be well-
approximated by the standard normal tail probability of
Z ¼ ð �zS � �zÞ=ðs=

ffiffiffiffi
m
p
Þ where �zS is the average zg for genes

in S and �z and s are the mean and standard deviation of
the zg over all genes on the array.
In this article, we examine four existing gene set tests.

sigPathway (2) and geneSetTest-modt are permutation
methods using the ordinary and moderated t-statistics,
respectively. geneSetTest-ranks performs a WMW test
using ranks from moderated t-statistics (27). PAGE uses
the standard normal approximation for Z computed from
the logFCs (13).

Inter-gene correlation increases the type I error rate

The process of generating P-values from permutation of
gene labels treats all genes on the array as equivalent
under the null hypothesis. This assumption will be
violated, however, if the genes in the test set are more
highly correlated with one another than a random set of
genes would be. To illustrate this, we simulated data sets
with no differentially expressed genes but for which the
100 genes in the test set share an inter-gene correlation
of 0.05, whereas all other genes on the arrays are
uncorrelated. Even though the null hypothesis is true, all
four existing competitive gene set tests give P-values that
are not uniformly distributed but instead highly skewed
towards small values (Figure 1A–D). None of the existing
methods come at all close to controlling the type I error
rate correctly, yielding type I error rates many times the
nominal rate (Table 1, first four lines). This shows that
even a small inter-gene correlation dramatically increases
the type I error rates to dangerous levels.

Variance inflation factors

Write �� for the average of all pairwise correlations �g,g0
for genes in the test set. Also write ��B for the background
correlation, the average of all pairwise correlations �g,g0
for all genes in the genome, or all genes on the array.
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Normalization of microarray profiles will usually
guarantee that ��B is close to zero. However, �� is quite
likely to be >0 when the test set represents co-regulated
genes associated with some biological process.

Consider now the effect of these correlations on the
gene set tests considered earlier. Suppose that the
genewise statistics zg are ordinary or moderated
t-statistics. Under the null hypothesis of no differential
expression, these statistics have the same variance �2 for
every gene. If the zg were all independent, then the
variance of �zS would be �2/m and the sample variance s2

of the zg for all genes on the array would be good estimate
of �2. If instead �� is non-zero, then it is straightforward
to show (See ‘Materials and Methods’ section) that
the variance is not �2/m but rather is increased by the
variance inflation factor

VIF ¼ 1þ ðm� 1Þ ��:

It can be seen from the formula that VIF can be much
larger than one when the test set contains many genes
(m large), even if the inter-gene correlation is quite
small. It is this fact that drives the large type I error
rates seen in Table 1. In practice, the correlations
between genewise t-statistics are little different from
those between the log-expression values (29), so we will
assume the same correlations �g,g0 hold between genewise
t-statistics tg and tg0 as between expression values ygi
and yg0i. The above VIF can be taken to apply to
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Figure 1. Histograms of P-values from different gene set tests in the absence of any true differential expression, but with a small inter-gene
correlation in the test set. The simulation setup and order of test methods is as for Table 1. Test methods are (A) geneSetTest (mod t),
(B) geneSetTest (ranks of mod t), (C) sigPathway, (D) PAGE, (E) CAMERA (modt) and (F) CAMERA (ranks of modt). Existing methods
A–D give results highly skewed towards small and falsely significant P-values, whereas CAMERA gives uniformly distributed values.

Table 1. Type I error rates of gene set tests when genes in the set

are correlated

Test method Nominal P-value

0.01 0.02 0.05 0.10

geneSetTest (modt) 0.2779 0.3275 0.4157 0.4950
geneSetTest (ranks of modt) 0.2826 0.3319 0.4144 0.4955
sigPathway (t) 0.2524 0.3025 0.3880 0.4704
PAGE (logFC) 0.2441 0.2900 0.3709 0.4503
CAMERA (modt) 0.0087 0.0187 0.0477 0.0990
CAMERA (ranks of modt) 0.0086 0.0173 0.0473 0.1003

CAMERA holds its size correctly whereas existing methods are highly
liberal.
Entries are probabilities of rejecting the null hypothesis when
conducting a gene set test to compare two groups of four arrays. Set
size is 100 with inter-gene correlation 0.05. The remainder of 10 000
genes are uncorrelated. Results are based on 10 000 simulated data sets,
so the standard error with which the error rate is estimated ranges
from slightly < 0.001 (for rates near 0.01) to slightly < 0.005 (for
rates near 0.5).
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the sigPathway and geneSetTest-modt tests based on
ordinary or moderated t-statistics.

The PAGE parametric test uses logFCs as genewise
statistics zg. These do not have equal variances under
the null hypothesis, so the VIF is somewhat more
complicated (See ‘Materials and Methods’ section).
Nevertheless, the formula gives good guidance and holds
approximately when the genewise variances �2g are roughly
equal.

When zg is a rank, the VIF is slightly smaller than the
formula above, because converting statistics to relative
ranks tends to reduce positive correlations, or induces a
small negative correlation if the original statistics were
uncorrelated. This agrees with theoretical results that the
WMW test is less sensitive to correlation than the t-test
(34). An exact formula can be derived for the variance of
the mean rank when the statistics zg are normally
distributed and the inter-gene correlation is symmetric
in the test set (See ‘Materials and Methods’ section).
This exact formula is used in the rank version of the
CAMERA procedure.

Estimating the inter-gene correlation

The CAMERA procedure is based on the idea of
estimating the VIF from the data. The VIF and mean
correlation can be estimated directly from residuals from
the linear model for genes in the test set (See ‘Materials
and Methods’ section). Briefly, the procedure is to extract
a set of d= n� p independent residuals for each gene in
the test test. The residuals are standardized to have equal
variances, then summed over genes, and the mean square
of these sums estimates the VIF. This procedure is
equivalent to computing the average of all possible
pairwise correlations between genes in the test set, but is
numerically more efficient.

The CAMERA procedure treats the estimated VIF as
an unbiased estimator of the true VIF, and as having the
precision of a scaled chisquare distribution on d df (See
‘Materials and Methods’ section). Simulations show that
this approximation is excellent when d and m are large and
�� is relatively small (data not shown). More generally,
however, the VIF and mean correlation estimators are
somewhat more precise than these distributional
approximations imply (Table 2). This ensures that the
CAMERA test procedure will be conservative in small
sample situations, and will be close to optimal when
more replicates are available and the set size is moderate
to large.

CAMERA

We develop two versions of CAMERA: a parametric
version analogous to PAGE and a rank-based version
analogous to geneSetTest. Both versions use genewise
moderated t-statistics (24). The parametric version
transforms the genewise t-statistics to z-statistics, zg, that
are unit normal under the null hypothesis (See ‘Materials
and Methods’ section), then conducts a global two-sample
t-test to compare the zg values for genes in the test set to
those for genes not in the set. The two-sample t-test is
adjusted for correlation between genes in the test set,

using the extended t-statistic described in the Materials
and Methods section. In this procedure, the VIF
estimate for the test set of genes is inserted to inflate the
standard error of the two-sample t-statistic. The P-value is
evaluated by comparing the t-statistic to the t-distribution
on d df.
The rank-based version conducts a two-sample non-

parametric test instead of the t-test. It replaces the two-
sample t-test with an extended version of the WMW test
that allows for a correlation between members of one of
the two groups being compared (See ‘Materials and
Methods’ section). The extended WMW test uses an
exact formula for the variance of the rank-sum statistic
under correlation. Again, the P-value is evaluated by
comparing the rank-sum statistic to the t-distribution
on d df.

CAMERA controls type I error correctly

Both the parametric (mod t) and rank-based versions
of CAMERA control the type I error rate correctly, or
are very slightly conservative (Table 1, lines 5,6). They
generate P-values that are uniformly distributed under
the null hypothesis of no differential expression even
when genes in the test set are positively correlated
(Figure 1E and F). The results shown in Figure 1 and
Table 1 are for set size m=100, mean correlation
�� ¼ 0:05 and residual df d= n� p=6. The results
remain essentially unchanged as these parameters are
varied. The two CAMERA procedures continue to hold
their size correctly regardless of the experimental setup in
all simulations that we have conducted (data not shown).
The simulation setup of Figure 1 and Table 1 assumes

that genes not in the test set are uncorrelated. In reality,
the background genes may themselves belong to co-
regulated pathways that may induce a more complex
correlation structure. We, therefore, investigated a
genome-wide correlation structure in which the whole
genome can be partitioned into distinct molecular
pathways, each consisting of 200 genes. Each pathway
was assumed to have an inter-gene correlation of the
same size as that for the test set. Within each pathway,
half the genes were assumed to be up-regulated and half
down-regulated by the pathway. Genes regulated in the
same direction were assumed to be positively correlated

Table 2. Correlation estimates are more precise than implied by the

nominal chisquare approximation

Correlation Mean estimate Empirical SD Theoretical SD

0 �0.00007 0.00688 0.00698
0.02 0.0196 0.0117 0.0124
0.05 0.0490 0.0190 0.0206
0.1 0.0981 0.0300 0.0342
0.2 0.1961 0.0481 0.0614

Columns 2 and 3 give the mean and standard deviation (SD) of
correlation estimates over 10 000 simulated data sets with set size of
m=40 and residual df d=27. The empirical SDs are consistently less
than the theoretical values. The simulation standard error with which
the empirical SD is estimated is about 1.4%.
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whereas genes regulated in opposite directions were
assumed to be negatively correlated. This clumpy
genome-wide correlation did not affect the type I error
rates for CAMERA. Both parametric and rank-based
versions of CAMERA continued to return P-values that
were uniformly distributed under the null hypothesis of no
differential expression (data not shown).

CAMERA retains good power

CAMERA retains good power to detect small but
consistent fold-changes in the test gene set. Table 3 gives
power results for four different scenarios. The logFCs
shown in the table were selected as the smallest changes
for which power in the range of 50–80% was achieved.
Further simulations show that power increases very
rapidly for larger fold changes (data not shown).
Not unexpectedly, power is greatest when the genes

are uncorrelated and all the genes in the test set are
differentially expressed. However, power is still
acceptable, even when the genes are correlated, only a
subset of genes are actively differentially expressed, and
the number of RNA samples is relatively small.
Interestingly, CAMERA loses relatively little power

compared with existing unadjusted gene set tests when
the genes are in fact independent. In the scenario of the
first row of Table 3, geneSetTest-modt and geneSetTest-
ranks give powers 0.72 and 0.71, respectively, only slightly
better than CAMERA with df=27. In the scenario of the
second row, geneSetTest-modt and geneSetTest-ranks
have powers 0.75 and 0.64, respectively, again only
slightly better than CAMERA.

Even well-controlled data sets show inter-gene correlations

It should not be surprising that co-regulated genes will
typically be positively correlated across diverse RNA
samples. We wanted to explore how much inter-gene
correlation remains in well-controlled experimental
situations, for example, when RNA samples are extracted
from sorted homogeneous cells from genetically identical
model animals in controlled laboratory conditions. We
examined three microarray data sets showing different

degrees of biological variation between replicates. The
first data set profiles 94 breast cancer tumors classified
into six molecular subtypes (30,31). The second data set
profiles four types of mammary epithelial progenitor cells
from three human subjects (31). The third data set profiles
three types of hemapoeitic stem cells from four strains of
genetically identical mice. This dataset has 2–4 biological
replicates for each strain and cell type for a total of
35 microarrays. After fitting linear models to remove
treatment effects, the three data sets have, respectively,
94� 6=88, 12� 4=8 and 35� 12=23 residual df
available for estimating inter-gene correlations. The
cancer data should show the most biological variability
because replicates represent genetically different tumors,
even within a molecular subtype. The mouse data should
show the least, because the replicate samples are sorted
homogeneous cells from genetically identical mice.

Inter-gene correlations and VIFs were computed for all
gene sets containing five or more genes from the C2
collection of the Molecular Signatures Database Version
3.0 (MSigDB) (35). Although the average correlation
between all genes on the arrays was close to zero (0.0026
for the tumor data, 0.0009 for the human cell data, 0.0029
for the mouse cell data), the correlations for the curated
gene sets were overwhelming >0, ranging up to 0.71
(Figure 2). For the tumor data, 96% of gene sets had
positive correlation and the great majority of VIFs were
significantly >1 (Figure 2, top right). For the human cell
data, 86% of gene sets had positive correlation and more
than half the VIFs were significantly >1 (Figure 2, bottom
left). Even for the mouse data, nearly half of the VIFs
were significantly >1, according to a conservative 5%
P-value cutoff (Figure 2, bottom right). This demonstrates
that positive inter-gene correlations and non-ignorably
large VIFs are typical for sets of co-regulated genes,
even for highly controlled experiments with genetically
identical animals.

Molecular signature of basal-like breast cancer

Basal-like breast cancer has the worst prognosis of any
of six well-accepted subtypes of breast cancer (30,31). To
demonstate the ability of CAMERA to recover
biologically meaningful results, we contrasted basal-like
cancers with the other five cancer subtypes. That is, we
formed a contrast for the logFC in expression between
basal-like tumors and the average of the other five
tumor subtypes. Note that this is more powerful than
simply pooling the other five tumor subtypes, in that all
the subtypes are still modeled by the linear model and
between subtype variability is still removed from the
analysis. We ran CAMERA for this contrast for all the
gene sets in the curated C2 collection of the MSigDB.
CAMERA found 74 signatures, using the Benjamini–
Hochberg algorithm to control the FDR at 0.05.

The CAMERA results recapitulate our knowledge
of basal-like cancer in the strongest possible terms
(Table 4). The basal-like signature itself is the top set,
and the negative basal-like signature is third. No fewer
than 30 out of the top 35 gene sets are explicitly breast
cancer derived, even though there are only 127 such sets in

Table 3. CAMERA has excellent power to detect sets with small but

consistent expression fold-changes

Cor Percent
DE genes

log2FC df=6 df=27

Modt Ranks Modt Ranks

0 100 0.05 0.587 0.588 0.70 0.68
0 25 0.20 0.562 0.515 0.69 0.58
0.05 100 0.10 0.452 0.452 0.53 0.54
0.05 25 0.25 0.645 0.533 0.77 0.66

Columns 4–7 give probabilities of rejecting the null hypothesis at
P <0.05. Set size is m=100 with either 100% or 25% of genes in
the set differentially expressed between two groups of four arrays.
Residual df is either 6 or 27 depending on whether or not the
experiment includes a third group of 22 arrays. Inter-gene correlation
is either 0 or 0.05. ‘Mod-t’ and ‘Ranks’ refer to parametric and rank-
based CAMERA procedures, respectively. Results based on 1000
simulated data sets for each scenario.

e133 Nucleic Acids Research, 2012, Vol. 40, No. 17 PAGE 8 OF 12



the entire MSigDB. All basal-related signatures are up-
regulated whereas signatures associated with other
subtypes are down-regulated. In particular, signatures
associated with BRCA1 mutations are up-regulated,
confirming that this is a defining characteristic of basal-
like cancer. Signatures associated with ESR1 are down-
regulated, confirming that ESR1 expression is associated
with the luminal A subtype and good prognosis. Three
other gene sets show an embryonic stem cell-like signature
in basal-like cancer, a known characteristic of basal-like
cancer (30,36,37). Other sets show associations with early
onset and metastasis, concordant with the poor patient
outcomes associated with basal-like cancer. Note that
all the top 35 gene sets show non-ignorable positive
correlations.

For comparison, we used the popular GSEA software
(20) to compare basal-like cancers to the other cancer
subtypes, treating the non-basal tumors as a single
group, yielding 124 up-regulated gene sets at 5% FDR
and 13 significantly down-regulated sets at 5%. GSEA
does not perform a two-sided test, so the FDR control
is not as stringent as for CAMERA. The sets found by
GSEA were less enriched for breast cancer sets and, in
particular, did not include the basal-like signatures
themselves.

Our previous interest in mammary luminal progenitor
cells as the putative ‘cell of origin’ for basal-like cancer

lead us to test the luminal progenitor signatures derived by
(31). This confirmed the strong presence of the luminal
progenitor signature in the basal-like tumors as opposed
to the other tumor subtypes (Table 4), confirming luminal
progenitors as the likely cell of origin for basal cancers
(31,38). CAMERA allows us to formally take genewise
correlation into account in evaluating statistical
significance, which we were not able to do in our earlier
publication (31).

DISCUSSION

The majority of gene set tests that appear in the biological
literature are of a competitive nature, in that they compare
one category of genes to all other genes in the genome or
on the microarray. Many or most methods of pathway
analysis can be viewed as competitive gene set tests.
This includes well-known contingency table tests, such
as Fisher’s exact test, that are often used to test
for enrichment of a gene annotation category in a list of
differentially expressed genes. These tests can be viewed as
competitive gene set tests, according to the framework of
this article, with the genewise statistic taking values one or
zero depending on whether the gene is ranked in the top
list (29). Another popular pathway analysis methodology,
GSEA software (20), uses array permutation when the
number of samples is large but gives the option of gene
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permutation when the number of samples is small. It,
therefore, switches to a pure competitive test when the
sample size is small. All these tests are likely to share the
sensitivity to inter-gene correlation that was demonstrated
in this article for existing competitive gene set tests.
Our results show positive inter-gene correlation to be

prevalent for co-regulated genes, even for highly homo-
geneous cells and even for genetically identical animals
under laboratory conditions. This agrees with Gatti et al.
(9), who surveyed inter-gene correlations for common
Kyoto Encyclopedia of Genes and Genomes pathways
and gene ontology terms for over 200 data sets from the
Gene Expression Omnibus. Gatti et al. used Pearson
correlations coefficients, which measure total correlation
between two genes, whereas we have computed residual
correlations after removing treatment effects, and these
are generally smaller. Our results show that inter-gene
correlations remain prevalent even across replicates for
homogeneous treatment groups. This suggests that inter-
gene correlations cannot routinely be ignored in any
commonly occuring molecular biology context.

A crucial aspect of the CAMERA procedure is to be
able to estimate the inter-gene correlations efficiently,
and to be able to characterize the precision of the resulting
estimator, so that the uncertainty of estimation can be
taken into account when evaluating the significance of
the test. This article has shown that the variability of the
estimated VIF can be bounded above by the variability
of a chisquare distribution, meaning that the CAMERA
test can be based on a t-distribution. This ensures that
CAMERA controls the type I error rate correctly even
for small sample sizes. CAMERA controlled the type I
error rate correctly in all simulations we have conducted.

CAMERA continued to hold its size correctly even
when all genes in the genome were assumed to belong to
co-regulated pathways, each with their own inter-gene
correlation structure. In our simulations, inter-gene
correlations for background pathways were assumed to
be of the same size as that for the test set. In most real
situations, we expect that background genes will tend to
be less highly correlated than those in the test set, because
the test set is typically chosen specifically to contain

Table 4. Molecular signatures distinguishing basal-like from other breast cancer subtypes

Gene set N Genes Correlation Direction P-value FDR

Smid_Breast_Cancer_Basal_Up 580 0.039 up 1.2e-09 1.9e-08
Doane_Breast_Cancer_Esr1_Up 98 0.063 down 1.4e-09 1.9e-08
Smid_Breast_Cancer_Basal_Dn 569 0.035 down 1.5e-09 1.9e-08
Vantveer_Breast_Cancer_Esr1_Up 116 0.062 down 3.2e-09 3.2e-08
Smid_Breast_Cancer_Relapse_In_Bone_Up 85 0.044 down 1.9e-08 1.3e-07
Benporath_Es_Core_Nine_Correlated 95 0.057 up 1.9e-08 1.3e-07
Smid_Breast_Cancer_Relapse_In_Brain_Up 38 0.065 up 2.4e-08 1.3e-07
Yang_Breast_Cancer_Esr1_Up 24 0.122 down 3.0e-08 1.5e-07
Smid_Breast_Cancer_Relapse_In_Brain_Dn 68 0.059 down 3.7e-08 1.6e-07
Doane_Breast_Cancer_Esr1_Dn 46 0.099 up 8.9e-08 3.6e-07
Yang_Breast_Cancer_Esr1_Bulk_Up 15 0.109 down 3.0e-07 1.1e-06
Smid_Breast_Cancer_Relapse_In_Bone_Dn 281 0.044 up 3.8e-07 1.3e-06
Vantveer_Breast_Cancer_Esr1_Dn 195 0.069 up 4.1e-07 1.3e-06
Vantveer_Breast_Cancer_Metastasis_Up 37 0.051 down 8.0e-07 2.3e-06
Benporath_Es_Core_Nine 9 0.097 up 9.0e-07 2.4e-06
Smid_Breast_Cancer_Luminal_B_Up 144 0.049 down 3.2e-06 8.0e-06
Doane_Breast_Cancer_Classes_Up 58 0.095 down 4.7e-06 1.1e-05
Smid_Breast_Cancer_Luminal_A_Dn 16 0.174 up 4.9e-06 1.1e-05
Yang_Breast_Cancer_Esr1_Bulk_Dn 15 0.066 up 6.1e-06 1.3e-05
Yang_Breast_Cancer_Esr1_Laser_Up 24 0.053 down 8.1e-06 1.6e-05
Yang_Breast_Cancer_Esr1_Dn 19 0.175 up 1.1e-05 2.2e-05
Benporath_Es_1 319 0.024 up 1.7e-05 3.2e-05
Vecchi_Gastric_Cancer_Early_Up 342 0.053 up 2.1e-05 3.6e-05
Smid_Breast_Cancer_Relapse_In_Lung_Up 21 0.051 up 3.2e-05 5.4e-05
Sotiriou_Breast_Cancer_Grade_1_Vs_3_Dn 40 0.064 down 3.4e-05 5.5e-05
Landemaine_Lung_Metastasis 15 0.139 up 4.5e-05 6.9e-05
Lien_Breast_Carcinoma_Metaplastic_Vs_Ductal_Dn 90 0.097 down 4.8e-05 7.1e-05
Charafe_Breast_Cancer_Luminal_Vs_Basal_Up 276 0.034 down 5.2e-05 7.4e-05
Vantveer_Breast_Cancer_Metastasis_Dn 92 0.119 up 7.1e-05 9.8e-05
Pujana_Breast_Cancer_With_Brca1_Mutated_Up 50 0.144 up 1.3e-04 1.7e-04
Chiang_Liver_Cancer_Subclass_Proliferation_Up 132 0.071 up 1.5e-04 1.9e-04
Vantveer_Breast_Cancer_Brca1_Up 27 0.039 up 2.1e-04 2.6e-04
Naderi_Breast_Cancer_Prognosis_Up 37 0.123 up 2.8e-04 3.2e-04
Doane_Breast_Cancer_Classes_Dn 31 0.072 up 2.8e-04 3.2e-04
Smid_Breast_Cancer_Luminal_A_Up 74 0.122 down 2.9e-04 3.2e-04

Luminal progenitor up 297 0.032 up 0.00012
Luminal progenitor down 157 0.040 down 0.00049

CAMERA results for the top 35 gene sets from the MSigDB when comparing basal-like cancers to the average of the other five subtypes. Output
includes the size of each set, the estimated inter-gene correlation, two-sided P-value and FDR. Also given are results for mammary luminal progentor
cell signatures.
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co-regulated genes based on prior information. Hence, our
simulations provide strong support for CAMERA to hold
its size correctly in practical situations.

The necessity to estimate the inter-gene correlation from
the data inevitably incurs some loss of statistical power,
reflected in the use of a t-distribution instead of the
standard normal distribution for evaluating the P-value.
Yet, simulations show that CAMERA retains surprisingly
good power compared to existing competitive tests when
those methods are applicable, i.e. when the inter-gene
correlation actually is zero. CAMERA actually has
greater power than PAGE or sigPathway when the test
set contains a large number of genes. One factor that
contributes to this retention of statistical power is the
use of genewise statistics that are normally distributed
with equal variances under the null hypothesis of no
differential expression. Previous parametric gene set tests
have been based on genewise logFCs, which typically have
different variances for different genes (13,16). A
consequence is that the arithmetic average of these
quantities over genes in the test set is less precise than
would be a similar average of equal-variance quantities.
Previous gene permutation gene set tests have been based
on ordinary t-statistics that can be far from normally
distributed when the sample sizes are small (2). Again,
taking the arithmetic average of non-normal quantities is
not generally a statistically efficient summary of their
average size. Another factor contributing to power is the
fact the CAMERA compares genes in the test set versus
the complementary set of genes, rather than comparing
the test set of genes to the background of all genes. This
ensures that strong non-null effects in the test set do not
contaminate the background set that is used to generate
the null distribution.

CAMERA was applied to the breast cancer subtype
data, and shown to be a very effective alternative to
existing gene set enrichment analysis software (17,20) for
interrogating a data set with a database of molecular
signatures. CAMERA has greater statistical power than
GSEA procedures based on array permutation when the
number of RNA samples is not large.

Competitive tests have been used in the literature
for their intuitive interpretation. To our knowledge,
the null statistical hypotheses being tested have either
not been stated or have been stated in operational terms.
In effect, the hypothesis has been defined by the test
procedure. This is especially true of competitive tests
that evaluate P-values by array permutation (17,19,20).
For these procedures, the null hypothesis being tested is
difficult to characterize in parametric terms. To our
knowledge, this article offers the first specification of
null and alternative hypotheses for a gene set test in
parametric terms. Crucially, the null and alternative
hypothesis state relationships between logFCs for genes
in or out of the test set, and do not involve other
distributional aspects of the expression values such as
correlations or variances. Previous statements of competi-
tive null hypotheses in terms of random sampling of gene
sets makes this distinction impossible.

Compared to the existing competitive gene set tests,
CAMERA assigns less significance to gene sets that

show positive inter-gene correlation. Positive correlation
is an indication that genes are co-regulated and possibly
functionally related, and it has been argued elsewhere that
detection of co-regulated sets is of interest in itself (13).
Our view is that inter-gene correlation reflects non-specific
co-regulation, unrelated to the treatment conditions of
the current experiment, whereas a gene set test should
focus on co-regulation that is specific to the treatment
comparison of interest.
To be completely general, CAMERA has been

developed in a linear model context. This means that it
is not limited to two-group comparisons, but can be used
to test the behavior of gene sets across any contrast or
interaction in a linear model context.
CAMERA is computationally extremely fast. The

analysis presented in Table 4, for example, requiring
gene set tests for nearly 4000 gene sets, took only a
couple of seconds on a laptop computer. By comparison,
the equivalent GSEA analysis took 2 h on a high-
performance large memory 16-core computer.

CONCLUSION

CAMERA is a competitive gene set test that controls type
I error correctly regardless of inter-gene correlations, yet
retains good statistical power. It has good performance
for both focused testing of individual gene sets of special
interest, and for gene set enrichment analysis using
databases of gene annotation categories or transcriptional
signatures. CAMERA is freely available as a function
in the limma software package available from
Bioconductor (26).
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