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ABSTRACT: Electronically excited states of molecules are at the heart of photochemistry,
photophysics, as well as photobiology and also play a role in material science. Their
theoretical description requires highly accurate quantum chemical calculations, which are
computationally expensive. In this review, we focus on not only how machine learning is
employed to speed up such excited-state simulations but also how this branch of artificial
intelligence can be used to advance this exciting research field in all its aspects. Discussed
applications of machine learning for excited states include excited-state dynamics
simulations, static calculations of absorption spectra, as well as many others. In order to
put these studies into context, we discuss the promises and pitfalls of the involved machine
learning techniques. Since the latter are mostly based on quantum chemistry calculations, we
also provide a short introduction into excited-state electronic structure methods and
approaches for nonadiabatic dynamics simulations and describe tricks and problems when
using them in machine learning for excited states of molecules.
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1. INTRODUCTION

1.1. From Foundations to Applications

In recent years, machine learning (ML) has become a
pioneering field of research and has an increasing influence
on our daily lives. Today, it is a component of almost all
applications we use. For example, when we talk to Siri or Alexa,
we interact with a voice assistant and make use of natural
language processing,1,2 which was used to perform quantum
chemistry calculations recently.3 ML is applied for example for
refugee integration,4 for playing board games,5 in medicine,6

for image recognition7 or for autonomous driving.8 A short
historical overview over general ML is provided in ref 9.
Recently, ML has also gained increasing interest in the field

of quantum chemistry.10,11 The power of (big) data-driven
science is even seen as the “fourth paradigm of science”,12

which has the potential to accelerate and enable quantum
chemical simulations that were considered unfeasible just a few
years ago.13 The reason is, at least in theory, that ML models
can learn any input−output relation and offer interpolations
thereof at almost no cost while retaining the accuracy of the
underlying reference data. With regard to quantum chemical
applications, it allows decoupling of the expenses of quantum
chemistry calculations from the application, such as dynamics
simulations or the computation of different types of spectra. In
general, the field of ML in quantum chemistry is progressing
faster and faster. In this review, we focus on an emerging part
of this field, namely, ML for electronically excited states. In
doing so, we concentrate on singlet and triplet states of
molecular systems since almost all existing approaches of ML
for the excited states focus on singlet states and only a few
studies consider triplet states.14−17 We note that electron
detachment or uptake further leads to doublet and quartet
states, and even higher spin multiplicities, such as quintets,
sextets, etc. are common in transition metal complexes, where
an important task is to identify which multiplicity yields the
lowest energy and is thus the ground state;17 see, e.g., refs
18−21.
The theoretical study of the excited states of molecules is

crucial to complement experiments and to shed light on many
fundamental processes of life and nature.22−24 For example,
photosynthesis,25,26 human vision,27,28 photovoltaics,29−32 or
photodamage of biologically relevant molecules are a result of
light-induced reactions.33−35 Experimental techniques such as
UV/visible spectroscopy or photoionization spectroscopy36−43

lack the ability to directly describe the exact electronic
mechanisms of photoinduced reactions. The theoretical
simulation of the corresponding experiments can go hand-in-
hand with experimental results and can provide the missing
details of photodamage and -stability of molecules.42,44−68

However, the computation of the excited states is highly
complex and costly, and often necessitates expert knowledge.69

As ML models have only recently been applied in the field of
photochemistry, keeping track of the approaches is still
possible, and this field is still in its initial stage.
Because of the multifaceted photochemistry of molecular

systems, ML models can target this research field in many
different ways, which are summarized in Figure 1. For example,
the choice of relevant molecular orbitals for active space
selections can be assisted with ML.71 The fundamentals of

quantum chemistry, e.g., to obtain an optimal solution to the
Schrödinger equation or density functional theory, can be
central ML applications. For the ground state, ML
approximations to the molecular wave function72−80 or the
density (functional) of a system exist.70,80−89 Obtaining a
molecular wave function from ML can be seen as the most
powerful approach in many perspectives, as any property we
wish to know could be derived from it. Unfortunately, such
models for the excited states are lacking and have yet been
investigated only for a one-dimensional system,90 leaving much
room for improvement.
Most ML studies instead focus on predicting the output of a

quantum chemical calculation, the so-called “secondary-
output”.70 Hence, they fit a manifold of energetic states of
different spin multiplicities, their derivatives, and properties
thereof. With respect to different spin states of molecular
systems, only a few studies exist, which predict spins of
transition metal complexes17,91 or singlet and triplet energies of
carbenes14 of different composition or focus on the conforma-
tional changes within one molecular system15,92,93 for the sake
of improving molecular dynamics (MD) simulations. The
energies of a system in combination with its properties, i.e., the
derivatives, the coupling values between them, and the
permanent and transition dipole moments,15,16,92−99 can be
used for MD simulations to study the temporal evolution of a
system in the ground-state100−137 and in the excited
states.15,16,92−94,132,138−145,145−149,149−151

Figure 1. Targets of ML for the excited states of molecules (dashed:
not yet achieved). All areas of excited-state quantum chemistry (QC)
calculations can be enhanced with ML, ranging from input to primary
outputs that are used in the computation of secondary outputs, which
in turn are employed to calculate tertiary outputs. Analysis can be
carried out at all stages. The classification is inspired by the one in ref
70.
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With energies and different properties, tertiary outputs can
be computed, such as absorption, ionization or X-ray
spectra,152−155 gaps between highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO), or vertical excitation energies.156−159

In addition, quantum chemical outputs can also be analyzed
or fitted in a direct way, e.g., reaction kinetics, as results of
dynamics simulations can be mapped to a set of molecular
geometries and can be predicted with ML models.160

Excitation energy transfer properties can be learned,161,162

and structure−property correlations can be explored to design
materials with specific properties.18,31,32,77,133,154,163−170

1.2. Scope and Philosophy of this Review

ML has entered the research field of excited states relatively
late, and it might seem that this research field is developing at a
slower pace than the exploding field of ML for the electronic
ground state.169,171−174 Important reasons are in our opinion
the complexity and high expenses of the underlying reference
calculations and the associated complexity of the correspond-
ing ML models, which might make it more suitable to say that
ML for the excited states is developing at a similar pace, but
toward a much more complex target. Simulation techniques to
understand the excited-state processes are not yet viable for
many applications at an acceptable cost and accuracy.
Therefore, within this review, we also want to highlight the
existing problems of quantum chemical approaches that might
be solvable with ML and put emphasis on identifying
challenges and limitations that hamper the application of ML
for the excited states. The young age of this research field
leaves much room for improvement and new methods.
This review is structured as follows:

(1) After a general introduction,

(2) we will start by discussing the differences between the
ground-state potential energy hypersurfaces (PESs) and
the excited-state PESs and will also emphasize the
difference in their properties in section 2.

(3) We provide an overview of the theoretical methods that
can be used to describe the excited states of molecules.
In the forthcoming discussion, we will describe different
reference methods with a view to their application in
time-dependent simulations, namely, MD simula-
tions.59,172 It is worth mentioning that, unlike for the
ground state, where a lot of different methods can
provide reliable reference computations for training,
choosing a proper quantum chemistry method for the
treatment of excited states is a challenge on its
own.175−177 Many methods require expert knowledge,
prohibiting their use further.178,179 In addition, not any
method can provide the necessary properties for any
type of application. Subsequently, we aim to review the
different flavors of excited-state MD simulations with a
focus on nonadiabatic methods that have been enhanced
with ML models lately.

(4) After having provided the basic theoretical background
on electronic structure theory and quantum chemical
simulation techniques, we go on and summarize the
basic ML models applied in studies with a focus on the
excited states of molecules. The different types of ML
models will help the reader to identify a proper model
for a specific purpose. Advantages and disadvantages of
certain regressor and descriptors are discussed.

(5) The theoretical background on electronic structure
theory and ML is followed by a discussion on how to
generate a comprehensive yet compact training set for
the excited states from the quantum chemistry data. We
will summarize the existing approaches that are applied
to create a full-fledged training set and put emphasis on
the bottlenecks of existing methods that can limit also
the application of ML. This will provide the reader with
the knowledge about starting points for future research
questions and clarify where method development is
needed. It further provides the basis for the discussion of
ML models for the excited states of molecular systems.

(6) A summary of state-of-the-art ML methods for photo-
chemistry follows. We will differentiate between single-
state and multistate ML models and single-property and
multiproperty ML models.95 As mentioned before, ML
models can tackle a quantum chemical calculation in
many different ways; see Figure 1. The different ML
models will be classified in the ways they enhance
quantum chemical simulations. Most approaches aim at
providing an ML-based force field for the excited states,
so we put particular emphasis on this topic. Lastly, the
prospects of ML models to revolutionize this field of
research and future avenues for ML will be highlighted.

Noteworthy, we focus on the excited states of molecules, as
the excited electronic states in the condensed phase are
challenging to fit and are thus often not explicitly considered in
conventional approaches.180−185 In solid state physics for
example, the electronic states are usually treated as continua.
The density of states at the Fermi level,186 band gaps,187−189

and electronic friction tensors125,190,191 have been described
with ML models to date, and especially the electronic friction
tensor is useful to study the indirect effects of electronic
excitations in materials.192−197 Electron transfer processes as a
result of electron−hole-pair excitations can be further
investigated along with multiquantum vibrational transitions
by discretizing the continuum of electronic states and fitting
them (often manually) to reproduce experimental or quantum
chemical data in a model Hamiltonian.183,198−203 Yet, to the
best of our knowledge, the excited electronic states in the
condensed phase have not been fitted with ML. A recent
review on reactive and inelastic scattering processes and the
use of ML for quantum dynamics reactions in the gas phase
and at a gas-phase interface can be found in ref 204.
Besides the electronic excitations that take place in

molecules after light excitation, ML models have successfully
entered research fields, which focus on other types of
excitations as well. Those are, for example, vibrational or
rotational excitations giving rise to Raman spectra or infrared
spectra,41,111,205−209 nuclear magnetic resonance,210 or mag-
netism,211,212 which we will not consider in this review.

2. GENERAL BACKGROUND: FROM THE GROUND
STATE TO THE EXCITED STATES

The chemistry we are interested in is not static, but rather
depends to a large extent on the changes that matter
undergoes. In this regard, it is more intuitive to study the
temporal evolution of a system. Much effort has been devoted
to develop methods to study the temporal evolution of matter
in the ground state potential. As an example, physical functions
can be obtained with conventional force fields, such as
AMBER,213 CHARMM,214 or GROMOS.215,216 The first ones
already date back to the 1940s to 1950s. Such force fields
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enable the study of large and complex systems, protein
dynamics or binding-free energies on time scales up to a couple
of nanoseconds.180,217−225 However, their applicability is
restricted by the limited accuracy and inability to describe
bond formation and breaking. Novel approaches, such as
reactive force fields exist, but still face the problem of generally
low accuracy.226

The accuracy of ab initio methods can be combined with the
efficiency of conventional force fields with ML models. The
latter have shown to advance simulations in the ground state
considerably and allow for the fitting of almost any input−
output relation.100−134,137,172,227 Accurate and reactive PESs of
molecules in the ground state can be obtained with a
comprehensive reference data set, which contains the energies,
forces, and ground-state properties of a system under
investigation. Proper training of an ML model then guarantees
that the accuracy of the reference method is retained, while
inferences can be made much faster. In this way, they allow for
a description of reactions and can overcome the limitations of
existing force fields.135,171,228−232

Regarding the excited states, processes become much more
complex, and the computation of excited state PESs is far more
difficult than the computation of the ground state PESs. Figure
2 gives an overview of the excited state processes that will be

discussed within this review. As can be seen, several excited
states of different spin multiplicity in addition to the ground
state have to be accounted for, which feature different local
minima, transition states, or saddle points and crossing points.
Especially, the latter make a separate treatment of each
electronically excited state inaccurate and lead to further
challenges that prohibit the straightforward and large-scale use
of many existing quantum chemical methods and consequently
also existing ML models for the ground state.
As it is visible, processes usually start from a minimum in the

electronic ground state (dark-blue line). When light hits a
molecule and the incident light coincides with the energy gap
between two electronic states, it can be absorbed, and higher
electronic states can be reached when dipoles are allowed
(here the second excited singlet state in light blue). Internal
conversion between states of the same spin multiplicity and/or
intersystem crossing between states of different spin multi-
plicity (here a transition to triplet states indicated as dashed
red curves) can prevent the molecule from photodamage.

Nonradiative transitions usually take place on a sub-pico-
second time scale. With respect to intersystem crossing, it was
long believed that it happens on a longer time scale and is only
possible if heavy atoms are part of the molecule.233,234

However, this belief has been disproved, and today many
examples of small molecules or transition metal complexes are
known, which show ultrafast intersystem crossing.178,235−237 In
the case of nonradiative transitions, the energy is lost due to
molecular vibrations, and the molecule relaxes back to the
original starting point in the ground state. However, also
photodamage can occur via such nonradiative transitions,
where photoproducts can be formed, e.g., by bond breaking
and bond formation. When nonadiabatic transitions are not
taking place, radiative emission, i.e., fluorescence and
phosphorescence, can happen on a much slower time scale,
i.e., in the range of nano- to milliseconds.
For small system sizes, such as SO2, highly accurate ab initio

methods can be applied to describe the excited states, while
more crude approximations have to be used for larger systems.
The unfavorable scaling of many quantum chemical methods
with the size of system under investigation requires this
compromise between accuracy and system size. Crude
approximations for systems that are larger than several
hundreds of atoms become inevitable.44,178,238

Additionally, computations of the excited states suffer from
being generally less efficient. To name only one central
problem: The larger the system becomes, the closer the
electronic states lie in energy, and the more excited-state
processes can usually take place. The necessary consideration
of an increasing number of excited states increases the already
substantial computational expenses even more and restricts the
use of accurate methods to systems containing only a few
dozens of atoms in a reasonable amount of time with current
computers. This increasing complexity makes not only the
reference computations, but also the application of ML models
for the excited states more complicated than for the ground
state. At the same time, the application of ML models for the
excited states might also be more promising, because higher
speed-up can be achieved.
For the excited states, methods similar to force fields, like

the linear vibronic coupling (LVC) approach,239,240 are usually
limited to small regions of conformational space and restricted
to a single molecule. General force fields that are valid for
different molecules in the excited states do not exist. Also the
ML analogue, so-called transferable ML models, to fit the
excited state PESs of molecules throughout chemical
compound space are unavailable to date. Only recently, we
have provided a first hint at transferability of the excited states
by training an ML model on two isoelectronic molecules.241 It
is clear that an ML model, which is capable of describing the
photochemistry of several different molecular systems, e.g.,
different amino acids or DNA bases of different sizes, is highly
desirable. A lot remains to be done in order to achieve this
goal, and yet, to the best of our knowledge, no more than a
maximum of about 20 atoms and 3 electronic states with a
distinct multiplicity have been fitted accurately with ML
models (refs 15, 16, 92−94, 96, 132, 138−145, 146−149,
149−151, and 241).
Whether or not the excited states of a molecular system

become populated depends on the ability of a molecule to
absorb energy in the form of light, or more generally,
electromagnetic radiation of a given wavelength. Usually, the
so-called resonance condition has to be fulfilled; i.e., the energy

Figure 2. Excited-state processes that can take place after excitation of
a molecule by light. Absorption of light can make the molecule enter a
higher electronic singlet state. Internal conversion to another state of
same spin-multiplicity and/or intersystem crossing to a triplet state
can take place. Radiative emission, i.e., fluorescence and phosphor-
escence, are possible reactions from an excited singlet and triplet state,
respectively.
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gap between two electronic states has to be equivalent to the
photon energy of the incident light. Note however that also
multiphoton processes can occur, where several photons have
to be absorbed at once to bridge the energy difference between
two electronic states.242−244 Further, the absorption of light
not only provides access to one, but most often to a manifold
of energetically close-lying states. The number of states that
can be excited is related to the range of photon energies that is
contained in the electromagnetic radiation. This energy range
is inversely proportional to the duration of the electric field,
e.g., of a laser pulse, due to the Fourier relation of energy and
time.245 However, the energy range of the photons and the
energy difference between the electronic states are not the only
factors influencing the absorption of light, which gives rise to
questions like: Is the molecule able to absorb light of a
considered wavelength? Which of the excited states is
populated with the highest probability?
An answer to these questions can be obtained from an

analysis of the oscillator strengths for different transitions. In
order to make an electronic transition possible, an oscillating
dipole must be induced as a result of the interaction of the
molecule with light. The oscillator strength, f ij

osc, between two
electronic states, i and j, is proportional in atomic units (a.u.)
to the respective transition dipole moment, μij, and the
respective energy difference, ΔEij:

246

μ= Δ | |f E
2
3ij ij ij

osc 2

(1)

If the transition dipole moment between two states is zero,
no transition is allowed. The reasons can be that a change of
the electronic spin would be required, and the transition is thus
spin forbidden. Another reason can be the molecular
symmetry, leading to symmetry forbidden transitions. The
latter are common in molecules that carry an inversion center,
and transitions that conserve parity are forbidden.247 An
energetic state is called dark if the transition dipole moment is
very small or zero. In contrast, a state is called bright if the
transition dipole moment is large. Most often, studies that
target the photochemistry of molecules focus on excitation to
the lowest brightest singlet state, i.e., the state that absorbs
most of the incident energy. The same is true for emission
processes. While fluorescence is an allowed transition,
phosphorescence is a spin forbidden process, i.e., a triplet-
singlet emission in many cases.248

After an excitation process, the molecule is considered to
move on the excited-state PESs and is expected to undergo
further conversions. The excess of energy a molecule carries
as a result of the initial absorption of energyis most often
converted into heat, light, such as fluorescence or phosphor-
escence, or chemical energy. If the molecule returns to its
original state, then the molecule is photostable. Otherwise,
either photodamage, such as decomposition, or useful
photochemical reactions including bond breaking/formation
occur. In all cases, heat or light can be emitted, which can also
be harnessed in light-emission applications.59,249−251 With
respect to photostability, ultrafast transitions, in the range of
femto- to picoseconds (10−15−10−12 seconds) take place and
lead the molecule back to the ground state. This means that
the electronic energy is converted into vibrations of the
molecule, and the molecule is termed hot. This heat is usually
dissipated into the environment, a process that is often
neglected in excited-state simulations due to the cost of
describing surrounding molecules.

Radiationless transitions from one electronic state to another
take place in so-called critical regions of the PESs. As the name
already suggests, critical regions are crucial for the dynamics of
a molecule, but are also challenging to model accurately. The
critical points, where transitions are most likely to occur, are
called conical intersections and are illustrated in Figure 2. At
these crossing points, PESs computed with quantum chemistry
can show discontinuities. These discontinuities can occur also
in other excited-state properties and pose an additional
challenge for an ML model when fitting excited-state
quantities.
In addition to the aforementioned complications of treating

a manifold of excited states, also the probability of a
radiationless transition between them has to be computed
somehow. This probability is usually determined by couplings
between two approaching PESs. Between states of the same
spin multiplicity, nonadiabatic couplings (NACs) arise, and
spin−orbit couplings (SOCs) give rise to the transition
probability between states of different spin multiplicities.
These couplings are intimately linked to the excited-state PESs
and therefore should also be considered with ML. However,
only a handful of publications describe couplings with
ML,15,92,94−96,140,145,146,149,252 which highlights the difficulty
of providing the necessary reference data as well as the
challenges of accurately fitting them. New methods are
constantly needed to further enhance this exciting research
field.

3. QUANTUM CHEMICAL THEORY AND METHODS
In this section, we present some key aspects of quantum theory
for excited states, which is the basis of any study focusing on
ML for excited states of molecules. We do so because (i) the
outcome of the corresponding calculations serve as training
data for ML, leaving quantum chemistry and ML thus
inseparably connected in many cases and (ii) to clarify the
employed nomenclature. We will discuss electronic structure
theory (section 3.1), the different bases (section 3.2), i.e., the
diabatic, adiabatic, and diagonal bases, the computation of
excited-state molecular dynamics simulations (section 3.3)
with different flavors of quantum nuclear dynamics and mixed
quantum-classical methods, along with the computation of
dipole moments and spectra. Experts on these topics may skip
directly to section 4, which focuses on ML methods.
In the following, we provide a description of the differences

of excited-state computations to calculations for the electronic
ground state and the challenges that arise due to the treatment
of a manifold of excited states. These challenges also point to
issues that are problematic for ML. These explanations will
provide the groundwork to evaluate different quantum
chemical methods for their use to generate a training set for
ML and to use it for different types of applications, such as
excited-state MD simulations. Naturally, we can only provide a
general idea of this field and refer the interested reader to
pertinent textbooks and reviews, such as refs 178, 253−264.
In order to follow a consistent notation within this review,

we try to explain all basic concepts with notations that are
frequently used in the literature. Currently, a zoo of different
notations for the same property can be found. For example, the
NACs, or derivative couplings, are sometimes referred to as so-
called interstate couplings, i.e., couplings between two states
multiplied with the corresponding energy gap between those
two states,144 while in other works interstate couplings refer to
off-diagonal elements of the Hamiltonian in another basis,
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where the potential energies are no eigenvalues of the
electronic Schrödinger equation. We want to avoid a confusion
of different notations and thus provide a consistent definition
below. For the excited states, a number of different electronic
states are required. Throughout this review, we adopt the
following labeling convention for different electronic states:
The lower case Latin letters, i, j, etc. will be used to denote
different electronic states. The abbreviations NS, NM, and NA
will indicate the number of states, molecules, and atoms,
respectively.
The foundation for the following sections is a separation of

electronic and nuclear degrees of freedom, which is based on
the work of Born and Oppenheimer.265 However, the famous
Born−Oppenheimer approximation is later (partly) lifted, and
the coupling between electrons and nuclei is taken into
account in nonadiabatic dynamics simulations.

3.1. Electronic Structure Theory for Excited States

The main goal when carrying out an electronic structure
calculation is usually to compute the potential energy and
other physicochemical properties of a compound. We
distinguish between two overarching theories to achieve this
goal: wave function theory (WFT) and density functional
theory (DFT) as outlined, e.g., by Kohn in his Nobel
lecture.266

The basis of WFT, as for any electronic structure calculation,
is the electronic Schrödinger equation267,268 with the electronic
Hamilton operator, Ĥel, and the N-electron wave function
Ψi(R, r) of electronic state i, which is dependent on the
electronic coordinates r and parametrically dependent on the
nuclear coordinates, R:

̂ Ψ ⟩ = Ψ ⟩H ER r R r R r( , ) ( , ) ( , )i i iel (2)

From the wave function, i.e., the eigenvector of this
eigenvalue equation, any property of the system under
investigation can be derived. How to solve the electronic
Schrödinger equation exactly to obtain the potential energy of
an electronic state i, Ei, is known in theory. However, from a
practical point of view, the computation is infeasible for
molecules that are more complex than for example H2, He2

+,
and similar systems.269 In order to make the computation of
larger and more complex systems viable, approximated wave
functions are introduced.
In contrast to WFT, DFT reformulates the energy of a

system in terms of the ground state electron density rather
than the N-electron wave function, and the energy is expressed
as a functional thereof. The advantage of DFT is a rather high
accuracy at a rather low computational cost. If DFT is applied
properly, it is considered as one of the most efficient ways to
obtain reliable and reasonably accurate results of molecules up
to hundreds of atoms. In solid state physics, DFT is even the
workhorse of most studies aiming to describe ground state
properties.270 However, the problem is that the equations to be
solved are unknown. The missing piece is the exact exchange-
correlation functional of a system. To date, researchers have
come up with many different approximations to this functional
that can be used to treat specific problems, but a universal
functional capable of describing different problems equally
accurately has not yet been found. Moreover, there is no
systematic way to improve a density functional. The results
obtained with DFT therefore critically depend on the choice of
the functional.269,271

In the following sections, we will describe both theories and
focus on the excited states of molecules. We will start to cover
ab initio methods, which means that they are derived from
first-principles without parametrization. We mention the basic
underlying concepts here because we believe them to be
essential in order to generate training data and carry out ML
for excited states. Furthermore, these methods present starting
points for an ML approximation to the excited-state wave
function or density, which is still lacking, to the best of our
knowledge. Nevertheless, such an ML model would be
extremely powerful and could provide a solution to many
existing quantum chemical problems.

3.1.1. Wave Function Theory. The basis of all discussed
ab initio methods is the Hartree−Fock method. The N-
electron wave function is represented by a single Slater
determinant, ϕ0, which makes N coupled one-electron
problems out of the N-body problem. This Slater determinant
is the antisymmetric product of one-electron wave functions,
the spin orbitals, which can be atomic, molecular, or crystal
orbitals, depending on the system. In the case of molecular (or
also crystal) orbitals, they are usually expanded as a linear
combination of atomic orbitals, where the expansion
coefficients are optimized during the calculation. In order to
do so efficiently, the atomic orbitals are themselves expanded
with the help of a basis set. The N-electron wave function is
therefore obtained as a double expansion. Two approximations
are applied, which is the use of a finite basis set to represent the
atomic orbitals and in turn also the molecular orbitals on the
one hand and the use of a single Slater determinant on the
other hand. This usually gives a poor description of a system
under investigation, due to a lack of electronic correlation.
Electronic correlation describes how much the motion of an

electron is influenced by all other electrons. Since the
Hartree−Fock method can be seen as a mean-field theory,
where an electron “feels” only the average of the other
electrons, correlation is quantified by the correlation energy,
which is the difference between the Hartree−Fock energy and
the exact energy of a system.
Unsurprisingly, all further discussed quantum chemical

methods aim at improving the Hartree−Fock method. They
can be seen as different flavors of the same solution to the
problem: They all include more determinants in one way or
another. Accordingly, the wave function is expanded as a linear
combination of determinants, where a determinant consists of
molecular orbitals, which are expanded in atomic orbitals. This
ansatz contains two types of coefficients that can be optimized,
the ones for the determinants and the ones yielding the
molecular orbitals. If the latter are kept the same for different
determinants, we speak of a single-reference wave function. If
both types of coefficients are adapted, we speak of a
multireference wave function. Similarly, the electron correla-
tion is also divided into two parts, termed dynamic correlation
and static correlation. Single-reference methods improve on
the dynamic correlation, while a multireference wave function
allows for static correlation. However, the separation is not so
strict, as can be seen by the following fact: Both the
aforementioned single-reference variant and the multireference
variant become equivalent when including an infinite number
of terms and deliver the exact solution to the Schrödinger
equation if also an infinite basis set is used.

Configuration Interaction. In the case of single-reference
methods, the orbitals obtained from the reference calculation
(usually Hartree−Fock) are kept fixed. Since usually more
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orbitals than the number of electrons in the system are
calculated, the possibility of constructing different Slater
determinants from these orbitals exist, which can be used for
expanding the actual wave function:272,273

∑ ϕ|Ψ⟩ = | ⟩ci
I

iI I
(3)

Each Slater determinant is weighted by a coefficient, ciI.
These coefficients can be obtained variationally by minimizing
the total energy under the constraint of fixed orbitals, ending
up in the configuration interaction (CI) methods. ϕ0 is the
reference, Hartree−Fock, wave function. In principle, the exact
solution can be obtained by considering all possible Slater
determinants in combination with a complete basis set. The
use of all possible configurations is called full-CI and represents
the case when all electrons are arranged in all possible ways.
Practicable methods require truncation; e.g., CIS (CI singles)
or CISD (CIS and doubles) are frequently used, where only
single excitations or additionally double excitations are
accounted for, respectively. Figure 3 gives a schematic

overview of the improvements of CI that one can apply. A
huge advantage of these methods is that how to obtain the
exact solution is known and that they are systematically
improvable. However, truncated CI does not scale correctly
with the system size and is therefore not size-extensive and also
not size-consistent (i.e., the energy of two fragments A and B at
large distance computed together, E(A + B), is not equal to the
sum of the energies of the fragments from separate
calculations, ≠ E(A) + E(B)).274

The CI scheme can be employed to improve the ground-
state wave function by mixing the Hartree−Fock determinant
and determinants of different electron configurations. In the
same way, also wave functions of excited states can be
computed. Then, the coefficients, ciI, are optimized for higher
eigenvalues of the electronic Hamiltonian instead of the first
one. Beginners in the field then often get confused by terms
such as single excitation in comparison to the first excited state.
A single excitation determinant (see Figure 3) can be part of
the wave function for the first excited state but can also be a
part of the ground-state wave function.
Electron Propagator Methods. Another class of methods

that we shortly want to mention here are electron propagator
methods that are based on one electron Green’s function and
are a variant of perturbation theory schemes. One popular

method that is based on Green’s function one electron
propagator approach is the algebraic diagrammatic construc-
tion scheme to second-order perturbation theory
(ADC(2)).275 ADC(2) is a single-reference method and can
be used to efficiently compute excited states of molecules. It
offers a good compromise between computational efficiency
and accuracy, while being systematically improvable (higher
order variants such as ADC(2)-x or ADC(3) exist). The time
evolution of a systems polarizability is obtained by applying the
polarization propagation, which contains information on a
system’s excited states.272,276−279 The ground-state energy of
ADC(2) is based on Møller−Plesset perturbation theory of
second order,280,281 MP2, where the latter can formally be
shown to include double excitations for the improvement of
Hartree−Fock; see ref 272. The dependence of ADC(2) on
MP2 gives rise to instabilities in regions, where excited states
come close to the ground state, or homolytic dissociation takes
place. The excited states of bound molecules are described
with reasonable accuracy. Compared to multireference CI
methods (see below), the black box behavior of ADC(2) is a
clear advantage.275

Coupled Cluster. The current gold standard of ab initio
methods for the ground state is the family of coupled cluster
(CC) methods. CC is often referred to as the size-extensive
and size-consistent version of CI. The different electronic
configurations accounting for single or double excitations
(such as in CIS and CISD for example) are obtained by
applying an excitation operator, T̂:282

ϕ ϕΨ ⟩ = ⟩ = ̂ = + ̂ +
!

̂ +
!

̂ + ⟩̂e T T T T1
1
2

1
3

...T
CC 0

2 3
0

i
k
jjj

y
{
zzz
(4)

Similarly to CI, this operator can be truncated. If T̂ = T̂1+T̂2,
single and double excitations are accounted for. When using
the same number of determinants, CC usually converges faster
than CI.
Excited states can be computed in a single-reference

approach by equation-of-motion-CC (EOM-CC), where the
excited-state wave function is written as an excitation operator
times the ground-state wave function. For further details, see,
e.g. refs 283 or 284.

CASSCF. The problem of missing static correlation in the
Hartree−Fock approach is tackled by a multireference ansatz
for the wave function. Not only coefficients, but also orbitals
are optimized.271 This treatment is important for many
excited-state problems, but also some transition metal
complexes in their ground state, transition states, or homolytic
bond-breaking with the dissociation of the N2 molecule being a
notoriously difficult example.285,286 An accurate ML training
set for many chemical problems in the excited states often calls
for such methods.
The multiconfigurational self-consistent field (MCSCF)

method can be seen as the multireference counterpart to the
Hartree−Fock method.287 One of the most popular variants of
MCSCF methods is the Complete Active Space SCF
(CASSCF),288,289 where important atomic orbitals and
electrons are selected giving rise to an active space. An
example is shown in Figure 4. According to this scheme, the
orbitals are split into an inactive, doubly occupied part, an
active part, and an inactive, empty part. Within the active
space, a full CI (FCI) computation is carried out. The active
space has to be chosen manually by selecting a number of
active electrons and active orbitals. CASSCF is no black box

Figure 3. Different arrangements of electrons in molecular orbitals
giving rise to the configuration interaction (CI) method. Inclusion of
excited configurations in addition to the ground-state, reference
determinant, ϕ0, allows one to go beyond the Hartree−Fock method.
Electrons are excited into higher electronic orbitals, and Slater
determinants are indicated using the letters S, D, T, and Q, which
refer to single, double, triplet, and quadruple excitations.
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method, and a meaningful active space selection is the full
responsibility of the user. As an advantage, CASSCF can
describe static correlation well, which is necessary in systems
with nearly degenerated configurations with respect to the
reference Slater determinant. For completeness, state-averaging
(i.e., SA-CASSCF) is most often applied, where states
belonging to the same symmetry are averaged. Another variant
of MCSCF methods is restricted active space SCF (RASSCF),
which is very similar to CASSCF, but within RASSCF the
active space is restricted and no FCI computation is carried
out.272

DMRG. As an alternative to deal with large active spaces, the
density matrix renormalization group (DMRG) can be used.290

A DMRG-SCF calculation is similar to a CASSCF calculation,
but instead of a FCI solution of the active space, an
approximated solution with DMRG is obtained to avoid the
exponential scaling of the computational costs with the number
of active orbitals.291−296 Very recently, transcorrelated DMRG
(tcDMRG) was introduced for strongly correlated systems.297

MR-CI. Even higher accuracy can be obtained with
multireference CI methods,253,298,299 such as MR-CISD, that
additionally add single and double excitations out of the active
space and are therefore based on CASSCF wave functions.
With this approach, electronic correlation, i.e., static and
dynamic correlation, can be treated.
CASPT2. Alternatively, complete-active-space perturbation

theory of second order, CASPT2,300−302 can correct electronic
correlation effects via treating multireference problems with
perturbation theory. This variant of multireference perturba-
tion theory methods uses the CASSCF wave function as the
zeroth order wave function. CASPT2 can be applied to each
state separately (single-state (SS)-CASPT2) or correlated
states can be mixed at second order resulting in a multistate
perturbation treatment (MS-CASPT2).300−302 Other pertur-
bation approaches for multireference problems exist, like the n-
electron valence state perturbation theory (NEVPT2).303−305

MRCC. In addition to multireference methods based on CI,
multireference variants of CC approaches exist. A relatively
efficient implementation is for example the Mk-MRCC
approach of Mukherjee and co-workers306 or the Brillouin-
Wigner approach,307 which is however not size extensive.
Noticeably, the development of multireference CC approaches
is a rather young research field compared to other excited-state
methods, and the computation of properties and forces is not
well explored. Many studies therefore focus on the simulation
of energies of low-lying states with MRCC methods.
Additionally, such methods suffer from algebraic complexity

and numerical instabilities. Interested readers who seek for a
more extensive summary of existing MRCC methods are
referred to refs 253, 308, and 309.

Challenges. The probably biggest drawback of the
aforementioned multireference methods is that their protocols
are very demanding. Finding a proper active space is a tedious
task that often requires expert knowledge. Too small active
spaces can lead to inaccurate energies, and problems with so-
called intruder states are common. Those are electronic states
that are high in energy at a reference molecular geometry, but
become very low in energy at another molecular geometry, that
is visited along a reaction coordinate. The active space then
changes along this path. This behavior can result in
inconsistent potential energies. In the case of CASPT2, the
configurations of intruder states can lead to large contributions
in the second-order energy, making the assumption of small
perturbations invalid. Especially for describing molecular
systems with many energetically close-lying states and for the
generation of a training set for ML, such inconsistencies are
problematic. Figure 5 shows an example of potential energy

curves of three singlet states and four triplet states of tyrosine
computed with (a) CASSCF(12,11) and (b) CASPT2(12,11),
where 12 refers to the number of active electrons and 11 to the
number of active orbitals. We used OpenMolcas310 to compute
an unrelaxed scan along the reaction coordinate, which is a
stretching of the O−H bond located at the phenyl-ring of
tyrosine.
Intruder states are no exception. Actually, they are quite

common in small- to medium-sized organic molecules. A large
enough reference space can mitigate this problem, but makes
computations almost infeasible. The computational costs
increase exponentially with the number of active orbitals. In
many cases, the improved accuracy due to a larger active space
cannot justify the considerably higher expenses. At its best and
with massively parallel simulations, an active space of about 20
electrons in 20 orbitals can be treated,312 which is
impracticable for many applications, such as dynamics
simulations. For medium-sized molecules, the active space
that would be required for a given simulation might even be
way too large to be feasible for calculations in a static picture.
With respect to ML, a model that can detect such regions
along reaction coordinates would be very helpful. Indeed, the
dipole moment or nonadiabatic couplings are commonly used
to identify a change in a character of a state. Monitoring of
these properties along reaction coordinates could potentially
help to identify such regions. To the best of our knowledge,

Figure 4. Electrons and orbitals of an arbitrary system to exemplify
the active space needed for many multireference methods. (a) The
highest, not considered, molecular orbitals are inactive and always
empty. (c) The lowest, not considered, molecular orbitals are always
doubly occupied. (b) The active space is shown with two active
electrons in two active orbitals.

Figure 5. Potential energy curves of the three lowest singlet (S0−S2)
and the four lowest triplet state (T1−T4) of the amino acid tyrosine
along the O−H bond length of the hydroxy group located at the
phenyl ring (Ph−OH) computed with CASSCF(12,11)/ano-rcc-
pVDZ and CASPT2(12,11)/ano-rcc-pVDZ.311
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such a model does not yet exist. What is known so far is that
ML can provide a smooth interpolation of such cusps in energy
potentials as long as the density of electronic states is not too
high.94,171

Worth mentioning at this point are also Rydberg states,
which often need to be considered in small- to medium-sized
molecules. Rydberg states can be strongly interlaced with
valence excited states. In such cases, the active space needs to
be large enough to treat both the valence and Rydberg
molecular orbitals. Additionally, the one electron basis set
should be flexible enough to describe both types of orbitals.
This increases the computational costs additionally. More
details on the inclusion of Rydberg states in simulations can be
found in refs 313−316. Especially in such cases, an ML
representation of the electronic wave function to reduce the
computational time would be highly beneficial.
A promising tool to eliminate the complex choice of active

orbitals is autoCAS.317−319 It provides a measure of the
entanglement of molecular orbitals that is based on DMRG. In
principle, there is no prerequisite for the active space selection.
If possible, the reference space should be the full valence in
order to identify the relevant orbitals and electrons. If the full
valence space is too large for a DMRG-CI calculation, one or
several smaller chemically sensible reference active spaces
should be selected to be able to analyze the importance of all
orbitals.317−319 As an alternative, ML can be used to determine
an active space.71

3.1.2. Density Functional Theory. A complementary
view on how to obtain the energy of a system is provided by
DFT. DFT dates back to 1964, when it was formulated by
Hohenberg and Kohn320 entirely in terms of the electron
density, η(r)⃗. A one-to-one correspondence between this
density and an external potential, v(r)⃗ exists and the potential
acts on the electron density. The energy can be formulated in
terms of a universal functional, F[η(r)⃗], of the electron density,
which is independent of the external potential. In this way, the
energy of a system’s ground state can be computed with the
following equation:

∫η η η[ ⃗ ] = ⃗ ⃗ ⃗ + [ ⃗ ]E r v r r r F r( ) ( ) ( ) d ( )
(5)

The most widely used implementations of DFT rely on the
Kohn−Sham approach.321 In fact, Kohn−Sham DFT is so
successful that it is often simply referred to as DFT. In this
approach, an auxiliary wave function in the form of a Slater
determinant is employed. Since a single Slater determinant is
the exact solution for a system of noninteracting electrons, this
DFT approach can be seen as describing a system of
noninteracting electrons that are forced to behave as if they
were interacting. The latter effect can be achieved only by an
unknown modification of the Hamiltonian or rather of the
aforementioned functional. In other words, a Slater determi-
nant as wave function ansatz is exact, but the Hamiltonian can
only be approximated, in contrast to Hartree−Fock, where the
true electronic Hamiltonian is used, but the Slater determinant
is only an approximate wave function.
The functional F[η(r)⃗] can be separated into Coulombic

interactions and a non-Coulombic part. The latter can further
be divided into two terms: the kinetic energy of the
noninteracting electrons and the exchange-correlation part,
which describes the interaction of electrons and thus also
corrects the kinetic energy by the difference of the real kinetic
energy and the kinetic energy of the fictitious system of

noninteracting electrons. The exchange-correlation functional
is the part of DFT that is unknown, and finding the exchange-
correlation functional remains the Holy grail of DFT.
In principle, if the exact functional was known, the exact

ground-state energy of a system could be computed.
Unfortunately, it is not known, and the success of a DFT
calculation critically depends on the approximation that is used
to the unknown exchange-correlation functional.

Excited States. As explained above, the electron density is
computed from a single reference Kohn−Sham wave function,
i.e., the one of noninteracting electrons with the density of the
real system. This single-reference wave function makes DFT a
single-reference method. In fact, most failures of DFT are a
consequence of an improper description of static correla-
tion.271 In order to describe excited states, the time-dependent
(TD) version of DFT, namely, TDDFT, can be used. The
foundation of this theory was laid in the 1980s with the Runge-
Gross theorems,322 which can be regarded as analogies to the
Hohenberg−Kohn theorems. They are based on the
assumption that a one-to-one correspondence exists also
between a time-dependent potential and a time-dependent
electron density in this potential. A system can therefore be
completely described by its time-dependent density. Also in
the time-dependent case, the variational principle for the
density is proposed.
The most widely used approach of TDDFT is linear

response TDDFT (LR-TDDFT). Again, often TDDFT is used
as a synonym for LR-TDDFT due to its extensive use. Within
this theory and the KS approximation, no time dependent
density is necessary to compute excitation energies and excited
state properties. Linear response theory can be directly applied
to the ground state density.323,324 Casida’s formulation of this
theory is the most popular one and gives rise to random-phase
approximation pseudoeigenvalue equations, which are also
known as the Casida equations. Within the adiabatic
approximation, they are implemented efficiently in many
existing electronic structure programs. The Tamm-Dancoff
approximation325,326 further simplifies the equations to an
eigenvalue problem, resulting in the counterpart to CIS.327

Especially in cases when the time evolution of a system is
studied, the Tamm-Dancoff approximation is beneficial since it
leads to more stable computations close to critical regions of
the PESs.269,328

Advantages and Disadvantages. The advantage of LR-
TDDFT is its computational efficiency. The reasonable
accuracy if a proper functional is chosen makes this approach
often the method of choice to study the photochemistry of
medium-sized to large and complex systems, which are not
feasible to treat with costly multireference WFT based
methods.253,329,330 Shortcomings of LR-TDDFT are the
incorrect dimensionality of conical intersections, which are,
however, one of the most important regions during non-
adiabatic MD simulations.331−336 The incorrect dimensionality
of conical intersections with standard TDDFT implementa-
tions leads to a qualitatively incorrect description of such
critical regions. The missing couplings can be corrected for
example with the CI-corrected Tamm-Dancoff approxima-
tion337 or the hole−hole Tamm-Dancoff approximation,338

which can recover the missing couplings and provide correct
dimensionality at conical intersections. Alternatively, an
incorporation of the spin-restricted ensemble-referenced
Kohn−Sham method into the tight-binding TDDFT ap-
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proach339 can be used to describe conical intersections with
reasonable accuracy.
In addition, one should be aware that by definition, double

excitations cannot be accounted for with LR-TDDFT. The
computation of double excitations can be achieved by using a
frequency dependent exchange kernel, which is known as
dressed TDDFT.340,341 Alternatively, spin-flip TDDFT342−344

can be used, where a triplet state is taken as a reference state,
and single excitations are treated with a flip in the electron’s
spin. However, spin-contamination is quite common within
these methods. In general, the description of double excitations
from a multireference state would be more favorable, although
spin-flip TDDFT is often considered to be a multireference
method. In order to compute specific orbital occupations and
consequently excitations and charge-transfer states, an
alternative approximation exists, which is known as the Δ-
SCF approach. In this theory, the electrons are forced into
specific KS orbitals. The SCF is applied to converge the energy
with respect to this configuration.345−347 Other multireference
variants of TDDFT exist too. However, their description is
beyond the scope of this review, and we refer the reader to
recent reviews covering this topic in much more detail.253,348

The accuracy of (TD)DFT simulations for the ground state349

or excitation energies and absorption spectra of organic
molecules could be improved by ML corrections, which were
obtained from the genetic algorithm and NN approach
(GANN),350 support vector machines,351 or AdaBoost
ensemble correction models352 for example.
Last but not least, we briefly want to discuss the most critical

part of a DFT calculation, which is the proper choice of the
exchange-correlation functional. In the case of excited states,
the treatment of valence excitations, Rydberg states and long-
range charge transfer excitations on the same footing are highly
problematic. While hybrid (meta-) generalized gradient
approximation (GGA) or range-separated hybrid function-
als353 are for example well suited for vertical excitations and
the latter also for Rydberg states, global hybrid meta GGA or
range-separated hybrid GGA functionals are better to describe
charge transfer.269,354 Most often, functionals are accurate for
one specific problem, but they fail to describe others. Although
much effort has been devoted to develop functionals, finding a
universal functional for DFT is still far from being
achieved.180,253,269,328 ML could be particularly powerful to
advance DFT and TDDFT in this regard. For example, models
exist to predict the energy of a system based on self-consistent
charge densities or external potentials. Kohn−Sham DFT can
be circumvented, and density functionals can be constructed

from ML models. Besides the density-potential, energy-density
maps, and whole functionals can be learned.82,355−357

In summary, it should be stressed that, in general, there is
not only one single solution to a particular problem, but that
many possible ways can be considered, which lead to an
equivalent description of a particular problem. Considering the
excited states of molecules, it should be mentioned that it is of
utmost importance to think carefully about the photochemical
processes that may occur in order to find the most appropriate
method for most of the assumed reactions. It often happens
that within the same molecular system, one method can
describe a certain photochemical reaction quite well, while
another reaction can be described better with another method.
However, the mixing of methods is not practicable for standard
applications. Recently, studies on ML models have emerged
that combine the different strengths of several methods, e.g. Δ-
learning techniques358,359 or transfer learning.360 These
methods could be well-suited solutions for many future
applications to overcome the current limitations of existing
quantum mechanical methods for the excited states. Even more
than for ground state properties, the quality of the excited
states depends critically on the ability of a method to describe
the different possible reactionas a consequence of the larger
accessible configuration space of a molecular system. Even for
medium-sized systems, it should be clear that a suitable
method may already be computationally impracticable, and a
balance between accuracy and computational effort has to be
found.

3.2. Bases

The potentials computed with the aforementioned methods
for different nuclear geometries can be represented in different
bases, which are connected by unitary transformations. An
example of five states in different bases is given in Figure 6.
Note that often a system in a certain basis is also referred to as
being in a certain picture or representation; here we will not
use the term representation in order to not confuse the reader
with molecular representations used in ML. As it is visible in
the figure, we focus on three types of bases: (a) the diabatic
basis, (b) the adiabatic (spin-diabatic) basis, i.e., the direct
output of standard electronic structure programs, (c) the
diagonalized version of (a) and (b), i.e., the spin-adiabatic
basis. Throughout the literature, different names are given to
these bases, which are summarized in Table 1. They stem from
a partition of the total wave function into a sum of electronic
and nuclear contributions, which can be written for all bases as

Figure 6. (a) Example of three potential energy curves ordered by their character along with respective potential couplings between different states
shown by dashed lines. (b) Two singlets (Ei and Ej) and one triplet state (Ek) including coupling values (with vectorial properties, CNACij

, shown by

their norm) in the adiabatic basis, in which the triplet state crosses singlet states. (c) The diagonal, or spin-adiabatic, basis, in which all states are
ordered by their energy and are spin-mixed. Kinetic couplings are shown by their norm. Note that the ground state is not shown. Potential energy
curves are represented using solid lines and couplings using dashed lines.
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∑ ψ χΨ =t tr R r R R( , , ) ( , ) ( , )
i

i i
basis basis

(6)

In principle, the total wave function can be expanded in
infinitely many different bases. The electronic part ψi

basis(r,R)
corresponds to the eigenfunctions of the electronic Hamil-
tonian only for one of the bases (namely, the one from column
B of Table 1). Associated with these functions are the
corresponding potentials, depicted for a model system in
Figure 6. Note that a different approach is taken in the exact
factorization method,361 where the total wave function is
expanded only in a single product, i.e., without the sum in eq 6,
giving rise to only one (time-dependent) potential.
3.2.1. Adiabatic (Spin-Diabatic) Basis. The direct output

of an electronic structure calculation usually provides the
eigenenergies and eigenfunctions of the electronic Hamil-
tonian. In many cases, only one spin multiplicity is calculated.
If this procedure is repeated along a nuclear coordinate,
potential curves result that are termed adiabatic. Adiabatic
means ”not going through” (from greek a = not, dia = through,
batos = passable), and, indeed, the potentials never cross when
considering one multiplicity. This situation is schematically
illustrated in Figure 6b for singlet Si and singlet Sj.
Within one multiplicity, 3NA-dimensional adiabatic PESs are

obtained that are strictly ordered by energy. Hence, the states
are usually denominated with the first letter of the multiplicity
and a number as subscript, e.g., S0, S1, etc. For states of the
same multiplicity, critical points and seams exist. These regions
of the PESs are referred to as conical intersection (seams), in
which the corresponding states become degenerate. Such
features make adiabatic PESs nonsmooth functions of the
atomic coordinates, which make them difficult to predict with
the intrinsically smooth regressors of ML. At a conical
intersection, the approaching potential energy curves form a
cone, and the NACs, denoted as CNACij

, between them show

singularities as a result of the inverse proportionality to the
vanishing energy gap:298,366

≈ Ψ ∂
∂

Ψ =
−

Ψ
∂
∂

Ψ ≠C
E E

H
i j

R R
1

fori j
i j

i
el

jNACij

(7)

Second-order derivatives are neglected here, as is done in
many quantum chemistry programs that compute NAC
vectors. The blue dashed curve in Figure 6a illustrates the
norm of the NAC vector,CNACij

, that couples the states Si and

Sj. At the avoided crossing points of the states, the NAC norm
shows a sharp spike, but is almost vanishing elsewhere. If more
than one multiplicity is considered, the term adiabatic is not
adequate anymore, because potentials of different multiplicity
might cross through each other. This situation is then called
diabatic with respect to the spin multiplicities, or spin-diabatic

in short. For example, singlets are adiabatic among each other,
triplets are adiabatic among each other, but singlets are
diabatic with respect to triplets. However, also the diabatic
basis (see Figure 6a and also below) qualifies as spin-diabatic.
Because of this nomenclature issue, which even gets experts
confused sometimes, we refer to this basis as “Molecular
Coulomb Hamiltonian” (MCH) because it is obtained from
the eigenfunctions and eigenvalues of the nonrelativistic
electronic Hamiltonian, where only Coulomb interactions are
considered.
As an example, a crossing of a singlet state and a triplet state

is shown in Figure 6b. As it is visible, the triplet components,
which are defined by different magnetic quantum numbers, are
degenerate. The states are coupled by SOCs (denoted as CSOCij

), which are usually obtained as smooth potential couplings
with standard quantum chemistry programs:256,365,367

= ⟨Ψ ̂ Ψ⟩C Hj kSOC
SO

jk (8)

These couplings are single real-valued or complex-valued
properties.368,369 Whether they are complex or not depends on
the electronic structure program employed, but they can be
converted into each other.256,257,368,370 It is important to know
in which way the SOCs are presented by an electronic
structure program in order to find the best possible solution for
ML approximations.15

ĤSO in eq 8 is the spin−orbit Hamilton operator, which
describes the relativistic effect due to interactions of the
electron-spin with the orbital angular momentum, allowing
states of different spin-multiplicities to couple.370−372 Note
that also SOCs between different states of the same
multiplicity exist except for singlets. No exact expression on
how to include relativistic effects into the many-body equations
has been found yet. Among the most popular approximations
used is the Breit equation,373 applying an adapted Hamiltonian
instead of the electronic Hamiltonian, which comprises, among
other terms, a relativistic part. This additional part of the
Hamiltonian accounts for spin−orbit effects and is propor-
tional to the atomic charge,257,368,370,372,373 leading to the
belief that SOCs would only be relevant in systems with heavy
atoms.233,234 Today, it is known that spin−orbit effects also
play a crucial role in many other molecular systems and are
important for intersystem crossing between states of different
spin multiplicities.178,235−237

The states in the MCH basis can also be coupled via external
electric-magnetic fields, e.g., by sunlight or a laser. The
corresponding couplings stem from the transition dipole
moments multiplied with the electric field. Since the effect of
the field is not included in the potentials but as off-diagonal
potential couplings, the MCH basis is also called field-
free.362−364,374 However, also the diabatic basis qualifies as
field-free.

3.2.2. Diabatic Basis. In the diabatic basis, the electronic
wave function is not parametrically dependent on the nuclear
coordinates. Diabatic potentials usually need to be determined
from adiabatic potentials and are not unique; i.e., they rely on
the method and the reference point, which is chosen in the
adiabatic basis to fit diabatic potentials.239,256 The advantage of
diabatic potentials is that singularities in NACs are removed
together with nondifferentiable points of the PESs. Note that
such a strictly diabatic basis for polyatomic systems does not
exist in practice, and only approximated, so-called, quasi-
diabatic, PESs can be fit, where NACs are almost removed, but

Table 1. Commonly Used Names of Bases for the Excited-
State Potential Energy Surfacesa

a b c

diabatic adiabatic diagonal
crude adiabatic spin-diabatic spin-adiabatic
spectroscopic MCH field-adiabatic
quasi-diabatic field-free field-dressed

aBased on refs 239, 256, and 362−365. The labels a, b, and c are
consistent with Figure 6.
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not completely. In the literature, quasi-diabatic PESs are most
often referred to as diabatic ones, so we will also use this
notation here.
An example of a system in the diabatic basis is given in

Figure 6a, and commonly used notations can be found in
Table 1 in the first column. In regions where an avoided
crossing is present in the adiabatic basis, the coupled diabatic
potential energy curves cross. Since the electronic wave
function of a state is ideally independent of the nuclear
coordinates, its character is conserved. Consequently, the
states are labeled according to their character and multiplicity,
e.g., as 1ππ* or according to symmetry labels. Similar to the
character, also spectroscopically important quantities like the
dipole moment are mostly conserved or vary smoothly along
the nuclear coordinates. Therefore, spectroscopic experiments
can easily be interpreted when using the diabatic basis, which is
thus sometimes also called spectroscopic basis. Note that
sometimes labels like S1, etc. are used also when referring to
the diabatic basis, especially in experimental papers when an
identification of the wave function’s character has not been
carried out and only one geometry is considered. However, at a
different geometry, the energetic order of the states might have
changed such that a state previously labeled as S2 might now be
lower in energy than a state previously labeled as S1.
Furthermore, this labeling scheme in the diabatic basis can
lead to confusion with the labels from the MCH basis, and we
suggest to reserve it only for the MCH basis.
Because of the mostly conserved characters and the crossing

of states, diabatic potentials are smooth functions of the
nuclear coordinates, in contrast to adiabatic potentials. A
diabatic PES is thus highly favorable for several numerical
applications including ML.
The MCH and diabatic bases can be interconverted by a

unitary transformation

Ψ = Ψr R U R r R( , ) ( ) ( , )MCH diab (9)

with a unitary matrix, U, that is determined up to an arbitrary
sign (as a result of the arbitrary sign of the wave function,
which will be discussed in detail in section 5.3). In the case of
two states, U, is a rotation matrix:

θ θ

θ θ
=

−
U

R R

R R

cos ( ) sin ( )

sin ( ) cos ( )

i

k
jjjjjj

y

{
zzzzzz (10)

and is dependent on the rotation angle, θ. Accordingly, the
peaky NACs, which are obtained as derivative couplings (also
called kinetic couplings) in the MCH basis, are converted to
smooth potential couplings in the diabatic basis. The smooth
SOCs from the MCH basis become even smoother (ideally
constant) in the diabatic basis.
While one can straightforwardly apply diagonalization to

convert diabatic PESs to adiabatic PESs (and similarly
adiabatic PESs to diagonal PESs), a dilemma arises when
one wants to take the inverse way to obtain diabatic PESs from
adiabatic ones (and similarly adiabatic PESs from diagonal
ones). In fact, finding diabatic PESs is highly complex and
most often requires expert knowledge. To date, only small
molecules could be represented with accurate diabatic
potentials, and developing a method to automatically generate
diabatic PESs remains an active field of research. Existing
methods to obtain diabatic potentials require human input and
are mostly applicable to small systems and certain reaction
coordinates. Early pioneering works can be found in refs 239

and 375. Today, a lot more variants exist. Examples are
diabatization using explicit derivative couplings,376,377 the
propagation diabatization procedure,378 diabatization by local-
ization,379 Procrustes diabatization,252 or diabatization by
ansatz.142,380,381 Further, methods can be based on couplings
or other properties,382−385 configuration uniformity,386 block-
diagonalization,387,388 a hybrid diagonalization combining
block-diagonalization and diabatization by ansatz,389,390 CI
vectors,391 whereas some procedures are carried out at least
partly using ML.142,143,380,390,392

3.2.3. Diagonal Basis. As the name indicates, the diagonal
basis can be obtained by a diagonalization from the MCH or
diabatic bases. In this case, a strictly adiabatic picture is
obtained, where states never cross.256 Accordingly, the concept
of multiplicity for a single state is lost because the state might
be of singlet character in one region and of triplet character in
another region. Therefore, the basis is also called spin-mixed or
spin-adiabatic.257,369,393 The states are strictly ordered by
energy and can be labeled simply with numbers (see Figure
6c). The resulting wave functions are eigenfunctions of the
relativistic electronic Hamiltonian.236,256,257 These eigenfunc-
tions as well as the eigenenergies can be also obtained directly
with, e.g., relativistic two-component or four-component
calculations,394 instead of via diagonalization.
In this basis, the effect of the SOCs is incorporated into the

PESs to a large extent. What remains are localized kinetic
couplings, which are similar in nature to the NACs in the
MCH basis. An example is given in Figure 6c. The parts of the
potentials that correspond to the different triplet components
in the MCH basis are split energetically in the diagonal basis.
In the case of small SOCs, the diagonal potentials look similar
to the MCH potentials. However, if the SOCs are strong,
potentials that are degenerate in the MCH basis can be easily
shifted apart by 1 eV in the diagonal basis. Such splittings are
then also experimentally observable, and the diagonal basis
yields a more intuitive interpretation of these experi-
ments.43,395,396

As mentioned above, the states in the MCH basis can also
be coupled via electromagnetic fields. A diagonalization of the
potential matrix then yields so-called field-dressed states or
light-induced potentials, which can also be termed field-
adiabatic.362,374,397−399 Since the fields are usually time-
dependent, the most important axis along which the potentials
in this field-dressed basis need to be plotted is time.374

In principle, all these bases are equivalent but only if an
infinite number of terms is considered in eq 6. In practice,
potentials represented in different bases have different
advantages for dynamics simulations, especially in combination
with different approximations made in the different dynamics
methods as outlined below.

3.3. Excited-State Dynamics Simulations

In order to investigate the temporal evolution of an isolated
molecular system in the excited states, the time-dependent
Schrödinger equation has to be solved:254

ℏ ∂Ψ
∂

= ̂ Ψi
t

t
H t

r R
r R r R

( , , )
( , ) ( , , )

(11)

From a technical point of view, a sequence of time steps is
computed, where in every step the electronic problem is solved
to yield potentials, which determine the forces acting on the
nuclei such that the nuclear equations of motion can be solved
for the current time step.
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Ideally, the nuclei are treated quantum mechanically. In this
case, the PESs are usually computed in advance and either
interpolated or stored on a grid for later use. The hope is that
ML can improve the interpolation of potentials drastically.
Such global PESs are needed because a wave function is
employed for the nuclei, which extends over a range of nuclear
coordinates at the same time (see Figure 7a). An overview over
corresponding dynamics methods is given in section 3.3.1.

The nuclear dynamics can also be approximated classically
while quantum potentials are used; i.e., mixed quantum
classical dynamics (MQCD) simulations are carried out.
Such methods is discussed in section 3.3.2. Since the classical
nuclear trajectories are defined only at one nuclear geometry at
a time (see Figure 7b), on-the-fly calculations of the potential
energies are possible. An on-the-fly scheme is computationally
advantageous if the number of visited geometries during the
dynamics is smaller than the number of points needed to
represent the conformational space on a grid or via
interpolation.236,256,258,331,332,367,400 No fitting of PESs is
necessary in an on-the-fly approach, but fitted PESs can still
be used as an alternative. Since ML approaches provide such
interpolated potentials, the amount of training points
generated with quantum chemistry must be less than the
number of points needed in an on-the-fly approach in order to
be advantageous. This demand is satisfied, e.g., for long time
scales or if many trajectories are necessary.
In the following, we will shortly discuss the different types of

describing nuclear motion and the opportunities of ML models
to enhance the respective dynamics simulations.
3.3.1. Quantum Nuclear Dynamics. The computational

cost of an exact nuclear dynamics simulation scales
exponentially with the nuclear degrees of freedom. Hence,
simulations are limited to small systems, typically containing
less than five atoms.59,368,401,402 Still, the calculation of the
PESs of the molecule can be a rather expensive part of the
whole scheme, and the use of ML algorithms is advisable even
for such small systems.
To treat larger systems, approximations have to be

invoked.402 A prominent approach that can be converged to
the exact solution is the multiconfigurational time-dependent
Hartree (MCTDH) approach.48,403−405 Its high efficiency
stems from the use of time-dependent basis functions to

represent the nuclear wave functions. Nonetheless, the
computations are computationally costly, and the nuclear
degrees of freedom are often reduced to only a few important
key coordinates,239,406 where classical simulations can help
identify the latter.407 Whether quantum dynamics of such
reduced-dimensionality models are better than using classical
dynamics of a full-dimensional system is still under debate and
probably depends on the system. In the case of quantum
dynamics, the potentials need to be presented to the algorithm
in the diabatic basis, mostly due to numerical stability (e.g.,
smooth couplings are easier to integrate than singular ones).
For more than 20 years, the (modified) Shepard interpolation
has been used to fit diabatic potentials.151,408−411 Notably, the
grow algorithm151 can be used to efficiently generate the
database of points upon which the interpolation is based.
However, it is clearly desirable to treat larger systems, and ML
models like neural networks (NNs) promise higher perform-
ance or more flexibility in such cases.143,146,147,149,378,392,412−414

More recently, on-the-fly methods addressing quantum
dynamics have been developed.145,415−417 They mostly rely
on a combination of Gaussians to represent the nuclear wave
function.258 For example, the variational multiconfiguration
Gaussian method (dd-vMCG)418 offers a variational and thus
accurate solution for the equations of motion. Also full
multiple spawning45,401,419 can be regarded as fully quantum
mechanically by describing the wave function with a number of
time-dependent Gaussian functions that follow classical
trajectories with quantum mechanically determined time-
dependent coefficients. In its more affordable ab initio multiple
spawning variant, more approximations are introduced such
that the results sometimes draw near the classical solu-
tions.420,421 Further related methods exist, like the ab initio
multiple cloning method,422 or the thawed Gaussian
approximation.423

Another class of dynamics methods are semiclassical
approaches, which allow the inclusion of quantum effects in
the classical dynamics of nuclei, such as quantum mechanical
tunnelling or coherence.424 Note that these methods, where
the nuclear dynamics is treated semiclassically, should not be
confused with the MQCD approaches (see below) that are
also often termed semiclassical (because the nuclei are treated
classically and the electrons quantum-mechanically). The
semiclassical dynamics methods range from the initial value
representation,425,426 adapted with the Zhu−Nakamura
approach leading to the Zhu−Nakamura−Herman−Kluk
initial value representation,427 to path integral approaches.428

The path integral formalism is especially interesting when
the quantum and classical degrees of freedom should be
coupled in a dynamically consistent manner. By using so-called
ring-polymers, i.e., replica of the original classical system, a
deviation of the nuclear dynamics from the classical path can
be obtained, and the time evolution of a system including
nuclear quantum effects can be investigated. However, ring-
polymer dynamics suffer from high computational efforts as a
consequence of the large number of replica required.
Accelerated formalisms exist, which are for example
implemented in the Python wrapper i-PI,429,430 which allow
interfacing path-integral methods with programs that provide
PESs, but are mostly dedicated to the electronic ground state.
To date, only a few implementations of semiclassical methods
in atomistic simulation software are available. Compared to
classical mechanics, the computational costs increase by a
factor of about 10−100.424,431,432

Figure 7. Excited-state dynamics can be treated with (a) quantum
approaches, where wave functions are used for the nuclei, or (b)
classical approaches, based on trajectories.
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3.3.2. Mixed Quantum-Classical Molecular Dynamics.
While semiclassical methods are promising to simulate the
dynamics of molecular systems containing up to tens of atoms
highly accurately, the study of larger systems is still dominated
by computationally cheaper MQCD methods, where the
nuclear motion is treated fully classically.59,431−433 In contrast
to quantum dynamics, the motion of the nuclei can be
computed very fast using classical mechanics, and the
computation of the PESs, on which the nuclei are assumed
to move, remains the time limiting step. In this sense, ML
models have a huge potential to enhance MQCD simulations
by providing the electronic PESs and enabling the investigation
of reactions that are not feasible with conventional
approaches.15,175,434,435 In fact, most studies to date that
describe photochemistry with ML aim to replace the quantum
chemical calculation of the PESs in MQCD approaches.
The most popular MQCD method is trajectory surface

hopping,436−438 schematically represented in Figure 7b. A
manifold of independent trajectories is required to obtain
statistically relevant results and to mimic the extended nuclear
wave functions. For a single trajectory, the nuclei move
classically on one of the quantum potentials, and hence only
one state is considered to be active, but transitions between
different states are allowed.439

Different approaches exist to determine the probability of
such a transition, also called hop or jump in surface hopping
methods. To this aim, different quantities are needed that are
commonly provided in the MCH basis, as it is the direct
outcome of a quantum chemical simulation. One of the first
implementations to compute the hopping probability is based
on the Landau−Zener formalism.440,441 On the basis of the
Landau−Zener formula, the potential energy differences are
used to determine the hopping probability. No information
about couplings is required, which implies that the approach
must fail for states that do not couple but lie close in energy.
Very similar to this approach is the Zhu−Nakamura
theory.442−445 Also here, the computation of couplings is
omitted, and only information about PESs is used. Among the
mostly used hopping algorithm is Tully’s fewest switches
algorithm,436 which is valid for many cases and based on the
NACs between different PESs. An extension to other couplings
is provided, e.g., in the surface hopping including arbitrary
couplings (SHARC) method.236 When couplings are consid-
ered, an internal transformation from the MCH basis to the
diagonal basis is most advantageous because the localized
couplings of the diagonal picture precisely indicate where the
few switches of the fewest switches approach should take place.
In cases where the PESs are fit in advance, either with ML
models or other types of analytical functions, the use of a
diabatic basis is favorable (because of the Berry phase, see
below), but should be transformed to the diagonal picture for
the calculation of hopping probabilities. Other flavors to
account for transitions exist. However, they have not been
applied in simulations with ML algorithms yet. Interested
readers are therefore referred to refs 47, 236, 256, 257, 332,
436, 443, and 446−450 for further information.
The bottleneck of approaches that require NACs is that the

computation of the couplings remains one of the most
expensive parts of a quantum chemical calculation. The
computational effort to compute a NAC vector is comparable
to that of a force calculation. However, more NACs are present
than there are forces, i.e., NS × (NS − 1)/2 NACs need to be
computed, whereas NS forces are needed (respectively with

entries for the Cartesian coordinates of each nucleus). Note
that in the case of fitted PESs with ML, all of these vectors
have to be computed for each data point. Conventional
approaches with an ab initio on-the-fly evaluation of the PESs
can make use of the fact that only one active state needs to be
considered at a certain time step. Many MD programs
therefore only require a computation of the forces of the
active state and the respective couplings arising from this state.
Note that despite the benefits of MQCD simulations, they

obey microreversibility only approximately,451 and effects due
to coherences or tunneling necessitate additional consider-
ations as a consequence of the classical treatment of nuclear
motion.452

A more approximate approach is the Ehrenfest dynamics
method, also referred to as mean-field trajectory method. It is
often used for large systems and also frequently in material
science.183,194 The Ehrenfest method is based on the
approximation that nuclei move classically on an average
potential, rather than switching from one specific state to
another.332,453,454 Because of the treatment of each electronic
state separately, surface hopping methods allow the accurate
bifurcation into different reaction channels, while such effects
are neglected in a mean-field treatment of PESs.
The main limitation of MQCD approaches is the expensive

evaluation of ab initio potentials, which allows dynamics
simulations only for up to a couple of picoseconds. In addition,
rare reaction channels are hardly explored as a result of usually
bad statistics.257,455,456 In this sense, MQCD simulations offer
a perfect place for ML to enter this field of research and
advance it significantly. The fast evaluation of the ML PESs
can help to explore different reaction channels and to obtain
accurate reaction kinetics. Observables and macroscopic
properties can be computed directly or with postprocessing
as well as analysis runs and offer another fulcrum for ML. The
computed observables should then be directly compared to
experiments.
3.4. Dipole Moments and Spectra

An important property for comparing experiment and theory is
the dipole moment. The permanent dipole moment of the
ground state is a frequent target of studies with
ML.111,172,457−467 The permanent dipole moment, μi (or μii),
of a state i can be obtained via the dipole moment operator
(see eq 13 below) or as the sum of partial charges, qa,i of atom
a in state i, and the vector that describes the distance of the
position of atom a to the center of mass of the molecule, ra

CM:

∑μ = =q ri
a

N

a i a,
CM

A

(12)

It can be used for the computation of infrared spectra with
MD simulations. The spectrum is then obtained as the Fourier
transform of the time autocorrelation function of the time
derivative of the dipole moment.468

In contrast to the ground state, excited-state simulations
often make use of the transition dipole moments, which are
computed from the dipole moment operator within many
quantum chemistry programs:

μ μ= ⟨Ψ ̂ Ψ⟩ij i j (13)

The ground state dipole moment can differ strongly from
those in the excited states, due to a frequency shift and altered
electron distribution upon light-excitation.469
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Transition and permanent dipole moments are the target of
some very recent studies, see refs 16, 94, 95, 97, and 241.
Worth mentioning is the charge model of ref 111 originally
proposed for the ground state and adapted by us for an
arbitrary number of excited states,241 where point charges are
never learned directly, but instead are inferred as latent
variables by an NN dipole model making use of rα

CM.172 In this
way, the rotational covariance can be preserved.
Noticeably, the computation of absolute values of

permanent and transition dipole moments is very challenging
even when highly accurate quantum chemistry methods are
employed and experimental values are hardly reproduced.95,470

However, also experimental studies provide absolute values
only in a few cases. Most computational studies therefore do
not aim to reproduce the absolute values of transition dipole
moments but rather use relative values to obtain reasonably
accurate absorption spectra, which can be compared to
experiments.55,254,256,471−473 Since many molecules absorb in
the UV, the terms UV spectra and absorption spectra are often
used interchangeably. However, absorption can take place in
many regions of the electromagnetic spectrum, including, e.g.,
X-rays, where rather core electrons than valence electrons are
excited.474

As already mentioned shortly, absorption spectra can be
obtained from a calculation of excited-state energies and
oscillator strengths, which are proportional to the squared
transition dipole moments. Noticeably, the transition dipole
moment is only defined up to an arbitrary sign as a result of the
arbitrary phase of the wave function (see section 5.3).16,94 To
circumvent this ill-definition, oscillator strengths or the lengths
of dipole vectors can be fitted with ML. However, this
workaround can be problematic if explicit field−dipole
interactions should be considered with ML models, as the
relative orientation of the field vector and the dipole vector can
be important in this case. In theory, when computing UV/
visible absorption spectra, the absorption related to a type of
transition of one molecular geometry results in a delta
function. However, in experiments lines are usually broadened
due to the experimental technique and instrument used and
because the molecules vibrate and collide with each other.
Therefore, the computation of spectra requires the evaluation
of transition properties of not only one conformation, but of
many thousands. Wigner sampling475 or sampling via MD can
help to achieve better agreement with experiment in the case of
absorption spectra, but the line shapes due to different
vibrational lifetimes can usually not be described. Therefore,
the lines are broadened using Gaussian, Lorentzian, or Voigt
functions, which can approximate effects due to Doppler
broadening, broadening due to the uncertainty of the lifetimes
of excited states, or a combination of these effects,
respectively.246,476

4. ML MODELS

Besides the reference method to compute the training set,
which defines the highest possible accuracy an ML model can
attain, the type of regressor and the descriptor to represent a
molecule to the ML model also play important roles.477

Improper choices of regressors and descriptors can result in
inaccurate ML models.

4.1. ML Models: Type of Regressor

Given the vast number of ML algorithms applied in the field of
computational chemistry, one might ask which one to use or

adapt for photochemistry. As recent studies applying ML for
quantum chemistry have shown, many possible choices of ML
approaches exist, and there is no single solution. Nevertheless,
a trend can be observed: Many studies that use ML in the
research field of quantum chemistry employ labeled data sets,
i.e., supervised learning techniques. Within supervised learning,
one can distinguish between regression and classification.
Classification aims at finding patterns and at grouping data into
certain clusters.478 Those types of ML models are often used,
e.g., in spam filters, in medicine to diagnose diseases,479,480 or
in food research, e.g., to guarantee a certain wine quality or
origin.481 Examples of applied classification models in the field
of computational chemistry are for example support vector
machines, random forests, or decision trees used, e.g., to
classify enzymes482 or for the selection of an active space.71,483

More often than classification models, regression models are
applied to assist the search for a solution of a quantum
chemical problem. Regression is used to fit functions that can
relate a molecular input, X, to a quantum chemical output, Y.
The simplest relation that can be assumed is linear. However,
most quantum chemical problems cannot be accurately
described with a linear function as given in eq 14. Linear
regression is not seen as a universal approximator, while this
quality has been proven, e.g., for NNs.484,485 This is why we do
not consider linear regression as an ML method in this review.
Note that seemingly accurate fits can be achieved with linear
regression when using more inputs (descriptors, features) than
data points, but such an agreement rather resembles spurious
correlation than real learning. Nonetheless, linear models are
the foundation of many ML approaches and can serve as a
baseline model to evaluate the minimum accuracy that an ML
model should obtain.94 In the linear relation,

= +Y b wX (14)

the regression coefficients, also known as weights, w, and
biases, b, are tailored for a given problem under investigation.
Here, ordinary least-squares minimization can be applied to
find these coefficients. The process of finding the optimal
relation between X and Y is termed training. The coefficients
are optimized by minimizing a so-called loss function, L, which
monitors the error between the original property, YQC, and the
predicted property by the ML model, YML, with respect to the
training instances. Most often, the L1 loss or the L2 loss is used
as an indicator for the training convergence. The L1 monitors
the MAE and the L2 loss the mean squared error (MSE) of
predictions:

∑= −
β

β βL
N

Y Y
1

( )
N

2
M

ML QC 2
M

(15)

The Greek letter β runs over all molecules, NM, inside the
training set. In principle, any error estimate can be used to
train an ML model and find suitable regression coefficients.
An example specifically developed for excited-state problems

is the aforementioned phase-less loss (see section 5.3.2).15

Such adapted loss functions and also conventional ones are
employed in different types of ML models. In the following, we
focus on the two most widely used models for the description
of the excited states: Kernel methods and NNs.

4.1.1. Kernel Methods. Kernel methods486 are based on a
similarity measure between data points. Examples are KRR or
GPR, which go beyond linear regression by applying the kernel
trick and ridge regression. Ridge regression is used to find the
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weights, which differs from linear regression by a regularization
term, λ:

λ= + −w K Y( 1) 1 QC (16)

YQC refers to the training data and K to the kernel matrix.
The kernel trick makes it possible to apply ridge regression

to nonlinearly separable data by mapping them into a higher-
dimensional feature space, in which the data points are linearly
separable. Therefore, a kernel function, k, e.g., a Gaussian or
Laplacian, is placed on each compound to measure the
distance to all of the other compounds in the training set. The
kernel function defines the nonlinearity of the model. A
property of a query compound, α, can be obtained as the
weighted sum of regression coefficients and kernel instances:

∑=α
β

β α βY X w K X X( ) ( , )
N

ML
M

(17)

The size of the kernel matrix is dependent on the number of
training points, and hence the depth of the model is inherently
linked to the size of the training set, which is why they are
called “nonparametric”.478,487

An advantage of kernel methods is that they mainly contain
two hyperparameters, i.e., internal model parameters, which
need to be optimized for proper training. Most important are
the width of the nonlinear kernel function, σ, and the
regularization. The latter is used to prevent the model from
overfittingthe case when the model fits training data
including noise almost exactly and fails to accurately predict
data points not included in the training set but stemming from
an interpolative regime. As quantum chemical data are most
often noise-free, the regularization term is usually small.
Especially for excited-state data, there are, however,

systematic errors that can be seen as noise: Inconsistencies
in potential energy curves along certain reaction coordinates
are quite common and NACs are singular at crossing points of
two PESs.171 In these cases, care should be taken in order to
avoid overfitting. A powerful way to mitigate the problem of
overfitting, e.g., for kernel methods, is, for instance, k-fold
cross-validation.478,488 Although kernel methods are generally
said to be resistant to overfitting,95,489 we shortly want to
discuss k-fold cross validation here. By applying k-fold cross-
validation, the whole data set is split into a training and test set.
The test set is held back until the optimal hyperparameters are
found and the remaining training set is split into k parts, which
is most often 5 or 10. The kernel method is trained on k−1
parts of the training set, while the hyperparameters are
optimized in order to minimize the error the model makes
on the last part of the training set, i.e., the validation data in this
case. The procedure is carried out k-times, and each time the
validation data consist of another part of the training set. This
procedure allows the optimization of hyperparameters without
being biased by the error on the test set. In case data are sparse
and expensive, k-fold cross-validation is a powerful technique
to find optimal hyperparameters of an ML model without the
need to compute massive amounts of additional data for
validation and testing. The accuracy of the final ML model is
then assessed by computing the error on the test set. This
procedure is similarly valid for NNs, whereas overfitting is
most often mitigated by applying an early stopping mechanism,
which will be discussed in the context of NNs in the next
paragraph.

As the optimization of hyperparameters is often a tedious
task, kernel methods with their few hyperparameters are easier
to use than, e.g., NNs with many hyperparameters. Nonethe-
less, kernel methods can provide almost exact solutions of
problems under investigation.127 A drawback is, however, that
the inversion of the kernel matrix can become expensive and
even be rendered infeasible on current computers due to
increasing memory requirements with increasing training set
size.95

Further, kernel methods are usually defined to only map an
input to a single output. Therefore, they can treat only one
electronic state at a time in standard implementations and,
thus, can be referred to as single-state models. A single-state
treatment requires a separate ML model for each electronic
state or for each property resulting of a pair of states, whereas a
multistate ML model describes all electronic states and
properties resulting from different pairs of states at
once.95,175 Hence, in their standard implementation, the
treatment of several excited states necessitates the use of
several kernel models, which is commonly done in the research
field of quantum chemistry.139,140,149,490,491 The description of
forces is possible for the ground state or a single excited state
and is implemented, e.g., in the QML toolkit using KRR and
the Faber−Christensen−Huang−Lilienfeld (FCHL) represen-
tation,466 in the symmetric gradient domain ML
(sGDML)122,122 method, with smooth overlaps of atomic
positions (SOAP)492 for GPR,121 or GAP101 originally
developed for materials, but recently also applied for
molecules, e.g., fluid methane.493

4.1.2. Neural Networks. Another prominent approach in
ML is the use of NNs as highly flexible parametric functions,
which can fit huge amounts of data and can map a molecular
input to many quantum chemical outputs.95 The simplest form
of NNs is the multilayer feed-forward NNs, which are
schematically represented in Figure 8.

As it is visible in Figure 8, the width of the model is
dependent on the number of nodes, nr

t, which are connected to
each other using weights, wrs

tu. The indices refer to a connection
between node r and node s from layer t and layer u,
respectively. The number of nodes and hidden layers can be
chosen independently of the training set size.

Figure 8. Schematic representation of a multilayer feed-forward NN
with inputs, X, nodes, n, and outputs, Y. In the usual implementation
for the fitting of PESs, the NN maps a molecular geometry to the
ground state, which could be similarly done for any other single state.
In the case a manifold of excited states is described, one molecular
input can also be mapped to a vector of different excited states, and
additionally, other properties can be included. The forces are treated
as derivatives of the NN potentials with respect to Cartesian
coordinates.
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Because of the highly flexible functional form of NNs, highly
complex relationships can be fit, but an analytical solution to
find the weights is not available (in contrast to KRR). A
numerical solution can be obtained with stochastic gradient
algorithms, which are frequently applied to obtain a stepwise
update of the weights:

= − ∇+w w l L w( )k k1 r 2 (18)

The gradient of the loss function as given in eq 15 with
respect to the weights is multiplied with a so-called learning
rate, lr. This hyperparameter is deemed one of the most
important hyperparameters used for training.10,494 In order to
obtain an optimal solution, the learning rate needs to be
chosen properly. Algorithms such as AdaGrad495 or Adam496

can automatically adapt the learning rate during training.
Further, the second-order derivatives can be included into
algorithms, which is for instance done in the global extended
Kalman filter,497 in its parallel variant,498 or the element-
decoupled variant.105 The loss function can be adapted so that
more than only one property can be trained at once. This is
often done to include the forces in the training process.
In general, NNs possess various hyperparameters like the

learning rate, regularizers, number of nodes, etc. As a
consequence, an extensive hyperparameter search complicates
the use of NNs and makes them more complex to apply than
kernel methods. One common hyperparameter optimization
procedure is random grid search.10,494 Therefore, the hyper-
parameters of the model are randomly shuffled, and ML
models are trained using these parameters. After training, the
errors on a validation set are compared to each other, and the
hyperparameter space, which has to be explored, can be
narrowed. This procedure is beneficial if it is repeated several
times while narrowing the space of hyperparameters every
time. As hyperparameter optimization is an optimization
problem, algorithms, such as Bayesian optimization499−502

have been designed for this task and are frequently applied for
deep ML models and kernel methods. Because of the tedious
procedure of manually tuning hyperparameters or the expert
knowledge, which is required in most cases to find optimal
hyperparameters, ML models have been designed which
automatically learn optimal hyperparameters and only require
little human intervention, see, e.g., refs 15,77, 461, 465,
503−508.
In addition, NNs are prone to overfitting. Therefore, during

training, it can be beneficial to split the training data into two
parts, typically in a ratio of 9:1, with the first part being directly
used for training (i.e., adjusting the weights) and the second
only for validation. In every training epoch, the error of the ML
model on the training and validation data is compared. As soon
as the error on the validation data increases, the training is
stopped. This process is known as early stopping and is,
besides drop-out or the comparison with less complex ML
architectures, a powerful tool to prevent an NN from
overfitting.10,478

Besides simple multilayer feed-forward NNs, high-dimen-
sional variants exist. These networks comprise several atomic
NNs, which represent atoms in their chemical and structural
environment and are thus also called atomistic NNs. Each local
atomic contribution, Ea, can be summed up to provide the
energy of the whole system, E, which is well-known to work for
the ground-state PESs:

∑=
=

E E
a

N

1
a

A

(19)

and was originally implemented by Behler to construct high-
dimensional NN potentials.509 Embedded-atom NNs508 are
similar to high-dimensional NNs in their way of constructing
the energy of a system. They differ in the underlying
descriptors to the ones of Behler. Atomic contributions to
the energy are dependent on the embedded density of atoms
and are summed up according to eq 19. These embedded
density-like descriptors are approximated from atomic orbitals.
Independent of a simple or an atomistic architecture, the

model can be used to fit a single output or a vector of many
outputs at the same time. For ground state problems, a single-
state model is usually used, which maps an input to a single
output, e.g., the PES of the ground state. Oftentimes, this
single-state fashion is adapted to fit different excited states with
different NN models.16,141,204,510 However, it has been shown
that including more excited-states in one model can be
advantageous,95 as the excited-states are inherently linked to
each other and so are the excited-state properties.178 Treating
many excited states can be referred to as multistate model, and
the inclusion of more properties can result in a multiproperty
model.77,95,97,175,191 The different properties can be weighted
with respect to their magnitudes or importance for a given
chemical problem under investigation, such that the best
possible accuracy can be obtained.15

Convolutional NNs represent another class of networks and
are most often applied in image or speech recognition,511−513

but can also be adapted to process a molecular input and
identify an optimal molecular descriptor. This type of network
can be combined in an end-to-end fashion with an architecture,
which fits this generated molecular representation to a query
output.461,465,503,507,514

An important ingredient of all these ML models is the
descriptor, which is mapped to the output. In most studies, the
descriptor is one of many different possibilities to represent a
molecule, which will be discussed in the next section.

4.2. Descriptors and Features

Electronic structure methods can process and uniquely identify
molecules using, e.g., Cartesian coordinates. In contrast, such
types of inputs are not optimal for ML models as the same
molecular geometry, but translated or rotated, could only be
mapped to the same output with great effort and unnecessary
computational cost. Hence, a molecular descriptor should
fulfill the following requirements: It should be translationally,
rotationally, and permutationally invariant as well as differ-
entiable.104 It should also be unique with respect to the relative
spatial arrangement of atoms, universally applicable for any
kind of system, and computationally efficient.477 However, a
descriptor can be more than that; it can already include a part
of the mapping, e.g., from a molecular structure to an energy. It
can thus ease the task of the regressor and help to attain the
best possible accuracy for a given training set.
The ways to represent a molecule to an ML model can be

classified roughly into two categories: molecule-wise descrip-
tors, which represent the molecule as a whole to the ML
model, and atom-wise descriptors, which represent atoms in
their chemical and structural environment and build up a
property using local contributions.104,515 Both ways in
describing a molecular system have their merits and pitfalls
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and will be discussed along with their applications in recent
studies for the excited states in the following.
4.2.1. Molecule-wise Descriptors. The distance matrix is

one of the simplest descriptors that preserves rotational and
translational invariance. Most often it is used in its inverse form
with distances between atoms a and b,

=
−

D
r r

1
ab

a b (20)

giving rise to the symmetric inverse distance matrix, D.
Because of the ill-definition of diagonal elements, which are
not differentiable, the diagonal elements are excluded, and only
the upper or lower triangular matrix is used to represent a
molecule to an ML model.491 Since the Hamiltonian contains
distances rather in the denominator, it makes sense to also use
the matrix of inverse distances.94 The matrix of inverse
distances is very similar to the Coulomb Matrix, C:102
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but the Coulomb matrix additionally considers fixed point
charges, Z, as employed in classic force fields. These types of
descriptors are frequently used in ML studies for the excited
states. For example, MLMD simulations in the excited states
could be advanced using these simple descriptors94,95,139,140

and were also accurate enough to fit NNs and KRR models for
excited-state properties.94,95,162,358,490,510 Distance based de-
scriptors are further implemented in several program packages
that have been used for photodynamics simulations with KRR.
For example, MLAtom516 contains the Coulomb Matrix and a
representation that includes all nuclear pairs in form of
normalized inverted internuclear distances.517 The QML
toolkit518 includes the Coulomb matrix in addition to other
representations, such as bag of bonds.519 Another variant is
polynomials formed from inverse distances.94

These molecule-wise descriptors have the advantage of being
easy to use and implement. Especially for small molecular
systems and with regard to the training of an ML model, they
are cheap. However, they might miss some important
information based on angular distributions. Currently, it is
also investigated whether representations based on two-body
or three-body terms are accurate enough to uniquely identify a
molecule.520

A problematic issue of the aforementioned types of distance-
based molecular descriptors is that they are not permutation-
ally invariant.104,175,514,515 This problem can be mitigated by
data augmentation, i.e., randomly permutation of atoms by
mixing of matrix rows, which results in more data points for the
same molecular input. The additional amount of data increases
rapidly with the system size and could lead to long training
times.514,515 Alternatively, another metric than the commonly
used L1 or L2 norms can be employed, the so-called
Wasserstein metric, which was tested with the Coulomb
matrix.521

Permutation invariant polynomials (PIPs), introduced by
Bowman and co-workers,522−524 are frequently applied in a
PIP-NN approach by Yarkony, Guo, and co-workers to
investigate ground state412−414 and photochemical prob-
lems.143,144,147,392 The advantage of these polynomials is that
they are invariant to permutation of atoms and inversion.147

They comprise single-valued functions, pab, such as logarithmic
or Morse-like functions, which incorporate internuclear
distances, rab. The PIP vector, G, is obtained applying a
symmetrization operator, Ŝ, accounting for possible permuta-
tion operations:

∏= ̂
<

S pG
a b

N

ab

A

(22)

with an example of pab:

= −p eab
crab

(23)

Evidently, additional hyperparameters such as c have to be
optimized, and the choice of PIPs is generally not
unique.413,525 It is worth mentioning that the internuclear
distances are redundant for molecules with more than four
atoms, but this redundancy does not affect the description of
the PES.
Some studies suggest that molecule-wise descriptors might

be superior to atom-wise descriptors as the bonds are possibly
better represented by internuclear distances.95,158,175 A
negative aspect of molecule-wise descriptors is, however, that
they can only treat one molecular system, because the input
size is fixed. The input dimension could, in principle, be
defined according to the largest system included in the training
set, but this would lead to unnecessarily large input vectors for
smaller systems, which would then contain many zero
values.509,514 The training of more ML models, each for one
specific system size, is one possible solution,162 but obviously
necessitates the training and evaluation of more than one ML
model.

Atom-wise Descriptors. In contrast, atom-wise representa-
tions allow for a fitting of molecules of arbitrary size and
composition. Such descriptors are state-of-the-art for ground-
state problems. The main principle for the design of atom-wise
descriptors is to fit a reference property as the sum of atomic
contributions, as given in eq 19 for the molecular energy of a
system. The molecule is thus split into atoms, which are
represented in their chemical and structural local environment.
Usually, these types of descriptors rely on a cutoff function,
which defines the sphere around an atom, which is deemed to
be important and is therefore considered when modeling the
atomic local environment. Commonly used examples are the
SOAP,492 atom-centered symmetry functions (ACSF),509

weighted ACSFs,526,527 embedded-atom density-like descrip-
tors,508 moment tensor potentials,528 spectral neighbor analysis
potentials (SNAPs),529 or the FCHL representation.127,530

Interatomic distance between atoms is considered very
important for the design of the descriptor and is most often
included in representations in the form of radial distribution
functions, so-called two-body terms. They are often used
together with angular distribution functions, i.e., three-body
terms. It is further beneficial to include one-body terms, i.e.,
the element types of atoms and hence the stoichiome-
try.127,461,526,527 Most often, higher order terms than three-
body terms are not included due to increasing costs and little
improvements in accuracy.514 Lately, some models have
emerged, which take the embedded electron density508 or
interactions of pairs of atoms77,80 into account. To allow a
scalable and accurate representation of larger molecules,
geometric moments could further serve the construction of
descriptors. They have been formulated using pairwise distance
vectors.531

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c00749
Chem. Rev. 2021, 121, 9873−9926

9890

pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00749?ref=pdf


Much effort is further devoted to reduce the costs of the
descriptors. For instance, weighted ACSFs,526,527 embedded-
atom density-like,508 moment tensor,528 and descriptors used
for SNAPs529 reduce the amount of many-body terms.
Especially tantalizing is the reduction of the sum over many-
body terms into a product of two-body terms in the last three
mentioned descriptors. Very recently, Zhang and Jiang propose
so-called piecewise switching function based descriptors532 for
embedded-atom NNs, which scale linearly with the number of
neighboring atoms.
The description of PESs from atomic contributions is

beneficial in order to treat systems of arbitrary sizes and to use
systematic molecular fragmentation methods.109 Admittedly,
the validity of this approach is not so clear for the excited-
states, and consequently, such representations are less
frequently used in ML studies targeting the excited states.
To date, only small molecules have been fitted with atom-wise
representations, which are too small to prove the validity of
excited-state PESs, which are constructed from local atomic
contributions. To the best of our knowledge, the largest
molecule fitted with atom-wise descriptors contained 12 atoms
and was N-methylacetamide.97 Other molecules were
CH2NH2

+,15,95 CH2NH,
141 SO2,

15 or CSH2.
15 Further studies

are needed to demonstrate whether an atom-wise construction
of excited-state properties and PESs is possible or not.
Nevertheless, this approach is most powerful for studies that
aim to describe large and complex systems, which could
potentially be described from smaller building blocks. For
instance, the construction of a DNA double strand or a peptide
could be, at least in principle, constructed from ML models
that are trained on their smaller subsystems, i.e., DNA bases
and amino acids, respectively. Unfortunately, we are far away
from having achieved a description of large molecular systems
for the excited states, let alone the construction of accurate
PESs of medium-sized molecular systems, such as DNA bases
or amino acids.
Other Types of Descriptors. Besides the benefits that high-

dimensional ML models offer for the fitting of PESs of
molecules, descriptors are not restricted to the aforementioned
examples. In general, any type of descriptor might be suitable
for a given problem. Applied descriptors range from
topological and binary features generated from SMILES
strings533 to normal modes, which are often used as a
coordinate system and descriptors to fit diabatic PESs (refs 16,
99, 136, 143, 145, 145−147, 149, 392, 534). Other types of
molecular features besides structure-based ones, e.g., electro-
negativity, bond-order, oxidation states, ...,17,71 are also used.
Automatically Generated Descriptors. The selection of an

optimal descriptor and the optimization of the related
parameters for this descriptor are not trivial tasks and require
expert knowledge in many cases.514 A way to circumvent an
extensive parameter search is offered by the aforementioned
message passing NNs,503 which include the descriptor
parameters in the network architecture. In this way, they
automatically fit the optimal parameters of a descriptor for a
given problem, i.e., training set under investigation. Such
tailored descriptors can guarantee highly accurate solutions if
the NN model is trained properly. PhysNet,504 HIP-NN,505

DeepMD,506 or Deep Tensor NN (DTNN),507 which forms
the basis of the deep learning model SchNet,461,465 which in
turn is used within the SchNarc approach for excited states,15

are examples of such NNs.

5. DATA SETS FOR EXCITED STATES

The basis of any successful ML model is a comprehensive and
accurate training set that can describe the required conforma-
tional space of a molecule comprehensively and accurately with
as little noise as possible.535 While electronic structure theory
for ground state problems is almost free of noise, the same
cannot be said so easily for problems in the excited states. “Bad
points with abrupt changes”16 within ab initio calculations for
the excited states are frequently observed, which can occur
even far away from any critical point of the PESs and are
difficult to detect.15,16,94 The amount of noise in the reference
data depends not only on the chosen method (and in the case
of multireference methods on the selected active space), but
also on the number of electronic states considered and the
photochemistry of the molecule under investigation.

5.1. Choosing the Right Reference Method for
Excited-State Data

Many existing training sets for ML in quantum chemistry are
based on DFT.103,105,112,526,536−538 The ease of use and low
computational costs of DFT-based methods make them
suitable to treat large systems with acceptable accuracy. In
fact, DFT is the workhorse of many studies solving ground-
state problems. In contrast, TDDFT has not yet managed to
equal DFT for the treatment of excited-state problems.
Consequently, training sets for the excited states are less
frequently computed with TDDFT93,97,98,162,358,539 and rely
most often on multireference methods. Examples of applied
methods are CASSCF15,139−141,145,146,149,160 or MR-CI
schemes,14−16,92,94−96,142,144,540−545 where the latter method
is more expensive than the former and therefore limited to
describe small systems.
In general, the computation of excited-state PESs is much

more expensive than the computation of the ground state
potential of the same molecule. Not only highly accurate ab
initio methods have to be applied for many systems, but also
forces and couplings are required for the considered states. A
high density of electronic states present in a molecular system
can thus increase the costs of a calculation considerably. In this
regard, an active, efficient, and meaningful training set
generation is indispensable, especially when photodynamics
simulations are the target of a study.
Keeping in mind that the quality of the reference data

confines the quality of an ML model, several key questions can
be identified when designing a study based on ML potentials.
We believe the following questions to be important for the
selection of a suitable reference method:

(1) What is the goal of an ML model, and what properties
must it predict in order to benefit from the advantages
that ML can offer? Are only energy gaps of different
electronic states to the electronic ground state necessary,
or are gaps between other states and couplings between
them also relevant? Especially, the description of
couplings requires further consideration, as they cannot
be calculated with all quantum chemistry methods and
additionally face the problem of random sign jumps
along different reaction coordinates.92,94,546

(2) How many excited states are relevant, and which
method is computationally affordable to treat the
amount of states required? A comparison with experi-
ment and the computation of vertical excitation spectra
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with reference methods can help to obtain an answer to
this question.

(3) How large is the system under investigation, and how
complex are the excited state processes that are
considered to be important? This question is important
in order to identify whether single reference methods
such as LR-TDDFT or ADC(2) make sense for certain
reactions that might occur. While large and flexible
molecules with a lot of energetically close-lying states
can give rise to a multifaceted photochemistry including
dissociation, homolytic bond-breaking, and bond-for-
mation, the dynamics of rigid molecules might only be
dominated by one main reaction channel and lose the
additional energy in the form of molecular vibrations.
The complexity of the excited-state processes can help to
estimate the number of necessary data points to describe
the relevant configurational space of the molecule.

In case multireference methods are necessary to describe
many different excited-state processes of a molecule, the
training set generation can become unfeasible. For example,
356 data points were computed for the 15-atom cyclopentoxy
molecule with MR-CISD(5,3)/cc-pVD(T)Z.96 Respective
calculations comprised 19,302,445 configuration state func-
tions, and one reaction coordinate could be fitted in the
diabatic basis. We also ran into a similar problem when fitting
the excited states of the amino acid tyrosine containing 24
atoms, which also requires a multireference treatment. The size
of the active space and the number of states needed for an
accurate description made multireference methods such as
CASSCF or CASPT2 computationally too expensive; see
Figure 5. In these cases, the computation of an ample training
set is far too expensive with multireference methods, and the
quantum chemistry calculations remain the bottleneck even
when using ML.
In addition to the aforementioned intricacies to build up a

meaningful, yet accurate training set for the excited states, the
process is further complicated by the arbitrary phase of the
wave function. As a consequence, excited-state properties
resulting from two different electronic states, such as transition
dipole moments or couplings between different electronic
states,15,16,92,94,95,546 are not uniquely defined and cannot
simply be fitted with conventional ML models. Either an
additional data preprocessing, termed phase correction, or an
adaption of the learning algorithm has to be incorporated to
render data learnable with ML models. Details on how to
correct these data in advance or during training will be
discussed in section 5.3. The subsequent discussion will be
dedicated to the training set generation and common training
sets applied to date.
5.2. Training Set Generation

The requirements and desirable specifications for a training set
can vary strongly, dependent on the type of application: When
the focus of a study is the investigation of the huge chemical
space and the search for certain patterns thereof or the design
of new molecules with targeted properties, usually the training
set should be as large as possible to cover as many molecules as
possible. In the best case, the data points are computed with
high accuracy, and this reference method is accurate for the
excited states of many different types of systems. In terms of
accuracy and general applicability, ab initio methods are more
suitable, as they do not require the selection of a density
functional, which might be accurate for some cases, but fail for

others. However, the costs and complexity of highly accurate
multireference ab initio methods limit their applicability, so
that TDDFT remains the method of choice when making
predict ions throughout the chemical compound
space.152,358,547

The problems of TDDFT have been discussed very recently
by Thawani et al.548 The authors developed a data set for
relevant photoswitches, which are useful, e.g., for medical
applications or renewable energy technologies. To this aim,
photochemical properties of azobenzenes and associated
derivatives were manually extracted from experimental papers.
The ππ* and nπ* transitions turned out to be key to accurately
describe a molecule with photoswitching activity. Different ML
models were subsequently trained using different types of
descriptors to fingerprint these compounds. Comparable
accuracy to TDDFT could be achieved as well as superior
performance to human chemists in predicting these transitions.
This work highlights very well how data sets can be generated
from experiments and provides a practical, useful tool for
chemists not versed in TDDFT.
Besides this data set based on experimental data, the most

widely applied approach to generate a training set for screening
purposes or for the exploration of chemical compound space is
to start from an existing (ground-state) database that already
covers a large chemical space of certain types of molecules. In
this way, not much effort has to be devoted into the
exploration of chemical space and structure optimizations to
get the most stable conformations of different molecules.
For the purpose of ML-based excited-state dynamics

simulations, things look quite different. Note that for
photodynamics simulations, only molecule-specific ML models
exist until now, which can potentially develop into a universal
excited-state force field, but much remains to be done to
achieve this goal. Indeed, the generalization of the excited state
PESs and corresponding couplings is expected to be a highly
complex task, especially due to the problematic generalization
of excited states.94 A comparison of the isoelectronic molecules
CH2NH2

+ and C2H4 can serve as an example. Their conical
intersection between the first excited singlet state and the
ground state is accompanied by a rotation along the dihedral
angle, which could lead to very similar photoinitiated
processes. However, higher-lying excited states are ordered
completely different in both molecules and excitation leads to
completely different photodynamics.28,94,549−558 Particularly
promising in order to achieve the goal of an excited-state ML
force field is the construction of excited-state potentials from
atom-wise contributions, i.e., an ML model which learns the
surrounding of an atom rather than the molecule as its whole.
Promising models are multilayer energy-based fragment
methods similar to ref 536 in combination with high-
dimensional NNs509 and density-like descriptors,508 or
automatically learned descriptors based on geometric in-
formation.461,528,529 Especially, ML for wave functions like the
SchNOrb model77,80 could be helpful in this regard and are
further interesting for dynamics simulations to compute wave
function overlaps from ML. Further, it is important to encode
the charge of the molecule in order to treat molecules of same
composition, but different electronic charges. However, as it
stands, existing ML models for photodynamics simulations are
developed to investigate the photoinitiated processes of one
specific molecule, which is why we focus on this goal in the
following discussion.
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Overall, we arrive at the following wish list for the training
set, which has been identified also for MD in the ground
state:103,117,515,559 (1) The training set should be as small as
possible to keep the number of reference calculations at a
minimum. (2) At the same time, the relevant conformational
space of the molecule that is required for the reaction under
i n v e s t i g a t i on shou l d be s amp l ed compr ehen -
sively.94,117,359,515,535

Keeping this in mind, an efficient procedure to obtain
relevant molecular structures has to be applied. A large number
of schemes to achieve this goal have been proposed, which are
mainly based on two different strategies: One approach is to
simulate MD in the ground and excited states with the
reference method and putting much effort into covering critical
regions of the PESs comprehensively.139−141 Structure-based
sampling or subsequent clustering is beneficial in this
case.139,140,517,560,561 The other strategy is to use an active
learning approach, which decreases the number of necessary
reference calculations considerably, but is usually more time-
consuming.515 Noticeable, within ML for quantum chemistry,
active learning often refers to an approach, where an initial
training set is used to fit an ML model, and this previously
learned information is applied to expand the training set.435

The latter approach is often carried out with the help of MD
simulations. Simulation of many trajectories on-the-fly and
estimation of the reliability of the ML-fitted PESs at each time
step are powerful to identify under-sampled or unknown
regions of the PESs. Retraining of the ML models as a data
point is added to the training set is required, which makes such
a procedure generally expensive. Recently, this active learning
procedure has also been adapted in a trajectory-free way,435,562

which can reduce the costs for the training set generation
considerably. The different strategies to generate an ample
training set for the excited states will be discussed in the
following.
5.2.1. Basic Sampling Techniques and Existing

Databases. To find patterns within certain groups of
molecules, to explore chemical space, and to develop new
methods that can fit for example different properties of
molecules, such as the valence density used in DFT,82 or large
molecules from small building blocks,109 a good starting point
is often considered to be an already existing database.
Prominent examples are the QM databases, namely, QM7,
QM7b, QM8, and QM9,457 which have been used in a large
number of publications to date and provide a benchmark for
many ML studies.14,152,461,466,467,526,530,563−565 Especially the
QM9457 data set containing more than 133k small organic
molecular structures and corresponding DFT energies,
enthalpies, harmonic frequencies, and dipole moments (to
name only a few properties) is very popular among the
scientific community and has also been used in challenges on
kaggle, where researchers and laypersons all over the world can
compete against each other to find the most suitable solution
to a given task. Prices up to several thousand dollars are quite
common.566 In a similar spirit, the QM9 IPAM ML 2016
challenge requires predicting the energies of QM9 from only
100 training points within chemical accuracy (error of ∼0.05
eV).567

All aforementioned databases originate from GDB data-
bases568−570 and are often a subset thereof. The chemical
universe GDB databases have been designed using molecular
graphs to sample a comprehensive space of molecular

structures for the search of new lead compounds in drug
design.570

One of the first databases available for the scientific
community to treat the excited states of molecules is most
probably the QM7b571 data set, which contains the excitation
energies computed with TDDFT for a total amount of >14k
molecules with atoms C, N, O, H, S, and Cl. This data set is
based on the molecular geometries of the QM7102,570 data set
plus an additional amount of 7211 molecules containing a
chlorine atom. The excitation energies of the first singlet state
and other properties were recomputed for each optimized
molecular geometry. Very similar, the QM8358 database was
developed, based on the GDB-17 database.572 This data set
can be used for the computation of vertical excitation spectra.
It hence includes not only the vertical excitation energies of the
first excited singlet state, but also the corresponding oscillator
strengths. Oscillator strengths are also reported in an
autogenerated data set for optoelectronic materials with
DFT.547 Note that the oscillator strength is computed from
the squared transition dipole moment, and hence an arbitrary
phase factor cancels out and the data does not have to be
preprocessed. In addition to the TDDFT energies, CCSD
energies are reported, having enabled the development of the
so-called Δ-learning approacha powerful way to obtain the
accuracy of highly accurate ab initio methods with only a small
amount of respective reference calculations. Two ML models
are trained in this approach, one on a less accurate method and
another one on the difference between the less accurate and
higher sophisticated method.573 This scheme can also be
applied multiple times to achieve increasing accuracy with little
additional computational effort359 and has been adapted for
spectroscopy in the condensed phase as well.153

The QM9 data set has further been the basis of a very
recently constructed data set for singlet and triplet states of
>13k carbene structures, termed QMspin.14 A total of 4000
geometries from the QM9 data set were randomly selected,
hydrogen atoms were subtracted, and singlet and triplet states
were optimized using CASSCF(2,2)/cc-pVDZ-F12 and open-
shell restricted KS-DFT with the B3LYP574,575 functional,
respectively. The MR-CI method was subsequently used to
compute the electronic energies of singlet and triplet states.
This data set has been used to investigate structural and
electronic relationships in carbenes, which are important
intermediates in many organic reaction networks.14

The OE62576 database, a benchmark data set applicable for
spectroscopy, is another descent of several existing data sets,
such as the QM8 and QM9 data sets. It consists of >61k
organic molecules able to form crystals including up to 174
non-hydrogen atoms. Reported are the orbital energies of
molecules computed with DFT/PBE.577

Another database, which also contains excited state data, is
the PubChemQC database.578 It contains over three million
molecules, whose structures are reported along with the
energies at DFT/B3LYP/6-31G* level of theory. In addition,
the excitation energies of at least three million structures are
reported for the 10 energetically lowest-lying singlet states at
TDDFT/B3LYP/6-31G* level of theory.
A simple strategy was carried out by Kolb et al.,579 who used

an existing analytical PES to create an ML potential: They
randomly sampled data points, trained an ML model, and
added more points in regions with deviations from the original
PES. Other strategies have been carried out mainly for the
fitting of ground state potentials and for materials which are
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however also relevant to consider for the excited states. One
novel, suitable strategy is for example “de novo exploration” of
PESs using a similarity measure provided by ML models.580 At
least for material discovery, this method can be used to omit
any additional active learning procedure to converge PESs.
Similar strategies are ab initio random structure searching
(AIRSS),581 particle swarm optimization with the CALYPSO
method,582 or USPEX, an evolutionary algorithm.583 The latter
methods are used in the condensed phase and for inorganic
systems mainly, but can be adapted for the search of molecular
structure, and the desire to compute as few reference data
points as possible is also relevant in this case.
A different approach to build a training set is to employ

molecule-generating ML models,165,584,585 such as the recently
developed Gschnet.586 Alternatively, MD simulations with the
reference method can provide a good starting point for
training.122,507,563 For example, Ye et al.510 sampled 70k
conformations for N-methylacetamide via MD simulations
with the OPLS force field587 within GROMACS588 for
subsequent UV spectra calculations. We have applied a similar
scheme to generate a training set of SO2 based on an LVC
model.240 Surface hopping MD simulations with the SHARC
method236,256,589 were carried out with the reference method
LVC(MR-CISD) ending up with >200k data points of
different conformations of SO2.

15 Because of the crude
sampling and low cost of the reference method, no emphasis
was put on clustering the training set into a smaller, still
comprehensive set.
A total of 90k data points were required in an ML-based

surface hopping study of CH2NH with the Zhu-Nakamura
method. Reference data for the ground and first excited singlet
state, S0 and S1, were generated with CASSCF(2,2)/6-31G via
ground-state and surface hopping MD simulations. The latter
method was applied to sample the regions around conical
intersections between the S0 and S1 state.

141

Similarly, Hu et al.139 sampled 200k data points of 6-
aminopyrimidine using ground-state and surface hopping MD
with CASSCF(10,8)/6-31G*. State-averaging over three
singlet states was applied. In addition, structures that led to
hops between different states were used as starting points to
find minimum energy conical intersections, and clustering was
carried out to reduce the amount of data for training.
One way to select data points more efficiently is a structure-

based sampling scheme, as proposed for instance by Ceriotti et
al. with sketch map,560,590,591 an algorithm for dimensionality
reduction of atomistic MD simulations or enhanced sampling
simulations. Likewise, Dral et al.140 applied a grid-based
sampling method to construct PESs of a model spin-boson
Hamiltonian to execute surface hopping MD with KRR. The
energetically low-lying regions of the PESs were first sampled
via an inexpensive method, and subsequently the distances
between the molecular structures were computed. In this way,
10 000 data points were obtained.140,517 ML models trained on
only 1000 data points were accurate enough to reproduce
reference dynamics. This approach was compared with random
sampling for the methyl chloride molecule and was shown to
reduce the amount of training data needed up to 90% for static
calculations.517,561

Another technique to explore PESs, which is frequently
applied for the electronic ground state, is geometry
optimization. In the past few years, effort has been devoted
toward acceleration of the optimization with ML; see e.g.
refs.592−597 Most often, single-state ML models, which are

mainly based on GPR, are employed to optimize minima,
transition states, minimum energy paths, and many more. Very
recently, Raggi et al.597 used internal coordinates and variance-
restriction instead of commonly applied Cartesian coordinates
in combination with a step restriction. The use of internal
coordinates removes transitional and rotational variance and
allows for different length scales. The variance measure can be
directly obtained from GPR models to restrict the step in the
geometry optimization process. The latter enables an
exploration of large geometry displacements in some cases,
i.e., dependent on the acceptable variance.

5.2.2. Active Learning. As shown in the previous section,
training sets with the respective equilibrium structure of a large
number of molecules are very powerful for investigating the
huge chemical space or for the design of new molecules.
However, the usefulness of such training sets for photo-
dynamics is rather questionable. The reason for this deficiency
is that, especially in MD simulations in the excited states, the
excess of energy carried by a molecule very quickly leads to
conformations that are far beyond the equilibrium structure
and most likely far away from originally sampled structures.
The formation and breaking of bonds is quite common in
photodynamics simulations and is usually only accessible from
an excited, dissociative state. The use of photodynamics
simulations with the reference method could solve this
problem, but is not feasible if specific reactions occur on a
rather slow time scale or if many different processes take
place.59,171,175,178,257,367 As previous studies have shown,
inefficient sampling techniques lead to a huge amount of
data, which still does not guarantee that the training set is
comprehensive enough for excited-state MLMD simulations.
In fact, ML models fail dramatically in undersampled and
extrapolative regions of the PESs. A smarter sampling
technique is advantageous in these cases in order to efficiently
identify such undersampled regions and build trustworthy ML
models.
Active learning, where ML “asks” for its training data, is one

solution to create a data set more efficiently. An example from
chemistry is the adaption of an initially generated training set
due to an uncertainty measure for ML models trained on this
initial training set. This concept has already been introduced in
1992 as query by committee598 and has been adapted for
quantum chemistry quite fast due to the required fitting and
interpolation of PESs for grid-based quantum dynamics
simulations. Pioneering works by Collins and co-work-
ers150,151,408,599 applied modified Shepard interpolation to fit
PESs and iteratively adapt them in out-of-confidence regions
using the GROW algorithm.599,600 The first version similar to
query by committee for the fitting of NNs was proposed by
Artrith and Behler.601 Since then, several sampling techniques
have been developed that are based on MD and an extension
of databases using interpolation moving least-squares,602,603

permutation invariant polynomial fitting,522,524 and different
ML models for the ground state101,103,111,508,515,559,604−616 and
also excited states.15,94,140

As active learning starts from already trained ML models, an
initial training set has to be provided. Some strategies to
provide this initial reference data set will be discussed,
following strategies applied to adapt this initial training set.
Note that all previously discussed methods can be similarly
applied to generate an initial training set. Although we cannot
give a general guide on how large a training set should be, in
our cases, it was beneficial to cover approximately one-fourth
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of the training set with data obtained from initial sampling and
the rest with data obtained from active learning techniques.
About 300−400 data points per degree of freedom of a
molecule turned out to be sufficient at least for small
molecules.
Initial Training Set. In general, an initial training set can be

obtained in many different ways. As photoinitiated MD
simulations usually start from vertical excitation of the ground
state equilibrium geometry, this structure is commonly used as
the starting point and reference geometry for the training set
generation. In principle, any technique can be applied to then
add conformations to obtain a preliminary training set. A good
starting guess is to use normal modes of a molecule, as they are
generally important for dynamics. In two recent works, we
carried out scans along different normal modes and
combinations thereof to sample conformations of small
molecules.15,94 Normal modes were also sampled for
generating ANI-1 NN PESs.115 For the excited states, it is
generally favorable to include critical regions of the molecule in
the initial training set by carrying out optimization of these
geometries and including the calculations into the training
set.94,139

When small molecules are targeted, this initial training set
can already be comprehensive to start the training of ML
models and adapt the training set based on an uncertainty
measure provided by the ML models.94 In case more flexible
and larger molecules are studied that give rise to a complex
photochemistry and a high density of states including different
spin multiplicities, a small initial training set might not be
sufficient, and a larger conformational space of the molecule
needs to be sampled. This can be done for example via Wigner
sampling475 and also with MD simulations in the ground
state.617,618 Suitable methods are for example umbrella
sampling,619 trajectory-guided sampling,620 enhanced sam-
pling,621 or metadynamics622 in combination with a cheap
electronic structure method such as the semiempirical tight-
binding based quantum chemistry method GFN2-xTB623 or
existing ground-state force fields. A large amount of different
geometries can be created very fast and inexpensively, which
then can be clustered to exclude similar conformations of the
molecule to keep the number of reference simulations at a
minimum. The selected data points for the training set can
then be computed with the chosen reference method, whose
accuracy is targeted with ML. Additionally, if certain reaction
coordinates have been shown to be important in experiments
or previous studies, then it is favorable to include data from
scans along these reaction coordinates.96,175

As soon as meaningful ML models can be obtained from the
initial training set, active learning techniques can be applied to
enlarge the set. What number of data points turns out to be
sufficient for the initial training set is dependent on a lot of
different factors, such as the size and flexibility of the molecule
under investigation, the number of excited electronic states
described, and the ML model and descriptor applied.94,95 In
order to give a ballpark figure, we note that we used
approximately 1000 data points as initial training set for
small molecules in recent studies using deep multilayer feed-
forward NNs.15,94

Strategies for Actively Expanding the Training Set. The
next step in active learning is to expand the initial training set
by adding points from out-of-confidence regions. The
detection of these undersampled regions can be done in

many different ways, whereby most approaches rely on MD
simulations.
Among the most popular strategies is the iterative sampling

scheme of Behler,515 originally developed for fitting ground-
state PESs. Today, it is widely used, see for example
refs,103,559,624 and has been modified as a so-called adaptive
sampling approach.111 The latter has been adapted by us for
the generation of a training set for the excited state PESs of
molecules including couplings.94 The basis of almost any
iterative or adaptive sampling scheme is a similarity measure to
judge whether a molecular geometry can be predicted reliably
with ML models or not. While kernel methods intrinsically
provide a measure of similarity for each molecular geometry,
NNs do not. Therefore, adaptive sampling with NNs requires
at least two ML models. In the case of KRR or GPR, two ML
models can be used as well, but are not necessarily needed.
Indeed, the statistical uncertainty estimate of the predictions
remains a huge advantage of GPR models.525,535,625 As a
remark, from a materials’ perspective, Gaussian approximation
potentials (GAPs) can be used as a similarly useful tool to
provide such an uncertainty measure.121,626

The adaptive sampling scheme for the excited states is
illustrated in Figure 9 and exemplified with two ML models.

The whole process starts with an initial training set, which is
used to train the two (or more) preliminary ML models. These
models differ in their initial weights or model parameters. The
resulting dissimilar ML architectures guarantee that the ML
models do not predict the exact same number for a given
molecular input. The hypothesis underlying this scheme is that
inferences of different ML models trained on the same training
set will be similar to each other as long as an interpolative
regime is given. The inferences of the ML models are
inaccurate and should differ from each other to a much larger
extent if a molecular input lies in an unknown or undersampled
region of the PESs.
In order to find such regions, sampling steps are carried out,

e.g., by running (excited-state) MD simulations based on the

Figure 9. Adaptive sampling scheme illustrated using two ML models
(blue and red blocks). The active learning procedure starts from an
initial, preliminary training set (yellow), which is used to train ML
models. A sampling step, e.g., a time step of an MD simulation, is
executed: The ML models take the molecular geometry of the
sampling step as an input and predict the energies of the considered
excited states, their derivatives, and additional required photochemical
properties. In case the predictions of the ML models are deemed to be
different, quantum chemical reference calculations are carried out, ML
models are retrained, and the serial steps are carried out again. This
procedure is executed until the desired quality of the ML PESs is
attained in order to sufficiently describe the chemical problem under
investigation.
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mean of the inferences made by the different ML models for
energies, E̅ML, forces, F̅ML, and if required also couplings, C̅ ML.
In each sampling step, the variances for each predicted
property are computed. In the present example, energies and
forces are treated together as σE + F

ML (but can also be used
separately), separately from variance of the couplings σC

ML. If a
variance exceeds a predefined threshold, the ML models
diverge, and the predictions are deemed untrustworthy. NML
refers to the number of different ML models, ζ, used for
adaptive sampling:
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Note that the variance is averaged over all states for energies
and forces and over all pairs of states for couplings, that are
described with the ML models. As a variant, each state could
also be treated separately. However, as the different electronic
states are not independent of each other, a mean-treatment is
assumed to be advantageous.95

Each data point that is predicted with a variance larger than
the predefined threshold for a given property, is recomputed
with the reference quantum chemistry method and added to
the training set. In this way, under-sampled or generally
unknown regions of the PESs are identified. Whenever the
variance of each property is within the range that is thought to
be reliable, the mean of the inferences is forwarded to the MD
program to propagate the nuclei and continue MLMD
simulations. The name adaptive sampling is based on the
recommendation to choose a rather large threshold in the
beginning of the adaptive sampling procedure and to adapt this
threshold to smaller values as the ML models become more
accurate and robust.111 A first estimate for the initial value of a
threshold can be obtained from the mean absolute error
(MAE) of the corresponding ML model on the initial training
set.
In principle, adaptive sampling can be carried out for every

property, that should be represented with ML potentials, and is
not restricted to energies, forces, and couplings. Similarly, it
does not need to be executed with excited-state dynamics, but
could also be done with ground-state MD or any sampling
method that is considered to be suitable.
As a negative side effect, this procedure is generally more

time-consuming than many other sampling techniques because
ML models have to be trained each time a new data point is
added to the training set. To apply adaptive sampling in a more
efficient way, it is advantageous to execute not only one ML
trajectory, but many hundred trajectories in parallel, as it is
usually done in MD simulations. The ML models should then
only be retrained, when all ML-based trajectories have reached
an undersampled conformational region.94,111,515 Despite the
higher complexity of adaptive sampling compared to random
sampling, it can reduce the number of required data points for

MLMD simulations substantially. In this regard, also the
computational costs for the training set generation can be kept
at a minimum.
Adaptive sampling was carried out successfully to generate a

training set of 4000 data points of CH2NH2
+ containing three

singlet states and couplings. ML-based surface hopping MD
simulation could be carried out on long time scales using the
average of two deep NNs. The concept of iterative sampling
also proved beneficial for the long MD simulation to guarantee
accurate ML potentials throughout the production run. Here,
the threshold was not adapted anymore, and the MD was
continued from the current geometry after a training cycle was
completed.94 In addition, the average of more NNs turned out
to be more accurate than the prediction of only one NN, which
was also shown in ref 111.
Another quality control besides the property-based one

proposed by Behler can be obtained by comparing the
molecular structures at each time step as done by Dral et
al.140,517 and Ceriotti et al.560 A combination of a structure-
based and property-based detection of sparsely sampled
regions of the PESs has been done by Zhang et al. and Guo
et al.392,607,627−629 Very recently, an alternative approach has
been applied with NNs by Lin et al.435 that does not require
MD simulations. It is based on the finding that the negative of
the squared difference surface obtained from NNs approaches
zero in regions, where no data points are available.603

Therefore, new points can be computed at the minima of
the negative squared difference surfaces of at least two NNs
(or, equivalently, at local maxima of the squared difference
surface). This method is supposed to be very efficient in cases,
where different conformations are separated by large energy
barriers or strongly stabilized local minima are common. MD
simulations would take a long time to overcome the potential
barriers and reach the region of unknown molecular
structures.435

The idea behind this technique is similar to previous works
with GPR. A measure of confidence can be provided with GPR
models, which enables the search of regions with large variance
in the ML predictions. In these regions, data points can be
added to build up a training set.562,630−632 Similarly, Bayesian
Optimisation Structure Search (BOSS) has been proposed for
constructing energy landscapes of organic and inorganic
interfaces.633 A combination of different approaches has also
been applied by Has̈e et al.,162 who fitted TDDFT excited-state
energies of a light-harvesting system. Given a large enough,
error-free, and comprehensive data set, ML has the potential to
determine known and unknown (un)physical laws within the
data.634

5.3. Phase of the Wave Function

In contrast to ground state properties, excited-state properties
such as transition dipole moments, NACs, or SOCs arise from
two different electronic states. As a consequence of the
arbitrary phase of the wave function of each electronic state,
properties resulting from two different states carry an arbitrary
sign, which makes them generally double-valued. In the case of
vectorial properties, such as dipole moments or coupling
vectors, the whole vector can be multiplied by +1 or −1 and is
still a valid solution. Similarly, single valued properties, such as
SOCs obtained from electronic structure programs, can be
multiplied by +1 or −1 and are equally correct. This additional
complexity prohibits that conventional ML algorithms learn
such raw data of quantum chemistry and hampers the training
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process to find a proper relation between a molecular geometry
and the excited-state property.94,546

A one-dimensional example of this problem is illustrated for
the NAC (exemplified using one single value along the reaction
coordinate) that couples an excited singlet state, Si, and a
second excited singlet state, Sj, in Figure 10. A positively signed

function of atomic coordinates is shown by dashed blue lines
with a cusp at the point at which the two singlet states are
degenerate. Such a smooth function (besides the sharp spike at
the conical intersection) is highly desirable when fitting with
ML models is aimed for. It is worth mentioning that a
consistent negative sign (light-blue dashed line) along this
reaction coordinate is equally correct and that it is desirable to
seek for one global sign. However, the direct output of a
quantum chemistry program along this reaction coordinate
looks more similar to the dashed magenta line in-between the
blue curves. As one can imagine, no proper training can be
guaranteed with these inconsistent data. Note that existing MD
programs for the excited states usually track such phase jumps
within electronic wave functions in order to account for
nonadiabatic transitions correctly.256

The idea of phase tracking can also be applied in ML in
order to thwart the problems due to the arbitrariness within
coupling or dipole elements. Some algorithms have been
developed to remove the arbitrary sign jumps and provide
smooth functions of atomic coordinates.15,16,94,635 Noticeably,
the properties obtained after a transformation to the diabatic
basis are already smoothly varying functions of atomic
coordinates.369 However, the challenges arising due to the
arbitrary phase of the wave function still persist, because the
inconsistencies within adiabatic properties have to be removed
in order to make the diabatization process feasible.16,92

It is worth mentioning at this point that also another kind of
phase exists that cannot be eliminated in the aforementioned
way. It is called the Berry phase or geometric phase. After a
loop was performed in space around a conical intersection and
returning to the original point, a change in the phase of the
wave function of π can be observed; i.e., the same point is only
reached after two loops around the conical intersection.
Neglecting this effect can lead to false transition probabilities,
depending on the dynamics method and the system. While in
most cases in MQCD the Berry phase can be safely neglected,
this is not possible in quantum dynamics simulations. A
diabatic basis is advantageous in this case because the Berry
phase is absent in this picture. However, the Berry phase still

has to be kept in mind, when fitting diabatic potentials from
adiabatic ones.636−641

5.3.1. Phase Correction of Adiabatic Data. First ML
studies on dynamics in the adiabatic basis omitted a
preprocessing and were unable to reproduce reference results
based on ML alone,140 or avoided the phase problem by using
the Zhu−Nakamura method.139,141 Evidently, potentials and
forces can be learned with conventional ML approaches, but
adaptations or a preprocessing of data is necessary to learn
coupling elements or transition dipole moments. Independent
of the purpose, the fitting of adiabatic quantities94,546 or the
diabatization of adiabatic data with property-dependent
diabatization schemes,16 adiabatic data have to be corrected
to remove the arbitrary sign jumps that are due to the arbitrary
phase of the wave function. Several ways for these corrections
exist, which have been shown to work well for different excited-
state problems.
One possibility is to preprocess data according to the wave

function overlapbetween the wave functions from a
geometry of interest and a reference geometryfor each
electronic state. This process is termed phase correction256,546

and has been applied by us in order to generate a training set
for three singlet states of CH2NH2

+94 and two singlet and two
triplet states of CSH2. SOCs,

15 NACs,15,94,95 and transition
dipole moments94,95 could be fitted in the adiabatic basis with
deep NNs and kernel ridge regression (KRR).15,94,95 Very
recently, Zhang et al.97 applied this procedure to describe
transition dipole moments of N-methylacetamide.
The wave function overlap matrix, S, with size NS × NS, is

computed between two molecular geometries α and β:642

= ⟨Ψ |Ψ ⟩α βS (26)

In many cases along a given reaction path, the off-diagonal
elements of the overlap matrix are very close to zero, and the
diagonal elements are very close to +1 or −1, indicating
whether the phase of a state has changed along this path or
not. Whenever a new state enters along the reaction path or
adiabatic states switch their character, which is common after
passing through a conical intersection for example, the off-
diagonal elements provide the relevant phase information
instead of the diagonal elements. Taking all these effects into
account, a phase vector, p, can be derived for each given
molecular geometry. A property resulting from electronic state
i and j has to be multiplied by the corresponding phase factors
of these states.94

An advantage of this algorithm is that it does not require any
manual fitting of data. However, this procedure has to be
carried out for every data point included in the training set
with respect to one predefined reference wave function. This
reference wave function can be for example the wave function
of the ground-state equilibrium structure of the molecule and
needs to be identified to guarantee an almost globally
consistent sign of elements. During a photoinitiated simu-
lation, it is common that geometries quickly start to differ from
the reference geometry. The wave function overlap then tends
to zero and cannot provide information about the correct sign
of a certain electronic state. In this case, the phase must be
propagated from the reference geometry on with n
interpolation steps. The phase vector applicable for the
correction of the data point to be included in the training
set is then obtained by multiplication with all previously
obtained phase vectors, p0 to pn−1:

Figure 10. NAC value between singlet state Si and Sj in the MCH
basis. A consistent sign along the reaction path of couplings is shown
by blue dashed lines. The direct output of a quantum chemical
calculation is shown by a magenta line.
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Intruder states prohibit a proper tracking because their wave
function is absent at the earlier geometries. Hence, a phase
correction may be rendered infeasible for systems with a high
density of states.
In order to obtain the correct phase, more states can be

included in the simulations, which however increases the
computational cost. A solution is to take many electronic states
into account only close to the reference geometry. The amount
of states can then be reduced along a given reaction
coordinate, and relevant states can be disentangled from
irrelevant ones. Further, it makes sense to save the already
phase-corrected wave functions of several geometries in
addition to the reference geometry. Whenever a new data
point should be included into the training set, the distance to
each saved data point can be computed in order to find the
closest available structure and reduce the amount of
interpolation steps.94,175

This problem has also been recognized by Robertson et
al.391 for a diabatization process, where a sufficiently large
vector space of the CAS wave function is required for proper
diabatization. The overlaps of electronic states can be
maximized by rotation of CI vectors of CAS wave function
states. A similar version to use the information on CI vectors
for diabatization was applied by Williams et al.,142 who used
NNs to assist the diabatization process of adiabatic NO3
potentials.
Another way to correct the sign of data points was carried

out by Guan et al.,16 who fitted diabatic 1,21A PESs and dipole
moment surfaces of NH3 from MR-CISD/aug-cc-pVTZ data
with NNs. The diabatic PESs were taken from a previous study
and obtained with the Zhu−Yarkony diabatization proce-
dure.377,643,644 By diagonalization, the rotation matrix defined
in eq 10 could be obtained, which connects the diabatic and
the adiabatic basis (see eq 9). The adiabatic dipole moments,
μMCH, could then be transformed into the diabatic basis using
the unitary matrix, U:

μ μ= †U Udiab MCH (28)

As the unitary matrix U is only defined up to an arbitrary
sign, the signs of the diabatic dipole moments have to be
corrected in order to provide a consistent diabatic dipole
moment surface. This correction has been done with a so-
called cluster growing algorithm.635

The cluster growing algorithm requires an initial set of phase
corrected data points. In this work, 347 data points were
adjusted manually for this purpose. Subsequently, a Gaussian
process regression (GPR) model645 was fitted to these data
points. The signs of the rest of the data points to be corrected
were then adjusted with the GPR model. Several iterations
were carried out, where each iteration aims for the inclusion of
close-lying points to the cluster, leading to the name “cluster
growing” algorithm.148

The singularities in regions close to conical intersections can
make this algorithm fail. Therefore, data points in such regions
have been removed by setting a threshold. Data points with
energy gaps lower than this threshold were excluded from the
cluster. The regions around conical intersections could not be
fitted as comprehensively as other regions of the PESs. As
another drawback, the authors note that the initial manual

fitting of the signs is a tedious task, especially when larger
systems and more dimensions are described.
Two of the authors also fitted diabatic PESs of two singlet

states and one triplet state as well as the SOCs between
singlets and triplets of formaldehyde, CH2O, with NNs.92 The
electronic structure reference method was MR-CISD/cc-
pVTZ. The diabatic potentials were obtained using an adapted
version of the Boys localization.382 The energy differences
between two states were incorporated in the equations in order
to remove earlier identified diabolic singularities.148 The range
of π, which the rotation angle for the diabatization covers,
guarantees a proper treatment of the Berry phase. The
diabatization procedure further requires consistent transition
dipole moments, which were adjusted manually for this
purpose. The diabatic SOCs were then obtained as a linear
combination of the adiabatic SOCs by applying the same
rotation matrix as for the energies. One separate NN function
was used to fit each coupling value and electronic state
separately.
It becomes clear that only a small number of works on this

topic exist. At the moment, many problems remain unsolved
for generating a training set that properly accounts for both
types of phases, the arbitrary phase and the Berry phase, and is
applicable for large systems with many states. An automatic
phase correction procedure without the need of manual input
would be very advantageous, especially when larger and more
flexible systems are treated. Further developments are needed.

5.3.2. ML-Based Internal Phase Correction. One step
toward a routine application of ML for photochemical studies
and an easier training set generation with quantum chemistry is
an ML-based internal phase correction, which has been
implemented by us into the SchNarc approach for photo-
dynamics simulations.15 In contrast to the phase correction
algorithm to correct the training data, this procedure renders
the learning of inconsistent quantum chemical data possible. A
modification of the training process, termed phase-free
training, is required for this purpose.15 We implemented this
training algorithm in a combination of the deep continuous-
filter convolutional-layer NN SchNet,461,465 adapted for excited
states, and the MD program SHARC.236,256,589

Similar to standard training algorithms, parameters of an ML
model are optimized in order to minimize a cost function.
Most frequently, the L1 or L2 loss functions are applied, which
take the mean absolute error or mean squared error between
predicted and reference data into account. The phase-free
training algorithm uses a phase-less loss function, which
includes all trained properties at once and additionally removes
the influence of the random phase switches. In this way, the
computational costs for the training set generation can be
reduced.
Compared to the previously reported ML models for

photochemistry, where each state was fitted independ-
ently,16,92,141 SchNarc is capable of describing all PESs at
once, including the elements resulting from different pairs of
states. This results in an overall loss function with several
terms, where each term is weighted with a different trade-off
value, t, that can be defined manually:

= − + −

+ · + ·

L t E E t F F

t L t L

ph E
QC ML 2

F
QC ML 2

SOC SOC NAC NAC (29)
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If only energies (E) and forces (F) are fitted, then the loss
function is equal to a linear combination of L2 loss functions
for energies and forces.15,111 The parts of the SOCs and NACs
are

ε κ= | | ≤ ≤κ −L min( ) with 0 2N
SOC SOC

1S (30)

and

ε κ= | | ≤ ≤κ −L min( ) with 0 2N
NAC NAC

1S (31)

respectively. The error for SOCs and NACs that enters the loss
function is the minimum error that can be achieved when
trying out all possible combinations of phases for each pair of
states, i.e., −2N 1S possible solutions. The algorithm takes into
account that the signs of SOCs and NACs coupling different
pairs of states depend on each other.
The error function containing all possible solutions for

SOCs, εSOC
κ , and NACs, εNAC

κ , can be obtained as follows:
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This phase-less loss procedure does not require any
preprocessing of training data. Quantum chemistry calculations
can be directly fitted with this adaption of the loss function.
The power of this approach is that, once a given phase vector
for a data point has been found, it can be directly applied to
correct the arbitrary signs of other properties, such as
transition dipole moments. If other properties are targeted,
the loss function applied for NACs can be similarly used for
other vectorial properties, and the loss function applied for
SOCs can be used for any other single- or complex-valued
element of arbitrary sign.15 However, as a consequence of the
higher complexity of the loss function, the training process is
generally more expensive. The computational effort required
for training can be reduced if only one type of coupling is
treated within MD simulations. In these cases, a simpler
adaption of the phase-free loss is also applicable.15

6. APPLICATION OF ML FOR EXCITED STATES
In this section, we review ML studies of excited states and their
properties. We aim to show how they have been employed to
improve static and dynamics calculations and focus on the used
type of regressor, descriptor, training set, and property. We will
classify the approaches according to Figure 1.
6.1. Parameters for Quantum Chemistry

Traditionally, the user decides whether a multireference
method is needed or a single-reference method is sufficient
to describe a chemical problem. Recently, Kulik and co-
workers176 have presented an NN model based on a
semisupervised virtual adversarial training approach and a
diagnostic inputs training set177 to learn the multireference
character of molecular systems. The authors developed a
decision engine to detect strongly correlated systems, which
can be applied in a high-throughput screening fashion. Their
work can potentially pave the way toward automatic selection

of a proper reference methoda tool that is urgently needed,
especially in the research field of ML for excited states.
Besides this seminal work, ML can help to select an active

space for multireference methods. Jeong et. al71 developed an
ML protocol for classification based on XGBoost483 to allow
for a “black box” use of many multireference methods by
automatically selecting the relevant active space for molecular
systems. The tedious selection of active orbitals and active
electrons can thus be avoided. The accuracy of this approach
was demonstrated for diatomic molecules in the dissociation
limit, and the molecules were represented via the molecular
orbital bond order and the average electronegativity of the
system.

6.2. ML of Primary Outputs

To the best of our knowledge, no ML models for providing
primary outputs of quantum chemistry exist for excited states
(see Figure 1). Targeting the primary output of a quantum
chemistry simulation, i.e., the N-electron wave function, or
providing ML density (functionals) is far from trivial even for
ground-state problems.72−80,82,90,355,646−649 However, such an
approach for excited states could solve many problems and
allow for wave function analysis, providing additional insights
like the excited state characters.650 Therefore, we expect such
models to appear in the near future.

6.3. ML of Secondary Outputs

In the following, we summarize the contributions of ML
models that fit the secondary output of quantum chemical
calculations, i.e., PESs, SOCs, NACs, and transition as well as
permanent dipole moments in the adiabatic and diabatic basis
(Figure 1). The prediction of the manifold quantities (see
Figure 2) can be done in two ways, i.e., in a single-state fashion
and in a multistate fashion.95 The applicability of such ML
models to the simulation of photodynamics will be discussed.

6.3.1. ML in the Diabatic Basis. Diabatic PESs have been
fitted with ML and related methods for more than 25
years.151,408 An advantage of diabatic PESs is their smoothness,
which is perfectly matched by ML models built upon smooth
functions. However, the tedious procedure to generate diabatic
PESs remains. Some effort is therefore devoted to develop ML-
assisted diabatization procedures and eliminate this limiting
step.

Diabatization. Williams et. al142 incorporated NNs into
diabatization by ansatz and fit diabatic NO3 PESs. The ground
state vibrational energy levels were computed, and sub-
sequently, the authors used the diabatic potentials for quantum
dynamics simulations in five dimensions.381 The diabatization
procedure was further modified to properly account for
complete nuclear permutation inversion (CNPI) invariance.390

To this aim, the molecular input was replaced by CNPI
invariant coordinates. Recently, Shen and Yarkony96 fit two
diabatic potentials of the cyclopentoxy radical, C5H9O, and
one state of cyclopentoxide, C5H9O

−, with 356 data points
sampled from scans along different reaction coordinates. The
diabatization was assisted with NNs. Because of the high
dimensionality of the system, the authors resort to application
of regularization in the fitting algorithm and an adapted loss
function to obtain an accurate representation of two-state
diabatic PESs with NNs. This novel strategy is envisioned for
the computation of the photoelectron spectrum of cyclo-
pentoxide.96 Fitting 39 degrees of freedom in the diabatic basis
is a huge improvement in this research field. The authors
further note that a comprehensive sampling of the full relevant
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PESs in such high dimensional space is problematic. PIP-NNs
were used to introduce a new diabatization procedure
recently.651 The ground and first excited state of ammonia
served as a test molecule. Four separate NNs were trained to fit
the parts of the diabatic Hamiltonian, while the loss function
was formulated in the adiabatic basis and adiabatic energies,
forces, and adapted derivative couplings obtained from the
diabatic fitted Hamiltonian after diagonalization were mapped
to the adiabatic reference data.
Recently, Shu et al.652 proposed a new, semiautomatic

diabatization approach based on two training setsone is
formed from adiabatic energies, and one contains a selected
number of diabatic potential energy matrix elements, which are
assumed to be known at some molecular conformations, e.g.,
dissociated geometries or the equilibrium structure. The
authors further demonstrate that results from diabatization in
lower dimensions can be used for higher-dimensional
diabatization. The diabatization scheme was tested using a
two-state analytical model and two states of thiophenol with
adiabatic data obtained from Extended Multi-Configuration
Quasi-Degenerate Perturbation Theory (XMC-QDPT).653

Because of the aforementioned problems, a description of
medium-sized to large molecules with diabatic potentials is
often done with more crude approximations.142,407 An example
is the LVC model,239 with its one-shot variant,240 or the
exciton model.182,654 For more details on this topic, the reader
is referred to refs 64, 239, 331, and 655−657. The Frenkel
exciton Hamiltonian can be used to describe light-harvesting
systems.182,654 Such a Hamiltonian was constructed for the
investigation of the excited state energies of bacteriochlor-
ophylls of the Fenna−Matthews−Olson complex. Multilayer
feed-forward NNs with the Coulomb matrix as a molecular
descriptor could accelerate the construction of such Hamil-
tonians for the prediction of excited-state energies.162 The
effective Hamiltonian of the whole complex was subsequently
used to predict excitation energy transfer times and efficiencies.
Therefore, Has̈e et al. used exciton Hamiltonians as an input to
NNs, which were trained to reproduce excitation transfer times
and efficiencies of pigments in the complex. The excitation
energy transfer properties for the training set were computed
via hierarchical equation of motion technique,658 which is
costly and thus limited due to the large number of pigments
that need to be computed. By using ML to learn the relation
between a Frenkel Hamiltonian and excitation energy transfer
properties, large-scale screening studies are enabled and an
efficient design and search of novel excitonic devices becomes
possible.64 The hyperparameters of the ML model were
optimized by applying a Bayesian optimization algorithm.
Overall, the accuracy of the model was in excellent agreement
to reference data, and out-of-sample Hamiltonians could be
computed reasonably well for geometries close to those inside
of the training set.161 Recently, Kram̈er et al. have used DFT
Tight Binding data to train a KRR model to simulate the
exciton transfer properties of anthracene. Although the
semiempirical reference method is computationally efficient
compared to ab initio methods, an acceleration was achieved
that is concluded to be even more pronounced in larger
systems. A perspective on ML for the prediction of phenomena
related to light-harvesting systems is provided in ref 659.
Fitting Diabatic Potentials and Properties. Given diabatic

PESs, ML models can be used to fit them. KRR models are
often employed for this task, due to their ease of use and ability
to provide accurate predictions, as mentioned above. Recent

studies by Habershon and co-workers focus on interpolation of
diabatic PESs and their use for grid-based quantum dynamics
methods, i.e., variational Gaussian wavepackets and MCTDH.
The butatriene cation has been investigated in two dimensions
comprising two electronic states.149 The description of this
molecule has been recently advanced with a new diabatization
scheme, namely, Procrustes diabatization. The method was
evaluated with two-state direct-dynamics MCTDH (DD-
MCTDH) simulations of LiF and applied to four electronic
states of butatriene.252 Some of the authors also carried out
DD-MCTDH 4-mode/2-state145 and subsequently 12-mode/
2-state dynamics of pyrazine.146 The investigation of the
higher-dimensional space of pyrazine could be achieved by
systematic tensor decomposition of KRR and advances
conventional MCTDH simulations considerably with respect
to accuracy and computational efficiency. Further, the method
was applied to investigate the ultrafast photodynamics of
mycosporine-like amino acids, which are suitable as ingredients
in sunscreens due to their photochemical properties and
photostability.660 However, the reduced 6-dimensional and 14-
dimensional DD-MCTDH simulations with KRR interpolated
PESs were unable to reproduce the expected ultrafast
photodynamics, which had been observed in previously
performed surface hopping calculations and is typical for
sunscreen ingredients. The authors note that the inclusion of
more adiabatic states for the diabatization procedure and the
consideration of additional relevant modes can lead to more
accurate results. All of the reference simulations were carried
out at the CASSCF level of theory with KRR fitted diabatic
PESs.
In addition to KRR models, NNs were also used to describe

diabatic PESs. Seminal works include PIP-based NNs by Guo,
Yarkony, and co-workers. Absorption spectra and the dynamics
of excited states of NH3 and H2O could be studied by fitting
potential energy matrix elements.143,147,392,412−414,525 Subse-
quently, some of the authors fit the dipole moments
corresponding to the diabatic 1,21A surface of NH3.

16 SOCs
of formaldehyde were learned with NNs in the diabatic
picture.92 A total of 341 data points were used for training of
SOCs. A singlet and a triplet state in the adiabatic basis were
transformed to diabatic states using Boys localization.382 Since
this diabatization is based on transition dipole moments, the
respective properties of the excited states had to be phase
corrected. The authors proved the accuracy of their fitted PESs
and emphasized the usability of the ML models to describe
full-dimensional quantum dynamics.16,92,525 Very recently, they
investigated the OH + H2 reaction, i.e., the nonadiabatic
quenching of the hydroxyl radical colliding with molecular
hydrogen. Four diabatic potentials including forces and
couplings were fitted using a least-squares fitting procedure.
A total of 1345 data points of 1,2,3 2A adiabatic PESs were
computed with MR-CISD.525

The aforementioned ML models are single-state models.
Each energetic state and each coupling or dipole moment value
resulting from different pairs of states are fitted with a separate
ML model. While this yields justifiable accuracy for energies
and diabatic coupling values,95 dipole moments are vectorial
properties and need to preserve rotational covariance.97,241

As the aforementioned studies show, ML models are
generally powerful to advance quantum dynamics simulations
for the excited states and can also assist the construction of
effective Hamiltonians. However, currently, diabatic PESs
cannot simply be fit for systems with arbitrary size and
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arbitrary complexity. The diabatization remains a methodo-
logical bottleneck, where additional developments are needed.
The investigation of medium-sized to larger molecular

systems, especially the investigation of their temporal
evolution, is more often carried out in the adiabatic basis
using on-the-fly simulations. An increasing number of recent
studies focus on fitting such adiabatic PESs. The incon-
sistencies in adiabatic properties make such quantities
generally more challenging to fit, which is why this field of
research gained a lot of attention relatively late, i.e., only in the
last 3 yearsafter early examples dating back already to
1999.661

6.3.2. ML in the Adiabatic Basis. Surface Hopping MD.
The first NN models for MQCD calculations probably date
back to the year 2008.98 Nonadiabatic MD simulations were
carried out with NN-interpolated PESs to investigate O2
scattered from Al(111). Symmetry functions were used as
descriptors.662 A spin-unpolarized singlet and a spin-polarized
triplet state at DFT level of theory were fitted with 3768 data
points.662,663 This two-state spin-diabatic problem allowed for
evaluation of coupling values and singlet−triplet transitions
with the fewest switches surface hopping approach.436,437 In a
later study, another adiabatic spin-polarized PES was included,
and coupling values were computed between singlets and
triplets664 and evaluated from constructed Hamiltonian
matrices.93 MD simulations were executed using a manifold
of ML-fitted PESs according to different spin-configura-
tions.93,98 The studies showed that singlet−triplet transitions
are highly probable during the scattering event of O2 on
Al(111). As it has been shown later by embedded correlated
wave function computations,665 the activation barrier of O2 on
Al(111) is rather due to charge transfer than spin-flip as
described above. The description of the activation barrier has
been improved later666 using six-dimensional PESs para-
metrized using the London−Eyring−Polanyi−Sato func-
tion.667

After the two studies by Carbogno et al., the interest in
advancing ML-based MQCD simulations for the excited states
in the adiabatic basis increased mainly in the last three years.
One of the first works during this time was conducted by Hu
et. al,139 who investigated the nonadiabatic dynamics of 6-
aminopyrimidine with KRR and the Coulomb matrix. Because
of the many degrees of freedom of the molecule and including
three singlet states, a large amount of training data was
required (>65k data points). Coupling values were not fitted,
but, instead, the Zhu-Nakamura approach was used to
compute hopping probabilities.
Later, Dral et al.140 applied KRR models to accurately fit a

two-state spin-Boson Hamiltonian and reproduce reference
dynamics using 1000 and 10 000 data points. NAC vectors
were fit in a single-state fashion. During dynamics simulations,
conformations close to critical regions were computed with the
reference method instead of the ML model in order to allow
for accurate transitions.
In another study, Chen et al.141 used two separate deep NNs

to fit the energies and forces of two adiabatic singlet states of
CH2NH. About 90k data points were used to generate these
single-state models. Using the Zhu-Nakamura approach to
account for hopping probabilities, the reference dynamics
could be reproduced, and quantum chemical calculations were
replaced completely during the dynamics.
Cui and co-workers668 further developed a multilayer

energy-based fragmentation method to study the excited-

state dynamics and photochemistry of larger systems. This
scheme composes a molecular system into a photochemically
active (inner) region and a photochemically inert (outer)
region. In the original scheme, the active region and the
interactions with the outer region are described with the
multireference method CASSCF, whereas the outer region is
treated with DFT. This decomposition of the total energy of a
system allows one to treat larger systems, which cannot be
described fully with CASSCF. Compared to quantum
mechanics/molecular mechanics (QM/MM) schemes, the
energy-based fragmentation method can be rigorously derived
from a many-body energy expansion. Different truncation
levels and methods can be used for each intralayer and
interlayer interactions, so that its accuracy and efficiency can
be controlled according to the need. The authors simulated
two-state photodynamics of CH3NNCH3 (inner region)
including five water molecules (outer region) without the use
of ML. The Zhu−Nakamura approximation to model hopping
probabilities in nonadiabatic MD simulations was applied.668

In order to make the simulations more efficient, the authors
replaced the DFT calculations with deep multilayer feed-
forward NNs using a distance-based descriptor;125,506 hence,
they describe the ground state energies and forces of the
photochemically inert region with ML and describe the S1 and
S0 state of the inner region with CASSCF. The hybrid ML
multilayer energy-based fragmentation method can reproduce
the photodynamics of the system.536 Subsequently, the deep
NNs were replaced with embedded-atom NNs,508 and accurate
second derivatives could be computed efficiently.537

Recently, we sought to fit NACs and transition and
permanent dipole moments in addition to energies and forces
of three singlet states of the methylenimmonium cation,
CH2NH2

+, using deep NNs and the matrix of inverse distances
as a molecular descriptor.94 We were able to perform ML-
enhanced excited-state MD simulations with hopping proba-
bilities based on ML-fitted NACs. NNs replaced the reference
method MR-CISD completely during the dynamics, which is
one of the key factors behind a successful MLMD study as it
allows one to completely decouple the costs of the expensive
reference method from the dynamics simulations. The
accuracy of the ML-approximated PESs and couplings was
further assessed by comparing the populations in the different
excited states of the reference dynamics, of the ML models,
and of the same quantum chemical reference method, namely,
MR-CISD, but with a slightly different basis set. This
comparison helped to estimate the meaning of “good
agreement” for population dynamics. Root mean squared
deviations of the nuclear geometries tracked over a short time
scale also helped in assessing the success of the MLMD model
in reproducing dynamics before using it for, e.g., simulation of
longer time scales and better statistics. Such long time scale
photodynamics simulations for 1 ns were achieved using the
mean of two NN models in approximately two months,
whereas the reference method would have taken an estimated
19 years to compute the dynamics for 1 ns on the same
computer. This study demonstrated the possibility of MLMD
simulations to go beyond time scales of conventional methods.
As another benefit of the ML models, it was shown that a large
ensemble of trajectories could be calculated, still at a lower cost
than a few trajectories with the reference method.94

Recently, Li et al.669 built on these recently developed
techniques and developed the MD program PyRAI2MD
(Python Rapid Artificial Intelligence Ab Initio MD). NNs
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were trained on the S1 and S0 states of of CF3−CHCH−CF3
(hexafluoro-2-butene) at the CASSCF(2,2)/cc-pVDZ level of
theory in order to enable 10 ns photodynamcis simulations.
Generation of an initial training set via Wigner sampling,
optimizations of critical regions, and short time-scale
trajectories in addition to adaptive sampling resulted in a
training set of 6232 data points. The descriptor was generated
from inverse distances and (dihedral) angles, and a phase-less
loss function15 was applied to render NACs learnable.
The performance of KRR in comparison to NNs was

assessed by us together with von Lilienfeld and co-workers.95

The operator formalism670 and the FCHL representation127,530

were used to fit the three singlet states of CH2NH2
+ using the

previously generated training set of 4000 data points. A single-
state treatment and a multistate treatment for predicting
energies were compared. To this aim, a multistate KRR
approach as developed with an additional kernel that encodes
the quantum energy levels. The accuracy of KRR models could
be improved using this extended approach.95 The KRR models
were further compared to deep NN models regarding their
ability to predict dipole moments and NACs. While NNs
yielded a slightly higher accuracy at the largest available
training set size, KRR models exhibited a steeper learning
curve, and hence more efficient learning. The multireference
quantum chemical potential energy curves could be faithfully
reproduced with KRR models and NN models for the three
singlet energies of CH2NH2

+ at first sight. Interestingly, the
small differences lead to correctly predicted dynamics with the
NNs, while the KRR model was unable to reproduce the
reference dynamics. Hence, small differences between the
reference method and ML models, especially in critical regions
of the PESs, can lead to completely wrong photodynamics
simulations.95 The different performance of NNs and KRR
models was proposed to be a result of the parametric
dependence of the depth of NNs and the nonparametric
dependence of the depth of KRR models.
Further, it was shown that inconsistencies along QC PESs,

which are common especially close to conical intersections,
were not reproduced by ML models.94,171 The problematic
fitting of nonsmooth functions representing NACs, i.e., their
singularities at conical intersections, was circumvented by
employing so-called smooth couplings. To arrive at the latter,
the NACs were multiplied with the respective energy gaps.
Hence, accurately trained energies were also required in this
approach. For prediction, the smooth fitted couplings were
subsequently divided by the inferred energy gaps of the ML
model. In this way, the training process became more robust.95

For some quantum chemical reference methods and some
chemical problems, it might be beneficial to remove data
points from conformations very close to a conical intersection.
Although these regions need to be represented well, such a
procedure can reduce the amount of data points with cusps in
energy potentials and thus problematic data points in the
training set.15,148

In order to omit the extensive hyperparameter search of the
descriptor and regressor, we further developed the SchNarc
approach for photodynamics,15 which is based on
SchNet.461,465 SchNarc allows for (1) a description of SOCs,
(2) an NAC approximation based on ML-fitted PESs, their
first and second derivatives with respect to Cartesian
coordinates, and (3) a phase-free training algorithm to enable
a training of raw quantum chemical data. The SchNarc
approach is based on the message passing NN SchNet,461,465

which was adapted by us for the treatment of a manifold of
excited electronic states. Additionally, this model can describe
dipole moments using the charge model of ref 111, also
adapted for excited-states. All excited-state properties can be
described in one ML model in a multistate fashion. The
performance of SchNarc was evaluated with surface hopping
dynamics: Three singlet and three triplet states of SO2 were
computed with ML models for 700 fs, and the underlying PESs
were based on an “one-shot” LVC(MR-CISD) model.240

CSH2 was investigated using two singlets and two triplet states
for 3 ps at the CASSCF level of theory representing slow
population transfer, and the performance of SchNarc to
reproduce ultrafast transitions during dynamics was assessed
using CH2NH2

+ with the aforementioned training set. The
hopping probabilities were computed according to ML-fitted
SOCs and NACsthe latter being fitted in a rotationally
covariant way as derivatives of virtual ML properties and
approximated from ML PESs. In all cases, excellent agreement
with the reference method could be achieved. Noticeably, all
the aforementioned photodynamics studies with ML mod-
els15,94,95,139−141 make use of Tully’s fewest switches surface
hopping approach with hopping probabilities based on
coupling values or approximated schemes.436,437

It is further worth mentioning that ML models, which
provide energies and derivatives, can be used to optimize
reaction coordinates to find, e.g., local minima or minimum
energy conical intersections.94,171,241 In general, a successful
MLMD study should make it possible to investigate reactions
at longer time or larger length scales than complementary
studies with quantum chemical reference methods or should
enable large scale screenings, which would not be feasible with
the reference method. With respect to different ML models,
kernel methods are usually faster during training, but take
longer for predictions. In contrast, deep NNs require longer
training times and more complex hyperparameter optimization,
but once trained, they can predict properties and derivatives
thereof extremely fast.175,671 In the following paragraphs, we
compare the timings of some electronic structure methods
with predictions made by the deep NN model SchNarc.

Exemplary Timings of Single Point Calculations. The
speed-up of simulations is one of the main arguments
employed for promoting ML in quantum chemistry. In order
to get an idea about the computational time used in different
calculations, we provide an example here. In order to get a
better feeling of the speed-up one can achieve for excited-state
energies and derivatives of medium-sized molecules, the topic
will be discussed here. In the next paragraph, timings for
dynamics simulations of smaller molecules, which have been
achieved up to date, will be provided. Different electronic
structure methods and the SchNarc model are used to
compute energies and derivatives of 5 singlet and 8 triplets
states of tyrosine (24 atoms) on a 2x Intel Xeon E5-2650 v3
CPU and GeForce GTX 1080 Ti GPU. The training of the
SchNarc model on the same GPU took about 7 days. One
advantage of ML in this case is that it provides access to
properties, which are not available with any electronic structure
theory, such as NACs, approximated from first and second
derivatives of ML PESs.15 As it becomes visible from the
examples shown in Table 2, the most time-consuming parts are
the derivatives with second derivatives being far more
expensive than first derivatives. These simulations can be
accelerated a lot by ML models. Further, a NAC computation
is comparable to a gradient computation. However, there are
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not only NS NAC calculations to carry out, but NS × (NS − 1)
calculations.
Exemplary Timings for MLMD, LVC Dynamics, and

MQCD. The timings of surface hopping MD with analytical
PESs (from LVC), quantum chemical PESs, and ML-fitted
PESs based on fitted and approximated NACs from Hessians
can be found for three exemplary molecules in Table 3.
Obviously, crude excited-state force fields like the LVC

model are faster than ML models, e.g., for SO2. We note that
even such force field implementations can probably still be
streamlined for speed but will always be more expensive than

ground-state MD simulations, where it would take approx-
imately 0.005 s to simulate 100 fs for the gas-phase
methylenimmonium cation, CH2NH2

+, using a state-of-the-
art program like Amber.213

However, dynamics based on highly accurate quantum
chemical calculations can be accelerated significantly with ML-
fitted PESs, e.g., SchNarc models for CH2NH2

+ based on MR-
CISD/aug-cc-pVDZ.15 The speedup is higher if NACs are
learned directly (MLMD1) compared to when they are
approximated from Hessians (MLMD2). A lot of Hessian
evaluations are required in this example because ultrafast
transitions occur in CH2NH2

+. The second-order derivatives
reduce the efficiency by a factor of about 10. Nevertheless,
Hessian calculations of ML-PESs can be accelerated by a factor
of about 5−10 using a GPU (dependent on the molecule and
GPU used).
Table 3 further shows that a cheaper underlying reference

method, such as CASSCF(6,5)/def2-SVP used for CSH2, does
not allow for such a significant speedup. In this example,
however, the difference between simulations with learned
NACs and approximated NACs is small because the dynamics
of CSH2 is characterized by slow population transfer. Hence,
less Hessian evaluations are required to estimate the hopping
probabilities.
The time required to train a SchNarc model on a GeForce

GTX 1080 Ti GPU is approximately 11 h for energies and
forces of 3 singlet states with 3000 data points of CH2NH2

+,
about 13 h for energies, forces, and SOCs of 2 singlet and 2
triplet states using 4000 data points of CSH2 and about 4 h for
energies and forces of 3 singlet states of SO2 using 5000 data
points.

Dipole Moments and Atomic Charges. In addition to the
investigation of the temporal evolution of some systems in the
excited states, permanent and transition dipole moments have
been computed with ML models. As mentioned before, in our
earlier approaches, we fitted permanent and transition dipole
moments as single values with NNs and KRRstrictly
speaking, we were neglecting the rotational covariance of the
vectors (since rotations were negligible in these simula-
tions).94,95 The NN and KRR models for dipole moments
have been evaluated and compared to quantum chemical
reference dipole moments using learning curves and MAEs.
Their potential to compute UV spectra was emphasized.
The use of dipole moments to actually simulate UV spectra

was demonstrated by Jiang, Mukamel, and co-workers using N-
methylacetamide, a model system to investigate peptide
bonds.97,510 They evaluated the ability of ML to describe
transition dipole moments at TDDFT level of theory. In a first
attempt,510 the authors predicted dipole vectors as independ-
ent values. Fourteen internal coordinates in combination with
multilayer feed-forward NNs were used to predict transition
energies of N-methylacetamide. XYZ representations served as
an input for fitting ground state dipole moments. The
Coulomb matrix was employed to fit transition dipole
moments for the nπ* and ππ* transitions, but did not lead
to sufficiently accurate results. Higher accuracy was obtained
by replacing the atomic charges in the Coulomb matrix (eq 21)
with charges from natural population analysis. The choice of
descriptors was justified by screening different types of
descriptors for prediction of different properties. In a later
work, some of the authors used embedded-atom NNs to
predict transition dipole moments from atomic contributions
in a rotationally covariant way. The dipole moment vector

Table 2. Comparison of the Timings to Compute Different
Excited-State Properties of the Molecule Tyrosine with
Different Electronic Structure Methods and SchNarc15a

method processor time [s]

Energies (13 States)
ADC(2) CPU 2,160
TDDFT CPU 724
CASSCF CPU 5,719
CASPT2 CPU 7,972
SchNarc CPU 1.5
SchNarc GPU 0.03

Energies + Gradients (13 states)
ADC(2) CPU 9,280
TDDFT CPU 5,938
CASPT2 CPU 129,389
SchNarc CPU 2
SchNarc GPU 0.1

Hessian (1 State, Frequency)
ADC(2) CPU 11,760
SchNarc CPU 97
SchNarc GPU 15

Approximated NACs (All States) (Not Implemented for QC Methods)
SchNarc CPU 1,260
SchNarc GPU 186

a2x Intel Xeon E5-2650 v3 CPUs and GeForce GTX 1080 Ti GPUs
are used for computations. In order to keep the notation short
ADC(2) refers to ADC(2)/def2-SVP, CASSCF to CASSCF(10,9)/
ano-rcc-vDZP, CASPT2 to MS-CASPT2(10,9)/ano-rcc-vDZP, and
TDDFT to TDDFT/B3LYP/def2-SVP. The programs Turbomole672

(for ADC(2)), openMolcas310 (for CASSCF and CASPT2), and
ORCA673 (for TDDFT) were used.

Table 3. Comparison of the Timings to Compute 100 fs
with the Surface Hopping Including Arbitrary Couplings
(SHARC)236,256,589 methoda

100 fs dynamics [s/CPU]

MLMD1 MLMD2 reference

SO2 10 12 2−3
CH2NH2

+ 24 250 74,224
CSH2 14 16 104

aFor SO2 and CH2NH2
+, three singlet states are described and for

CSH2 two singlet and two triplet states. The molecule SO2 is
approximated using a highly efficient LVC model,240 while the
underlying reference method to describe the excited states of
CH2NH2

+ is MR-CISD/aug-cc-pVDZ and of CSH2 is CASSCF-
(6,5)/def2-SVP. SchNarc is used for the MLMD simulations. Once
energies, forces, and NACs are trained and predicted (MLMD1), and
once NACs are approximated from first- and second-order derivatives
of ML PESs (MLMD2). 2x Intel Xeon E5-2650 v3 CPUs are used.15
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between two states i and j was obtained as a linear combination
of three contributions:

μ μ μ μ= + +ij T
i

T
j

T
3

(34)

μT
i and μT

j were modeled using the charge model of ref 111. A
third contribution, μT

3 , was obtained as the cross product of μT
i

and μT
j :

∑μ μ μ= ×q ( )T
a

N

a T
i

T
j3 3

A

(35)

μT
i , μT

j , and qa
3 were outputs of the same embedded-atom NN.

Recently, we extended the SchNarc model to describe
permanent and transition dipole moments of an arbitrary
number of electronic states and pairs of states as vectorial
properties in a single ML model in addition to the excited-state
energies, forces, and couplings.241 Also this model is based on
the charge model of ref 111 and allows one to predict latent
partial charges for excited states. This charge model relying on
atom-wise descriptors thus preserves the correct direction of
the permanent and transition dipole moments.
6.4. ML of Tertiary Outputs

The secondary outputs, such as dipole moments or excited
state energies, can be used to calculate oscillator strengths (eq
1) and energy gaps (Figure 1d). These properties can serve for
the modeling of UV absorption spectra. UV spectra were
computed in the previously described studies of N-methyl-
acetamid with the ML fitted transition dipole moments. Jiang,
Mukamel, and co-workers510 applied the transition dipole
moment and additionally fitted nπ* and ππ* excitation
energies to compute UV spectra of this molecule with NNs.
Subsequently, some of the authors97 used these excitation
energies and the transition dipole moments to model a Frenkel
exciton Hamiltonian for proteins using amino acid residues
and peptide bonds. This effective Hamiltonian could further be
used to approximate UV spectra of proteins. The interaction
between amino acid residues and peptides was neglected, so
only the isolated peptide excitation energies, i.e., those of N-
methylacetamid, and the respective transition dipole moments
were needed to construct the Hamiltonian. The authors made
use of the dipole−dipole approximation674 and applied
embedded-atom NNs. High transferability and predictive
power were obtained.
In addition, the transition dipole moments of SchNarc241

have been used to predict UV/visible spectra of the
methylenimmonium cation and ethylene. Both molecules
were trained simultaneously. Although they differ in their
photochemistry, i.e., the first excited singlet state is bright in
the case of ethylene, whereas it is dark in the case of the
methylenimmonium cation, with an opposite behavior
observed for the second excited singlet state, ML models
trained on both molecules were slightly superior to ML models
trained on single molecules. In contrast to the previous models,
where each property and electronic state or transition energy is
fitted separately in one model, the SchNarc model can treat
excited-state energies, forces, permanent dipole moments, and
transition dipole moments in one model simultaneously, while
being able to fit any predefined number of electronic states of
different spin multiplicities. According to eq 12, dipole
moments are obtained as the sum of atomic contributions,
which are obtained from latent partial charges inferred by the
ML model multiplied with the vector of an atom with respect

to the center of mass. In this way, direct access to the atomic
charges is provided, which should, in principle, also be possible
with the embedded-atom NN used in ref 97, but has not been
evaluated. As the charge distribution in a molecule is highly
dependent on the underlying partitioning scheme, a compar-
ison of the different schemes is not straightforward. The
Hirshfeld charges675 are often considered more accurate than,
e.g., Mulliken charges.676 Hirshfeld charges were compared to
the latent partial charges of the ML model and found to agree
well.172,241 The ML charges further were used to compute
electrostatic potentials and charge redistribution after light
excitation.241

Because of the excellent agreement of the ML predictions
and the reference data, the transferability of SchNarc for the
excited state energies and dipole moments was evaluated.
Therefore, electrostatic potentials and UV/visible spectra of
aminomethylene (CHNH2) and methylenimine (CH2NH)
were computed with SchNarc, and qualitatively correct results
could be obtained. This result left us to conclude that at least
similar structured molecules can be predicted with ML models
even though they are not included in the training set. The high
costs and complexity of the underlying multireference
quantum chemical method hampered the exploration of
more molecules and the transferability of SchNarc toward a
larger chemical space.241

Ramakrishnan et. al358 predicted excitation energies of the
lowest-lying two excited singlet states, S1 and S2, as well as
corresponding oscillator strengths obtained from TDDFT
calculations with KRR. The QM8572 database was used
consisting of 20k organic molecules. With the Δ-learning
approach, CC2 accuracy could be obtained. Very recently, Xue
et al.490 assessed the performance of KRR models with the
normalized inverse distances as a molecular descriptor to
predict absorption spectra of benzene and a derivative of
acridine containing 38 atoms. Therefore, the authors learned
the excited-state energy gaps of several states and the
corresponding oscillator strengths in a single-state fashion.
Applying a nuclear ensemble approach, the absorption cross
sections could be computed at TDDFT accuracy using a
fraction of ensemble points.
Pronobis et al.158 compared two-body, three-body, and

automatically designed descriptors to learn TDDFT HOMO−
LUMO gaps as well as first and second vertical excitation
energies. More than 20k molecules of the QM9 database457,572

were selected for this purpose, and learning curves were used
to evaluate the learning behavior of different ML models.
While atom-wise descriptors worked well for HOMO−LUMO
gaps, the authors concluded that the accuracy of predicted
transition energies is not sufficiently accurate and suggested
that advanced nonlocal descriptors might be necessary to
achieve higher accuracy. They further proposed the idea of
encoding information about the electronic state in the ML
model.158 Indeed, our recent study, in which we compared the
performance of KRR and NN models with atom-wise and
molecule-wise descriptors demonstrated that encoding of the
energy level is advantageous.95

Recently, Kang et. al533 used 500 000 molecules of the
PubChemQC578 database to train a random forest model on
the excitation energy and the oscillator strength corresponding
to the electronic state with the highest oscillator strength. Ten
singlet states, as available in the PubChemQC database, were
evaluated for that purpose. The authors used simplified
molecular-input line-entry system (SMILES) strings and
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converted them into descriptors. The descriptors comprised
several topological677 and binary678 fingerprints, which were
calculated with the help of the RDkit library.679 The authors
compared the prediction accuracy to the aforementioned
models and stated that their model outperformed previous ML
models in the task of predicting accurate oscillator strengths
and excitation energies for the most probable transition in
organic molecules. Analysis of important features led the
authors identify that nitrogen-containing heterocycles are
important for high oscillator strengths in molecules. The
authors concluded that their study could serve the design of
new fluorophores with high oscillator strengths.533

Ghosh et. al152 used multilayer feed-forward NNs, convolu-
tional NNs and DTNNs to fit the 16 highest occupied orbital
energies from DFT, where the respective eigenvalues are
broadened by Gaussians with a full width at half-maximum of
0.5 eV. The resulting spectra are probably comparable to
ionization potentials in line with Koopmans’ theorem.
Geometries from the QM7b570,571 and QM9457,572 database
were used for training, and predictions were tested using 10k
additional diastereomers, which were also used by Ram-
akrishnan et al.358 to evaluate the Δ-learning approach. The
convolutional NNs with the Coulomb matrix and DTNNs
with an automatically generated representation outperformed
the simpler NNs. Overall, good agreement to reference DFT
calculations could be achieved.152

Markland and co-workers539 trained NNs with atom-
centered Chebyshev polynomial descriptors110 on the
TDDFT/CAM-B3LYP/6-31+G* S0−S1 energy gap of the
deprotonated trans-thiophenyl-p-coumarate (chromophore of
yellow protein) in water and Nile red chromophore in water
and benzene. Farthest point sampling123 was used to select
about 2000 data points from a larger set of 36 000 data points
and was compared to random sampling. The authors assessed
the performance of three different ML approaches to compute
absorption spectra, spectral densities, and two-dimensional
electronic spectra. One model (hidden solvation) completely
ignored any environmental effects and only described the
chromophore, another model (indirect solvation) incorporated
environmental effects within a 5 Å cutoff of the atomistic
descriptor for the chromophore, and a third model (direct
solvation) treated the whole system, i.e., the chromophore and
the atoms of the solvent, explicitly. As expected, the hidden
solvation model turned out to be insufficiently accurate for
systems with strong solvent−chromophore interactions, but
was comparable to the hidden solvation model when
describing Nile red chromophore in benzene. The indirect
solvation and direct solvation models were comparable to each
other, but with respect to the computational efficiency, the
indirect solvation model was beneficial. This model could
reproduce reference linear absorption spectra, spectral
densities, and could capture spectral diffusion of two-
dimensional electronic spectra of all treated chromophores.539

Penfold and co-workers155 applied deep multilayer feed-
forward NNs to prove the ability of ML to predict X-ray
absorption spectra (XAS), which provide a wealth of
information on the geometry and electronic structure of
chemical systems, especially in the near-edge structure region.
Note that X-ray free-electron laser spectroscopy can further be
used to generate ultrashort X-ray pulses to investigate
photodynamics simulations in real-time. The training set for
the prediction of Fe K-edge X-ray near-edge structure spectra
contained 9040 data points. The inputs for NNs were

generated using local radial distributions around the Fe
absorption site of arbitrary systems taken from the Materials
Project Database.680 Qualitatively accurate peak positions and
intensities could be obtained computationally efficient, and the
structural refinement of nitrosylmyoglobin and [Fe(bpy)3]

2+

was assessed with NNs. The authors noted that future
development is needed to accurately capture structures far
from equilibrium as well as irregularities in the bulk. The
spectral shapes and other properties of X-ray laser pulsed from
free-electron laser facilities could be predicted by Sańchez-
Gonzaĺez et. al681 with NNs and support vector regression.
Another study was executed by Aarva et al.,682 who focused

on XAS and X-ray photoelectron spectra of functionalized
amorphous carbonaceous materials. By clustering of DFT data
with unsupervised ML techniques average fingerprint spectra
of distinct functionalized surfaces could be obtained. The
authors use GPR. Similarly to the aforementioned state
encoding,95 the authors encoded the electronic structure, i.e.,
the Δ-Kohn−Sham values (core−electron binding energies),
in a Gaussian kernel. This kernel was then linearly combined
with a structure-based kernel based on the SOAP30 descriptor.
The spectra computed from the different clusters were used to
fit experimental spectra allowing for an approximation to the
composition of experimental samples on a semiquantitative
level. The so-called fingerprint spectra, which enabled the
differentiation of the spectral signatures, were assessed in a
previous study using different models for amorphous
carbon,683 among them an ML fitted PES using GPR.112,684

Kulik and co-workers17 used deep NNs to predict the spin-
state ordering in transition metal complexes to determine the
spin of the lowest lying energetic state in open-shell systems.
The determination of spin states is important to evaluate
catalytic and material properties of metal complexes.
Descriptors based on a selection of empirical features were
used to capture the bonding in inorganic molecular systems.
The performance of descriptors including different features was
assessed for a set of octahedral complexes with first-row
transition metals. The most important features were identified
to be the atom, which connects the ligand to the metal, its
environment and its electronegativity, the metal identity and its
oxidation state, as well as the formal charge and denticity of the
ligand.685 The ML models were tested on spin-crossover
complexes and could assign the correct spin in most cases.
Additionally, ML models were applied for the discovery of
inorganic complexes686−689 Similarly, Behler and co-workers91

applied high-dimensional NNs to predict spin states of
transition metal oxides, which are for instance important for
lithium ion batteries. In addition, the atomic oxidation state
could be predicted.
The inverse design of molecules with specific properties was

further targeted by Schütt et. al,77 who developed SchNOrb, a
deep NN model based on SchNet. The automatically
generated descriptor was extended with a description of
atom pairs in their chemical and structural environment. An
analytic representation of the electronic structure of a
molecular system was obtained in a local atomic orbital
representation. The analytic derivatives of the electronic
structure allowed for optimization of electronic properties.
This was demonstrated by minimizing and maximizing the
HOMO−LUMO gap of malonaldehyde.563 Besides, the ML
method was used to predict the lowest 20 molecular orbitals of
ethanol at the DFT level of theory, to investigate proton
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transfer in malonaldehyde using ground-state dynamics and to
analyze bond order and partial charges of uracil.
Bayesian NN models were applied by Has̈e et al.160 to relate

molecular geometries to the outcome of nonadiabatic MD
simulations obtained with CASSCF. Normal modes with and
without velocities of initial conditions served as an input for
NN models. Velocities in addition to normal modes as
descriptors improved the accuracy of ML models slightly,
pointing out that normal modes contain already enough
information for the sake of their study. The dissociation times
of 1,2-dioxetane obtained from nonadiabatic MD simulations
was the targeted output. The NNs could faithfully reproduce
dissociation times and further provided a measure of
uncertainty. The authors noted that their method could be
particularly interesting for analysis of MLMD simulations.
Lately, regression and ML models have emerged to assist the

prediction of the quantum yield, which is a property targeted in
studies for the design of photoactive materials, such as organic
light emitting diodes (OLEDs), molecules useful in photo-
therapy, solar cells, or biomedical labeling. The yield of
fluorescence and phosphorescence can be targeted. It can be
determined from the ratio of the rate of nonradiative emission
and the rate of radiative emission. As radiative emission usually
takes place on time scales in the range of nano- to milliseconds,
theoretical methods to determine their rates, i.e., dynamics
simulations, are limited. Approximations can be made using
static calculations, such as it has been done by Kohn et al.,690

who developed a semiempirical method to compute the
fluorescence quantum yield of chromophores of molecules
using TDDFT. The coefficients, which could not be
determined from theory, were fit to experimental data. Qiu
et al.691 studied aggregation induced emission of triphenyl-
amine compounds using a support vector machine (SVM).
The charge of three carbon atoms adjacent to a central
nitrogen atom served as an input to the classifier. Inactive and
active materials could be identified and in combination with
DFT leading to aggregation induced emission were inves-
tigated. Different types of ML models, such as KRR and NNs,
were further compared to predict emission and absorption
wavelengths and luminescence quantum yields of organic dyes
that show fluorescence after excitation. Different fingerprints
were compared generated from an external software and data
was obtained from experiments.692 The tested model
emphasized the possibility to combine experimental data
with ML algorithms to enable large scale screening and the
design of novel materials and compounds.

6.5. ML-Assisted Analysis

The aforementioned studies have shown that ML enables the
simulation of MD simulations and spectra predictions at low
computational costs. The computational efficiency allows for
enhanced statistics, i.e., in the case of MD simulations a huge
number of trajectories and the simulations on long time
scales.15,94 Therefore, subsequent analyses of production runs
can become a time limiting step of studies. This problem was
identified in the aforementioned study on the dissociation
times of 1,2-dioxetane by Has̈e et al.160 Therefore, the authors
further used their method to interpret the outcomes of
nonadiabatic MD simulations. 1,2-Dioxetane is the target of
their study as it is the smallest molecule known to show
chemiluminescence after nonadiabatic transitions from the
ground state to an excited state. The chemiluminescent
properties of this compound were related to its decomposition

rate into two formaldehyde molecules, which was also
identified to be relevant in an earlier work of some of the
authors.693 By analysis of the ML models that fit the
dissociation times, correlations could be observed between
the normal modes and the dissociation times. For example, the
modes corresponding to the symmetric C−O bond stretchings,
and simultaneous planarization of the two formaldehyde
moieties were found to be relevant for the accurate prediction
of dissociation times. It was further emphasized by the authors
that although the findings of NNs were expected and obey
physical laws, ML models were helpful to extract relevant
information of large amount of data and could potentially serve
as an inspiration to humans.
Recently, some of the authors used classification algorithms

to further analyze the different types of geometries identified in
the ab initio MD simulations of the decomposition reaction of
dioxetane,694 which can lead to successful dissociation or
frustrated dissociation. Both in this study and in previous
work,695 it was found that the planarization of the two
formaldehyde moieties is key for dissociation of dioxetane.694

Time-resolved experimental photoluminescence spectra
could be analyzed with the LumiML software developed by
Đord̵evic ́ et al.,696 who applied linear regression models to
learn from computer-generated photoluminescence data. The
software was employed to predict decay rate distributions697 of
perovskite nanocrystals from data generated with femtosecond
broadband fluorescence upconversion spectroscopy.698 The
authors highlighted the applicability of their method to
enhance studies on the optimization and design of optical
devices and further noted that their approach can also be used
to analyze transient absorption spectra. Aspuru-Guzik and co-
workers154 applied Bayesian NNs to find correlations of
nanoaggregates with electronic coupling in semiconducting
materials using absorption spectra. In general, the analysis of
experimental spectra and the inverse design of compounds is
most frequently applied in the research field of material
science. Their description goes beyond the scope of this
review, and the reader is referred to refs 164−168, and 170.

6.6. Open Questions and General Remarks on a Successful
ML Method

The most important open questions in this field are in our
opinion the following: what is generally necessary to go to
larger length scales, and which reference method can be used
in order to describe the excited-state energies and properties
accurately for large systems? While multireference methods
suffer from high costs and varying active spaces for different
molecules, single-reference methods cannot describe reactions
and the formation and breaking of bonds accurately. While it
could be shown that long time scale photodynamics
simulations in the range of nanoseconds are possible at high
accuracy with ML, it is not clear how to go to time scales of
seconds or minutes, which might be even more relevant. What
is necessary to combine both long time scales and large length
scales? How many data points are needed in order to describe
the excited states of large molecules with ML on long time
scales? How can we construct transition properties, such as
couplings, from atomic contributions in a universal way that is
valid not only for one molecule? As all of the above-mentioned
questions are not answered yet, and it is not clear how to
develop a universal ML force field for the excited states, we can
only conclude by trying to summarize the key factors for a
meaningful ML study, which focuses on one molecular system

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c00749
Chem. Rev. 2021, 121, 9873−9926

9906

pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00749?ref=pdf


in the case of dynamics simulations and on many molecules in
case of static simulations:

(1) As a first step, the relevant processes that are assumed to
happen after light excitation in a molecule should be
evaluated, and the reference method should be decided
based on these findings. In general, it might be easier
for the practitioner as well as for the ML model learning
the excited states of a moleculeto use a single-
reference method with a black box character, which is
additionally less expensive compared to multireference
methods. However, multireference methods cannot be
circumvented in many cases.

(2) As soon as the reference method has been identified, an
initial training set should be computed, which samples
the region around the equilibrium configuration
comprehensively in the case of dynamics simulations.
In case different molecules are treated, an existing
database could be used, and molecular conformations
could be extracted and relevant properties recomputed.
Whenever transition properties are needed, it is
important to either apply a phase correction in advance
or adapt the loss function of the ML model.

(3) The choice of the ML model is dependent on the type of
study: If different molecules are treated, it is beneficial to
use atom-wise descriptors. Whenever only one molecule
is used, it cannot be said in advance what type of
descriptor is better suited. The same accounts for kernel
methods and neural networksboth have their merits
and pitfalls. Hyperparameters should be tuned for the
given problem under investigation.

(4) As soon as the model is trained, the accuracy should be
checked, usually by computing the error on a separate
test set. It should be further assessed whether the model
is overfitting or not. If so, a less complex model might be
more suitable.

(5) The success of an ML study can be evaluated whenever
a speed-up can be obtained by applying ML instead of
the reference method, e.g., longer time scales can be
reached or more molecules can be scanned to design
new molecules with targeted functions. A single
prediction made by an ML model should be much less
expensive than the reference method, but should
maintain its accuracy.

7. CONCLUSION AND FUTURE PERSPECTIVES
In the past few years, machine learning (ML) has started to
slowly enter the research field of photochemistry, especially the
photochemistry of molecular systems. Although this field of
research is rather young compared to ML for the electronic
ground-state, some groundbreaking works have already shown
the potential of ML models to significantly accelerate and
improve existing simulation techniques. So far, most studies
provide a proof of concept using small molecular systems or
model systems. Different applications are targeted and will also
be aimed at in the future, ranging from dynamics with excited-
state ML potentials via absorption spectra to the interpretation
of data, see Figure 1.
Analyzing the different studies reviewed here, some trends in

the choice of reference methods, ML models, and descriptors
can be observed. These trends are illustrated in Figure 11.
The pie chart in Figure 11a shows the used reference

methods for the computation of a training set to describe the

excited states or excited-state properties of molecules. As can
be seen, about half of the training sets are computed with
multireference methods (refs 14−16, 71, 92, 94−96, 139,
141−147, 149, 160, 252, 392, 412, 413, and 660). The
employed single-reference approaches are exclusively based on
DFT (refs 17,77, 93, 97, 98, 152, 158, 358, 510, 533, 539, 547,
and 683). Analytical methods or experimental data are also
applied.140,154,161,162,696

When restricting the analysis to studies targeting dynamics,
the fraction that employs multireference methods even
increases. About 72% of all dynamics studies use multi-
reference methods to compute the training data for ML
models. A total of 14% of the studies use single-reference
methods, and an equally large portion apply model
Hamiltonians or analytical potentials. This shows that most
chemical problems for the investigation of the excited states of
molecules require multireference accuracy.
Recent studies of ML-based photodynamics simulations

have shown that many thousands of data points are necessary
to describe a few excited-state potentials of small molecular
systems. To the best of our knowledge, the dynamics in the
excited states with ML for molecules with more than 12 atoms
in full dimensions has not yet been investigated.139,145,146

Especially, the huge number of data points is concerning in this
case, as larger molecules with more energetic states and a
complex photochemistry could require many more data points.
A meaningful training set generation, which can be achieved
with active learning, adaptive sampling, and structure-based
sampling techniques, is thus essential for dynamics simu-
lations.94,111,515,559 Clustering of molecular geometries ob-
tained from dynamics simulations with a cheap method further
is beneficial for selecting important reference geome-
tries.139,140,517,560,561 Still, the high costs and the complexity
of multireference methods to compute an ample training set
for ML also hamper the application of ML models to fit the
excited states of larger polyatomic systems, whose accurate

Figure 11. Pie diagrams summarizing the reference methods used for
the training set generation, the chosen ML models, and the type of
descriptors for the description of the excited states with ML. Analysis
is based on 45 studies of ML for the excited states.
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photochemical description is often additionally complicated by
a high density of electronic states.
Single reference methods, such as time-dependent DFT, are

advantageous with respect to the computational costs of the
training set, but suffer from qualitatively incorrect PESs in
some conformational regions of molecules, such as dissociative
regions. In principle, these conformational regions could be
excluded from the training set, and the remaining conforma-
tional space could be interpolated using ML, but the training
set would then remain incomplete and so would the dynamics.
Schemes like the Δ-learning approach358 or transfer learning360
could be helpful in this regard. These approaches might be
useful to let ML models learn from single-reference data and
adjust their accuracy according to multireference methods. The
direct use of approximated methods, such as time-dependent
DFT-based tight binding, is most likely not suitable for
photodynamics on long time scales, because such approaches
might easily be quantitatively incorrect. Of particular concern
is then the accumulation of quantitatively tiny errors in the
underlying potentials toward wrong dynamics trends. At the
current stage of research, it is not clear whether such
approximate potentials can provide qualitatively correct trends
for reaction dynamics.175

In addition to the aforementioned problems, the training set
generation is complicated by the arbitrariness of the signs of
coupling values and properties resulting from two different
electronic states.15,16,92,94,95,97 This arbitrariness has to be
removed in order to make data learnable with conventional
methods. Such a correction scheme is termed phase correction
and has been applied to correct coupling values and dipole
moments.16,92,94,97,546 An alternative phase correction training
algorithm has been shown to be beneficial with respect to the
costs of the training set generation and has enabled the
learning of raw quantum chemical data.15

Figure 11b shows which ML models are applied in the
discussed studies. About two-thirds rely on NNs, whereby
simple multilayer feed-forward NNs are most often employed.
Several research fields were advanced with NN-fitted
functions: photodynamics simulations (refs 15, 93−95, 98,
140, 141, 143, 144, 147, 392, 412, and 413), spectra
predictions and analysis,97,152,155,241,490,510,539 excited-state
properties,15−17,92,95,97,510 diabatization procedures,96,142 inter-
pretation of reaction outcomes,160,696 and the prediction of
HOMO−LUMO gaps or gaps between energetic
states.77,152,158 In these studies, between one and seven hidden
layers with varying numbers of nodes were used. KRR methods
were mainly applied to interpolate diabatic poten-
tials145,146,149,252,660 and in studies focusing on more than
one molecular systems.358 In general, only a few studies
focused on extrapolation throughout chemical compound
space in the excited states. Yet, only the energies, HOMO−
LUMO gaps, or spectra based on fitted oscillator strengths
could be predicted using a single ML model for different
molecules.17,155,158,358 Decision trees were used to select an
active space for diatomic molecules71 and semisupervised
classification was applied to assess whether a molecule require
multireference or single-reference treatment.176

One drawback of recently developed ML models is that they
are molecule-specific and thus not universal. In part, this issue
is related to the used molecular descriptors. As can be seen in
Figure 11c, most studies apply descriptors that capture
molecules as a whole. The few studies, which describe PESs
and properties of molecular systems from atomic contribu-

tions, either treat small molecular systems15,95,97 or predict
properties related to the ground-state equilibrium structure of
a molecular system or to electronic ground state calculations,
e.g., the HOMO−LUMO gaps.77,152,158 Because of the limited
transferability of existing ML models to predict the excited
state PESs and properties of different molecular systems, an
extrapolation throughout chemical compound space is
hindered in many cases. Nevertheless, in order to preserve
rotational covariance especially in transition properties, such as
transition dipole moments or NAC values, atom-wise
descriptors have proven to be more successful.97,241

In order to fully exploit the advantages that ML models offer
and to achieve the aforementioned goal of a transferable ML
model for the excited states, a highly versatile descriptor is
required, which can describe atoms in their chemical and
structural environment and enable an ML model to treat
molecules of arbitrary size and composition. It would be highly
desirable if an ML model could then describe the photo-
chemistry of large systems, which are too expensive to compute
with precise multireference methods, using only small building
blocks, i.e., small enough ones to describe their electronic
structure accurately. For example, the excited states of proteins
or DNA strands could potentially be predicted from
contributions of amino acids or DNA bases, respectively,
which is most often done using effective model Hamiltonians
to date.55 A local description of the excited-state PESs and
their properties derived from the ML-fitted PESs could further
provide a way toward excited-state ML/MM simulations alike
QM/MM techniques.175,536,668 Unfortunately, it is not yet
known whether the excited-state PESs and properties can be
constructed from atomic contributions or not.175

In studies comparing different ML models, it was even
suggested that nonlocal descriptors might be needed or that
the electronic state has to be encoded explicitly in the
molecular representation to enable a transferable description of
the excited states with ML.95,158

To conclude, the reviewed studies focus on almost all
aspects of excited-state quantum chemistry and improve them
successfully: ML models can help to choose a proper active
space for multireference methods, and they predict secondary
and tertiary outputs of quantum chemical calculations and help
in the interpretation of theoretical studies. ML models push
the boundaries of computed time scales94 and are used to
investigate and analyze the huge amount of data we produce
every day in experiments or with high-performance com-
puters.160,696

It should be emphasized once more that the recent studies
show that the goal of ML is not to replace existing methods
completely, but to provide a way to improve them. In fact, ML
models for the excited states at their current stage are far from
replacing existing quantum chemical methods, and they are
also far from being routine. Without human intervention, ML
cannot solve existing problems, and much remains to be done
to describe systems beyond single, isolated molecules.
To the best of our knowledge, what is still missing is the

proof that ML can provide an approximation to the
multireference wave function of a molecular system. Such an
achievement would be a great advancement in the research
field of photochemistry, as any property we wish to know could
possibly be derived from the ML wave function. An ML
representation of the electronic structure would further be
beneficial to allow for an inverse design of molecules with
specific properties, which has been shown to be feasible for the
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ground state of a molecular system.77 The optimization of
photochemical properties with respect to molecular geometries
would be useful for many exciting research fields, e.g.,
photocatalysis,166 photosensitive drug design,699 or photo-
voltaics.29,30

The multifaceted photochemistry offers a perfect playground
for ML models. It may be important to highlight that, despite
the negative image ML has suffered in some research
communities, it cannot be denied that it opens up many new
ways and possibilities to improve simulations and make studies
feasible that were considered unattainable only a few years, if
not only months ago.535 The computational efficiency and high
flexibility of deep learning models can lead this research field
toward simulations of long time and large length scales. The
possibilities ML models offer are far from being exhausted. The
enormous chemical space, estimated to consist of more than
1060 molecules,700 and the desire to develop methods, which
could develop into a universal approximator, make ML models
perfectly suited to advance this research field. The possibility of
deep ML models to process a huge amount of data can even
assist the interpretation and analysis160,696 of many photo-
chemical studies and can help to explore unknown physical
relations and be a source of potential human inspiration.
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(11) Goḿez-Bombarelli, R.; Aspuru-Guzik, A. In Handbook of
Materials Modeling: Methods: Theory and Modeling; Andreoni, W., Yip,
S., Eds.; Springer International Publishing: Cham, 2018; pp 1−24.
(12) Agrawal, A.; Choudhary, A. Perspective: Materials Informatics
and Big Data: Realization of the “Fourth Paradigm” of Science in
Materials Science. APL Mater. 2016, 4, 053208.
(13) Aspuru-Guzik, A.; Lindh, R.; Reiher, M. The Matter Simulation
(R)evolution. ACS Cent. Sci. 2018, 4, 144−152.
(14) Schwilk, M.; Tahchieva, D. N.; von Lilienfeld, O. A. Large yet
Bounded: Spin Gap Ranges in Carbenes. arXiv 2020, 2004.10600.
(15) Westermayr, J.; Gastegger, M.; Marquetand, P. Combining
SchNet and SHARC: The SchNarc Machine Learning Approach for
Excited-State Dynamics. J. Phys. Chem. Lett. 2020, 11, 3828−3834.
(16) Guan, Y.; Guo, H.; Yarkony, D. R. Extending the
Representation of Multistate Coupled Potential Energy Surfaces to
Include Properties Operators using Neural Networks: Application to
the 1,21A States of Ammonia. J. Chem. Theory Comput. 2020, 16,
302−313.
(17) Taylor, M. G.; Yang, T.; Lin, S.; Nandy, A.; Janet, J. P.; Duan,
C.; Kulik, H. J. Seeing Is Believing: Experimental Spin States from

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c00749
Chem. Rev. 2021, 121, 9873−9926

9909

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Philipp+Marquetand"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-8711-1533
http://orcid.org/0000-0002-8711-1533
mailto:philipp.marquetand@univie.ac.at
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Julia+Westermayr"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-6531-0742
http://orcid.org/0000-0002-6531-0742
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00749?ref=pdf
https://dx.doi.org/10.1080/02763869.2018.1404391
https://dx.doi.org/10.1080/02763869.2018.1404391
https://dx.doi.org/10.26434/chemrxiv.13054154.v1
https://dx.doi.org/10.26434/chemrxiv.13054154.v1?ref=pdf
https://dx.doi.org/10.1038/nature16961
https://dx.doi.org/10.1038/nature16961
https://dx.doi.org/10.1126/science.aao4408
https://dx.doi.org/10.1126/science.aao4408
https://dx.doi.org/10.1109/JPROC.2015.2494198
https://dx.doi.org/10.1109/JPROC.2015.2494198
https://dx.doi.org/10.1109/JPROC.2015.2494198
https://dx.doi.org/10.1146/annurev-bioeng-071516-044442
https://dx.doi.org/10.1146/annurev-bioeng-071516-044442
https://dx.doi.org/10.1021/acs.chemrev.8b00728
https://dx.doi.org/10.1021/acs.chemrev.8b00728
https://dx.doi.org/10.1063/1.4946894
https://dx.doi.org/10.1063/1.4946894
https://dx.doi.org/10.1063/1.4946894
https://dx.doi.org/10.1021/acscentsci.7b00550
https://dx.doi.org/10.1021/acscentsci.7b00550
https://dx.doi.org/10.1021/acs.jpclett.0c00527
https://dx.doi.org/10.1021/acs.jpclett.0c00527
https://dx.doi.org/10.1021/acs.jpclett.0c00527
https://dx.doi.org/10.1021/acs.jctc.9b00898
https://dx.doi.org/10.1021/acs.jctc.9b00898
https://dx.doi.org/10.1021/acs.jctc.9b00898
https://dx.doi.org/10.1021/acs.jctc.9b00898
https://dx.doi.org/10.1021/acs.jpca.0c01458
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00749?ref=pdf


Machine Learning Model Structure Predictions. J. Phys. Chem. A
2020, 124, 3286−3299.
(18) Kulik, H. J. Making Machine Learning a Useful Tool in the
Accelerated Discovery of Transition Metal Complexes. Wiley
Interdiscip. Rev.: Comput. Mol. Sci. 2020, 10, No. e1439.
(19) Power, P. P. Stable Two-Coordinate, Open-Shell (d1−d9)
Transition Metal Complexes. Chem. Rev. 2012, 112, 3482−3507.
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Interatomic Potentials as Emerging Tools for Materials Science. Adv.
Mater. 2019, 31, 1902765.
(134) Ward, L.; Blaiszik, B.; Foster, I.; Assary, R. S.; Narayanan, B.;
Curtiss, L. Machine Learning Prediction of Accurate Atomization
Energies of Organic Molecules from Low-Fidelity Quantum Chemical
Calculations. MRS Commun. 2019, 9, 891−899.
(135) Noe,́ F.; Tkatchenko, A.; Müller, K.-R.; Clementi, C. Machine
Learning for Molecular Simulation. Annu. Rev. Phys. Chem. 2020, 71,
361−390.
(136) Alborzpour, J. P.; Tew, D. P.; Habershon, S. Efficient and
Accurate Evaluation of Potential Energy Matrix Elements for
Quantum Dynamics using Gaussian Process Regression. J. Chem.
Phys. 2016, 145, 174112.
(137) Cheng, Z.; Zhao, D.; Ma, J.; Li, W.; Li, S. An On-the-Fly
Approach to Construct Generalized Energy-Based Fragmentation
Machine Learning Force Fields of Complex Systems. J. Phys. Chem. A
2020, 124, 5007−5014.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c00749
Chem. Rev. 2021, 121, 9873−9926

9912

https://dx.doi.org/10.1021/acs.jpcb.0c06926
https://dx.doi.org/10.1021/acs.jpcb.0c06926
https://dx.doi.org/10.1103/PhysRevLett.101.096104
https://dx.doi.org/10.1103/PhysRevLett.101.096104
https://dx.doi.org/10.1063/1.5086358
https://dx.doi.org/10.1063/1.5086358
https://dx.doi.org/10.1063/1.5086358
https://dx.doi.org/10.1088/0965-0393/7/3/308
https://dx.doi.org/10.1088/0965-0393/7/3/308
https://dx.doi.org/10.1103/PhysRevLett.104.136403
https://dx.doi.org/10.1103/PhysRevLett.104.136403
https://dx.doi.org/10.1103/PhysRevLett.104.136403
https://dx.doi.org/10.1103/PhysRevLett.108.058301
https://dx.doi.org/10.1103/PhysRevLett.108.058301
https://dx.doi.org/10.1103/PhysRevLett.114.096405
https://dx.doi.org/10.1103/PhysRevLett.114.096405
https://dx.doi.org/10.1002/qua.24912
https://dx.doi.org/10.1002/qua.24912
https://dx.doi.org/10.1002/qua.24912
https://dx.doi.org/10.1021/acs.jctc.5b00211
https://dx.doi.org/10.1021/acs.jctc.5b00211
https://dx.doi.org/10.1021/acs.jctc.5b00211
https://dx.doi.org/10.1021/acs.jpclett.5b01456
https://dx.doi.org/10.1021/acs.jpclett.5b01456
https://dx.doi.org/10.1063/1.4966192
https://dx.doi.org/10.1063/1.4966192
https://dx.doi.org/10.1016/j.commatsci.2015.11.047
https://dx.doi.org/10.1016/j.commatsci.2015.11.047
https://dx.doi.org/10.1016/j.commatsci.2015.11.047
https://dx.doi.org/10.1063/1.4950815
https://dx.doi.org/10.1063/1.4950815
https://dx.doi.org/10.1063/1.4950815
https://dx.doi.org/10.1103/PhysRevB.96.014112
https://dx.doi.org/10.1103/PhysRevB.96.014112
https://dx.doi.org/10.1103/PhysRevB.96.014112
https://dx.doi.org/10.1039/C7SC02267K
https://dx.doi.org/10.1039/C7SC02267K
https://dx.doi.org/10.1103/PhysRevB.95.094203
https://dx.doi.org/10.1103/PhysRevB.95.094203
https://dx.doi.org/10.1021/acs.jpcc.6b10908
https://dx.doi.org/10.1021/acs.jpcc.6b10908
https://dx.doi.org/10.1103/PhysRevB.95.214302
https://dx.doi.org/10.1103/PhysRevB.95.214302
https://dx.doi.org/10.1039/C6SC05720A
https://dx.doi.org/10.1039/C6SC05720A
https://dx.doi.org/10.1063/1.5016317
https://dx.doi.org/10.1063/1.5016317
https://dx.doi.org/10.1002/anie.201703114
https://dx.doi.org/10.1002/anie.201703114
https://dx.doi.org/10.1063/1.5017641
https://dx.doi.org/10.1063/1.5017641
https://dx.doi.org/10.1021/acs.jctc.8b00149
https://dx.doi.org/10.1021/acs.jctc.8b00149
https://dx.doi.org/10.1103/PhysRevX.8.041048
https://dx.doi.org/10.1103/PhysRevX.8.041048
https://dx.doi.org/10.1038/s41467-018-06169-2
https://dx.doi.org/10.1038/s41467-018-06169-2
https://dx.doi.org/10.1063/1.5024611
https://dx.doi.org/10.1063/1.5024611
https://dx.doi.org/10.1103/PhysRevLett.120.143001
https://dx.doi.org/10.1103/PhysRevLett.120.143001
https://dx.doi.org/10.1103/PhysRevLett.120.143001
https://dx.doi.org/10.1021/acs.jpcc.8b09917
https://dx.doi.org/10.1021/acs.jpcc.8b09917
https://dx.doi.org/10.1063/1.5020710
https://dx.doi.org/10.1063/1.5020710
https://dx.doi.org/10.1021/acs.jctc.8b00895
https://dx.doi.org/10.1021/acs.jctc.8b00895
https://dx.doi.org/10.1021/acs.jctc.8b00895
https://dx.doi.org/10.1021/acs.jpclett.9b00560
https://dx.doi.org/10.1021/acs.jpclett.9b00560
https://dx.doi.org/10.1021/acs.jpclett.9b00560
https://dx.doi.org/10.1021/acs.jpclett.9b00560
https://dx.doi.org/10.1016/j.cpc.2019.02.007
https://dx.doi.org/10.1016/j.cpc.2019.02.007
https://dx.doi.org/10.1103/RevModPhys.91.045002
https://dx.doi.org/10.1103/RevModPhys.91.045002
https://dx.doi.org/10.1039/C9CP01883B
https://dx.doi.org/10.1039/C9CP01883B
https://dx.doi.org/10.1002/adma.201902765
https://dx.doi.org/10.1002/adma.201902765
https://dx.doi.org/10.1557/mrc.2019.107
https://dx.doi.org/10.1557/mrc.2019.107
https://dx.doi.org/10.1557/mrc.2019.107
https://dx.doi.org/10.1146/annurev-physchem-042018-052331
https://dx.doi.org/10.1146/annurev-physchem-042018-052331
https://dx.doi.org/10.1063/1.4964902
https://dx.doi.org/10.1063/1.4964902
https://dx.doi.org/10.1063/1.4964902
https://dx.doi.org/10.1021/acs.jpca.0c04526
https://dx.doi.org/10.1021/acs.jpca.0c04526
https://dx.doi.org/10.1021/acs.jpca.0c04526
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00749?ref=pdf


(138) Behler, J.; Reuter, K.; Scheffler, M. Nonadiabatic Effects in the
Dissociation of Oxygen Molecules at the Al(111) Surface. Phys. Rev.
B: Condens. Matter Mater. Phys. 2008, 77, 115421.
(139) Hu, D.; Xie, Y.; Li, X.; Li, L.; Lan, Z. Inclusion of Machine
Learning Kernel Ridge Regression Potential Energy Surfaces in On-
the-Fly Nonadiabatic Molecular Dynamics Simulation. J. Phys. Chem.
Lett. 2018, 9, 2725−2732.
(140) Dral, P. O.; Barbatti, M.; Thiel, W. Nonadiabatic Excited-State
Dynamics with Machine Learning. J. Phys. Chem. Lett. 2018, 9, 5660−
5663.
(141) Chen, W.-K.; Liu, X.-Y.; Fang, W.-H.; Dral, P. O.; Cui, G.
Deep Learning for Nonadiabatic Excited-State Dynamics. J. Phys.
Chem. Lett. 2018, 9, 6702−6708.
(142) Williams, D. M. G.; Eisfeld, W. Neural Network Diabatization:
A New Ansatz for Accurate High-Dimensional Coupled Potential
Energy Surfaces. J. Chem. Phys. 2018, 149, 204106.
(143) Xie, C.; Zhu, X.; Yarkony, D. R.; Guo, H. Permutation
Invariant Polynomial Neural Network Approach to Fitting Potential
Energy Surfaces. IV. Coupled Diabatic Potential Energy Matrices. J.
Chem. Phys. 2018, 149, 144107.
(144) Guan, Y.; Zhang, D. H.; Guo, H.; Yarkony, D. R.
Representation of Coupled Adiabatic Potential Energy Surfaces
using Neural Network Based Quasi-Diabatic Hamiltonians: 1,2 2A’
States of LiFH. Phys. Chem. Chem. Phys. 2019, 21, 14205.
(145) Richings, G. W.; Habershon, S. MCTDH on-the-Fly: Efficient
Grid-Based Quantum Dynamics without Pre-Computed Potential
Energy Surfaces. J. Chem. Phys. 2018, 148, 134116.
(146) Richings, G. W.; Robertson, C.; Habershon, S. Improved on-
the-Fly MCTDH Simulations with Many-Body-Potential Tensor
Decomposition and Projection Diabatization. J. Chem. Theory
Comput. 2019, 15, 857−870.
(147) Guan, Y.; Guo, H.; Yarkony, D. R. Neural Network Based
Quasi-Diabatic Hamiltonians with Symmetry Adaptation and a
Correct Description of Conical Intersections. J. Chem. Phys. 2019,
150, 214101.
(148) Wang, Y.; Xie, C.; Guo, H.; Yarkony, D. R. A Quasi-Diabatic
Representation of the 1,21A States of Methylamine. J. Phys. Chem. A
2019, 123, 5231−5241.
(149) Richings, G. W.; Habershon, S. Direct Grid-Based Quantum
Dynamics on Propagated Diabatic Potential Energy Surfaces. Chem.
Phys. Lett. 2017, 683, 228−233.
(150) Netzloff, H. M.; collins, M. A.; Gordon, M. S. Growing
Multiconfigurational Potential Energy Surfaces with Applications to X
+H2 (X = C,N,O) Reactions. J. Chem. Phys. 2006, 124, 154104.
(151) Bettens, R. P. A.; Collins, M. A. Learning to Interpolate
Molecular Potential Energy Surfaces with Confidence: A Bayesian
Approach. J. Chem. Phys. 1999, 111, 816−826.
(152) Ghosh, K.; Stuke, A.; Todorovic,́ M.; Jørgensen, P. B.;
Schmidt, M. N.; Vehtari, A.; Rinke, P. Deep Learning Spectroscopy:
Neural Networks for Molecular Excitation Spectra. Adv. Sci. 2019, 6,
1801367.
(153) Kananenka, A. A.; Yao, K.; Corcelli, S. A.; Skinner, J. L.
Machine Learning for Vibrational Spectroscopic Maps. J. Chem.
Theory Comput. 2019, 15, 6850−6858.
(154) Roch, L. M.; Saikin, S. K.; Has̈e, F.; Friederich, P.; Goldsmith,
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Excitation of Nucleobases from a Computational Perspective II:
Dynamics, 2014.
(394) Liu, W. Essentials of Relativistic Quantum Chemistry. J. Chem.
Phys. 2020, 152, 180901.
(395) Horton, S. L.; Liu, Y.; Forbes, R.; Makhija, V.; Lausten, R.;
Stolow, A.; Hockett, P.; Marquetand, P.; Rozgonyi, T.; Weinacht, T.
Excited state dynamics of CH2I2 and CH2BrI studied with UV pump
VUV probe photoelectron spectroscopy. J. Chem. Phys. 2019, 150,
174201.
(396) Horton, S. L.; Liu, Y.; Chakraborty, P.; Marquetand, P.;
Rozgonyi, T.; Matsika, S.; Weinacht, T. Strong-Field- Versus Weak-
Field-Ionization Pump-Probe Spectroscopy. Phys. Rev. A: At., Mol.,
Opt. Phys. 2018, 98, 053416.
(397) Sussman, B. J.; Townsend, D.; Ivanov, M. Y.; Stolow, A.
Dynamic Stark Control of Photochemical Processes. Science 2006,
314, 278−281.
(398) Marquetand, P.; Richter, M.; Gonzaĺez-Vaźquez, J.; Sola, I.;
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(580) Bernstein, N.; Csańyi, G.; Deringer, V. L. De Novo
Exploration and Self-Guided Learning of Potential-Energy Surfaces.
npj Comput. Mater. 2019, 5.
(581) Deringer, V. L.; Pickard, C. J.; Csańyi, G. Data-Driven
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