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Type 1 diabetes (T1D) is a widespread disease, affecting approximately 41.5 million
people worldwide. It is generally treated with exogenous insulin, maintaining physiological
blood glucose levels but also leading to long-term therapeutic complications. Pancreatic
islet cell transplantation offers a potential alternative treatment to insulin injections.
Shortage of human organ donors has raised the interest for porcine islet
xenotransplantation. Neonatal porcine islets are highly available, can proliferate and
mature in vitro as well as after transplantation in vivo. Despite promising preclinical
results, delayed insulin secretion caused by immaturity and immunogenicity of the
neonatal porcine islets remains a challenge for their clinical application. Multipotent
mesenchymal stromal cells (MSCs) are known to have pro-angiogenic, anti-
inflammatory and immunomodulatory effects. The current state of research emphasizes
the great potential of co-culture and co-transplantation of islet cells with MSCs. Studies
have shown enhanced islet proliferation and maturation, insulin secretion and graft
survival, resulting in an improved graft outcome. This review summarizes the
immunomodulatory and anti-inflammatory properties of MSC in the context of
islet transplantation.
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INTRODUCTION

Human pancreatic islet transplantation through portal vein infusion, is a current clinical beta-cell
replacement therapy to treat patients with advanced Type I Diabetes (T1D). However, live-long
immunosuppression, difficulties to achieve long-term islet graft function and insulin independence
as well as the shortage of suitable pancreata from heart-beating brain-dead donors for islet isolation,
are still important limitations for ongoing allo-transplantation programs.

Pig islet xenotransplantation is a promising alternative to overcome the bottleneck of islet
availability for the treatment of T1D. However, clinical application of pig to human islet
transplantation will depend on genetic engineering of pigs to overcome immune barriers and to
reduce risks of pathogen infection of porcine viruses (1). Recently, significant progress has been
achieved with the transplantation of pig organs presenting several genomic modifications to prevent
hyperacute rejection (2, 3) and cellular immune responses (4, 5). In immunosuppressed nonhuman
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primates, long-term control of diabetes by the transplantation of
adult porcine islets had been successfully achieved (6, 7). Other
strategies to protect porcine islets from the host immune system
include islet encapsulation in semi-permeable hydrogel, such as
alginate (8) functionalized by bioactive ligands or by poly(ethylene
glycol) (PEG) derivatives (9, 10). Mesenchymal stem cells (MSCs)
are multipotent cells and play an important role in tissue repair,
angiogenesis and their immunomodulatory action on immune cells
have beenwidely studied (11, 12). In thefield of islet transplantation
MSC are investigated for the improvement of islet function and
graft survival after transplantation. Numerous studies of co-culture
and co-transplantation with MSCs indicate a functional support.
However, due to variable transplantation settings and origins of
MSCs the immunomodulatory role, as well as their ability to reduce
inflammatory processes in vivo remains controversial. This review
summarizes the immunomodulatory and anti-inflammatory
properties of MSC in the context of islet transplantation and
evokes some of the current challenges of islet xenotransplantation.
MULTIPOTENT MESENCHYMAL
STROMAL CELLS (MSCs), ALSO CALLED
MESENCHYMAL STEM CELLS

Multipotent mesenchymal stromal cells (MSCs) are self-
renewing multipotential progenitor cells, differentiating along
the osteogenic, chondrogenic and adipogenic lineages (13).
MSCs have first been isolated from the bone marrow over 50
years ago and bone marrow-derived MSCs (BM-MSCs) still
represent the most conventional source. A variety of other
tissues also contain MSCs, including adipose tissue, umbilical
cord blood, Wharton’s jelly, amniotic fluid, endometrium, skin
and skeletal muscle (14–22). It remains unknown which source is
most suitable for the clinical use in the context of islet cell
transplantation and further research is needed concerning
this matter.

To facilitate isolation and expansion as well as to standardize
characterization, the International Society for Cellular Therapy
(ISCT) proposed three minimal criteria for defining
mesenchymal stem cells. First, MSCs must be plastic-adherent
when maintained in standard culture conditions. Second, MSCs
must express CD105, CD73 and CD90, and lack expression of
CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-
DR surface molecules. Third, MSCs must differentiate to
osteoblasts, adipocytes and chondroblasts in vitro (23). MSCs
have been shown to perform various beneficial functions, making
them highly interesting for application in cell-based therapy,
especially also for islet transplantation.
MSCs SUSTAIN ANGIOGENESIS

One major limitation of islet graft survival is a delayed
revascularization after transplantation. After isolation, islet cells
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are cut off from their oxygenation via micro-vascularization
and are temporarily dependent after transplantation on
diffusion of nutrients and oxygen in order to ensure survival.
Neovascularization is finalized after approximately two weeks,
however with a lower capillary density and a significantly reduced
perfusion compared to islets prior to transplantation (24). Further
remodeling takes up to another three months (16).

Several studies have shown a pro-angiogenic potential of
MSCs. MSCs promote angiogenesis through expression and
release of different pro-angiogenic cytokines, including vascular
endothelial growth factor (VEGF), fibroblast growth factor
(FGF), transforming growth factor beta (TGF-b), as well as
annexin 1 (ANXA1), matrix metalloproteinase (MMP) and
Angiopoietin-1 (Ang-1) (16). The impact of VEGF is
contentious, showing not only beneficial proangiogenic but
also damaging proinflammatory effects (16). MSCs seem to
keep a balance through its valuable anti-inflammatory
property, discussed later. Kinnaird et al. demonstrated further
that co-culturing islets with MSCs enhanced neovascularization
of islets through promotion of proliferation and migration of
endothelial and smooth muscle cells (25).

Also, other studies showed that co-transplantation of islets
with MSCs improves graft survival and function by increased
neovascularization, shortening the post-transplantation ischemia
period (26–28).
IMMUNOMODULATORY PROPERTIES
OF MSCs

MSCs do not express co-stimulatory molecules that activate the
immune system, such as CD40, CD80 or CD86 (29). Originally,
it was thought that MSCs express only low or no human
leukocyte antigen (HLA) class I and II molecules. It has since
then been demonstrated that MSCs, like all somatic tissues,
express MHC class I molecules constitutively and have the
ability to express MHC class II when exposed to inflammatory
cues such as interferon-g (30). In vitro studies showed that,
attracted by a number of complement proteins, growth factors,
proinflammatory cytokines and chemokines, MSCs migrate
towards sites of inflammation supporting the hypothesis that
MSCs possess anti-inflammatory properties (17, 31, 32). MSCs
can express potent inhibitory molecules of both, innate and
adaptive immune effectors (33), however, after transplantation,
this may not allow to circumvent acquired alloimmunization, as
observed in human trials (30). Nevertheless, immediate events
such as acute toxicity associated with the administration of MSCs
have not been described (34, 35).

MSCs have also shown to exert an immunomodulatory
effect through phenotype-alteration of different immune cells,
including dendritic cells (DC), T- and B-cells, as well as
natural killer cells (NK cells) (36). Several authors have
described an inhibitory effect of MSCs on immune cell
proliferation, generating an immunosuppressive local milieu
(16, 37–40). Research has further shown that MSCs induce
modifications of the adaptive immune system, notably T-cells,
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entailing T-cell anergy. MSCs act on T-cells through
physically hindering contact with antigen-presenting cells
(APCs) (41) or by an indirect suppression of T-cell
activation via MSCs by hindering the maturation of DCs
through cell-to-cell contact. These semi-mature DCs possess
a tolerogenic phenotype, thus restraining T-cell activation
(42). Also, MSCs are able to inhibit T-cell reactivity through
the downregulation of proinflammatory cytokines (37, 43) and
to escape cytotoxic T-cell-mediated apoptosis (44, 45).
Importantly, MSCs inhibit T-lymphocyte proliferation
through soluble factors, such as TGF-b1 and HGF (41, 46)
or nitric oxide (47). TGF-b1 plays a well-documented role in
MSCs immunomodulation, including a role in regulatory T
cell (Treg) induction and/or expansion (48–50). MSCs
promote the expression of regulatory T-cells (Treg) (43, 51).
Early studies showed that stable islet allograft function in
cynomolgus monkey was associated with increased numbers
of regulatory T-cells in peripheral blood (43). Further, when
co-transplanted with allogeneic islets in diabetic cynomolgus
monkeys, MSCs derived from islet recipient were more
efficient to prolong islet survival, when compared with 3rd
party MSCs or islet derived MSCs from the donor. Using
recipient-derived MSCs, they observed decreased number of
memory T cells, reduced anti-donor T cell proliferation and
higher Treg:T cell ratios (52).
CO-TRANSPLANTATION OF ISLETS
WITH MSCs FROM DIFFERENT SOURCES

Various possible sources of MSCs have been tested for co-
transplantation with islet cells so far.

In murine models, several studies showed improved and
prolonged graft survival , function, morphology and
revascularization, as well as induction of beta cell proliferation
following transplantation of murine islets with autologous (53),
syngeneic (27, 54, 55), allogeneic (27, 56–59) or xenogeneic
MSCs (60). In mice, co-transplantation of autologous MSCs
delayed islet allograft rejection and generated a local immune-
privileged site in mice (53). Rackham et al. studied the effects of
co-transplantation of syngeneic murine MSCs and islet cells, and
observed an improved graft outcome (54). In a subsequent study
they examined the underlying factors, suggesting Annexin A1 to
be a key contributor to the improved graft function through
direct and indirect mechanisms (61). The exact mechanisms
remain unclear.

Co-transplantation of islets with MSCs in syngeneic rodent
models showed better outcomes of islet survival and function
than islets transplanted alone (26, 27, 62). Karaoz et al.
described an improved islet function after co-culturing
allogenic rat MSCs and islet cells, suggesting paracrine
actions through IL-6, TGF-b1, osteopontin and fibronectin
(59). Further, allogeneic MSCs resulted in improved islet
xenograft survival and function in immune-competent
diabetic mice (63). In cynomolgus monkeys, intraportal
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co-infusion of allogenic MSCs and islets, increased islet
engraftment and function, shown by a reduced number of
islets necessary to reach normoglycemia (43).

Co-encapsulation studies using islets versus islets and
MSC also showed beneficial effects on islet function (64–66).
Intraperitoneally syngeneic transplantation of co-encapsulated
islets and MSCs showed significantly lower glycaemia
compared to islets encapsulated alone. By week 6, 71% of
mice transplanted with islets and MSCs were cured, whereas
only 16% of the islets-alone group was cured at that point.
Interestingly, islet area in recovered capsules was significantly
higher when co-encapsulated with MSCs suggesting that MSCs
promote survival of islet cells independently from its effects on
revascularization. In this study co-encapsulation of islets with
MSC did not inhibit pericapsular fibrotic overgrowth (PFO),
suggesting that MSCs have no influence on the inflammatory
process that causes fibrotic overgrowth (64). PFO is an
inflammatory host reaction, induced through the leakage of
antigens from semi-permeable microcapsules, that severely
impairs islet viability and graft function. However, in a
mouse model of islet allotransplantation, co-encapsulation of
MSCs (stimulated or not with a cocktail of pro-inflammatory
cytokines) with islets in alginate microcapsules, prevented
pericapsular fibrotic overgrowth (PFO) compared to islets
encapsulated alone (66). Further mice receiving islets co-
encapsulated with stimulated and unstimulated MSC achieved
higher percentages of normoglycemic mice (100% versus
71.4%, respectively) compared to mice transplanted with
islets encapsulated alone (9.1%). Similarly, in vitro rat MSCs
and rat islet cells when co-encapsulated in a ligand-
functionalized polyethylene glycol (PEG) hydrogel (67) led to
a doubling of the stimulation index compared to islets
encapsulated alone. Co-encapsulation of islet cells and MSCs
in addition with cell adhesion peptides led to a significant
sevenfold increase of the stimulation index compared to islets
encapsulated alone (67).

Human islets co-cultured in direct cell contact with human
MSCs compared to islets co-cultured with MSCs but without
cell-to-cell contact, displayed significantly enhanced insulin
secretion in the presence of cell-to-cell contact. This effect
was identified to be dependent on N-cadherin interaction,
since impeding N-cadherin interaction with antibodies led to
a reversal of the enhanced insulin secretion. Additionally,
mice transplanted intraperitoneally with human islets co-
encapsulated with MSCs in hydrogel microspheres, composed
of calcium alginate and covalently crosslinked to polyethylene
glycol showed significantly lower blood glucose levels
and prolonged islet graft survival (57). Others have shown
that improved graft function correlates with enhanced
revascularization of islets transplanted under the kidney
capsule (68–70). Accordingly, research findings revealed
significantly higher apoptosis rates in islet cells cultured
without MSCs (16).

Taken altogether, these findings support the hypothesis that
co-transplantation of MSCs and islet cells is beneficial and that
MSCs are useful for future therapeutic applications.
February 2022 | Volume 13 | Article 822191
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IMPROVED NEONATAL PORCINE ISLET
FUNCTION, SURVIVAL AND GRAFT
OUTCOME

The main disadvantage of neonatal or juvenile porcine islets, also
called porcine pancreatic islet cell clusters (ICCs), is their lack of
integrity and maturity. ICCs are obtained by in vitro digestion of
neonatal or juvenile pig pancreas with subsequent short time
culture in a specific maturation media to increase the beta cell
mass for transplantation (Figure 1) (71). Also, porcine
pancreatic ICC co-transplanted with human MSC into
immune deficient diabetic mice reached normoglycemia
significantly earlier than mice transplanted with ICC alone (60).

He et al. demonstrated an improved and accelerated
development of ICCs in diabetic rhesus monkeys after co-
transplantation with allogeneic simian MSCs into diabetic
rhesus monkeys (72). Additionally, the group described an
enhanced expression of genes implicated in the development of
endocrine cells and insulin and further demonstrated enhanced
expression and activation of PDGFR-a in neonatal islets through
MSCs confirming earlier studies demonstrating the capability of
PDGFR-a to stimulate beta-cell proliferation (73). Further, He
et al. suggest an inhibition of the Notch1 signaling provoked by
PDGFR-a, leading to an improved islet development and
maturation. It is known that Notch1 downregulates the
expression of several genes and transcription factors implicated
in the development of endocrine cells and insulin (72, 74).
Juvenile porcine exocrine pancreas-derived MSCs (pMSCs) co-
cultured with direct cell to cell contact of juvenile porcine ICCs
significantly enhanced beta-cell function, suggesting that cell
signaling via adhesion molecules are important (57, 65).
However, co-encapsulation of such ICCs with pMSCs do not
effectively prevent PFO and graft survival was rapidly impaired
after transplantation of capsules in immunocompetent mice.
Therefore, further research is required to enable efficient long-
term survival of encapsulated juvenile porcine islets. Possible
approaches being evaluation of modified alginate chemical
Frontiers in Endocrinology | www.frontiersin.org 4
composition (75) or the use of different anti-fibrotic
polymers (65).
IMMUNOMODULATION STRATEGIES TO
INCREASE XENOGRAFT SURVIVAL

To overcome the immunological barrier between pig and
humans, genetic modifications have been performed in pig
strains to reduce immunogenicity of organs and tissue. The
first genetically modified pig, i.e. with a single human
transgene for a complement regulating gene (hDAF), allowed
survival of pig organs in immunosuppressed non-human
primates for several months. Since then, genetic engineering,
using CRISPR-CAS9, allowed cloning of animals with additional
genetic modifications. Today, pigs with over 10 genetic
modifications, both, deletions of pig antigens and inclusions of
human transgenes are under investigation for transplantation
purposes (76). Immunosuppressive regimens are still necessary
but recently heart transplantation from genetically modified pigs
[a1,3-galactosyltransferase-knockout and knock in human
CD46 (77, 78) and thrombomodulin (79)] to a non-human
primate (baboon) reached long term survival of 195 days (80).

Furthermore, immunoregulatory therapies (tolerance
induction) using Treg-based therapeutic approaches are under
investigation. Regulatory T cells (Tregs) are immune-suppressive
T cells that are critical for the maintenance of tolerance in vivo
(81). Chimeric antigen receptors (CARs) are synthetic fusion
proteins that have been developed to genetically modify T cells in
order to create a specificity toward designated antigens. The
application of the CAR technology to Tregs, may allow to reduce
immune responses for solid organ and cell transplantation. CAR
Treg therapies are currently developed using genetic
modifications for xenogenic pig antigens with the aim to
improve graft acceptance of xenotransplanted tissue i.e.
porcine islets. This might be achieved through infusion of ex
vivo expansion of donor-specific Tregs (55, 82).
FIGURE 1 | In vitro differentiation of isolated porcine pancreatic islet cell clusters: Panel (A) shows cell clusters containing insulin-positive beta cells (green) and CK7-
positive pancreatic exocrine tissue (red) at 3 days after isolation. Panel (B) shows pancreatic islet cell clusters 7 days after culture in neonatal pig islet differentiation
media (scale bar represents 250 mm).
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CAR-Tregs technology started with a study of MacDonald
and colleagues which successfully transduced human Tregs with
a CAR targeting the human leukocyte antigen (HLA) class I-A2
(A2-CAR) (83). In a human skin xenograft transplant model,
HLA class I-A2 specific CAR-Tregs alleviated rejection of skin
transplants (84). Since co-transplantation of autologous MSC
delayed islet allograft rejection, it is possible that genetically
modified, MSC, could be exploited as a target cell in porcine ICC
xenografts to foster islet function and to increase trafficking and
activation of adoptive transferred CAR-Treg cells to increase
tolerance toward pig ICC xenografts.

An additional challenge for islet transplantation is the
precise quantification of beta cell mass (BCM) or endocrine
cell mass (ECM) in vivo. Imaging the progressive loss of beta
cells following islet transplantation should allow the
development of individualized therapies for the management
of patients post-transplant (85). Recently, a suitable biomarker
for beta cell quantification, the dipeptidyl aminopeptidase-like
protein 6 (DPP6) has been identified as a promising target for
human BCM imaging in healthy individuals as well as diabetic
patients (86, 87). First imaging and biodistribution studies
using SPECT/CT and radiolabeled high-affinity camelid
single-domain antibody (nanobody) directed specifically
against human DPP6, allowed to visualize transplanted
DPP6-expressing Kelly neuroblastoma cells or insulin-
producing human EndoC-bH1 cells in immunodeficient mice.
Importantly, neonatal pig islets expressing near-infrared
fluorescent protein (iRFP) were non-invasively monitored
through multispectral optoacoustic tomography (MSOT).
MSOT signals, obtained after islet transplantation under the
kidney capsule in mice, and obtained after subcutaneous and
intramuscular islet transplantation in pigs, allowed to
distinguish graft mass changes (88). Such reporter gene-
expressing islets are also promising tools to evaluate the
efficacy of newly developed biomaterials for encapsulation
and transplantation of porcine islets.
Frontiers in Endocrinology | www.frontiersin.org 5
CONCLUSION

Diabetes is a worldwide disease, affecting over 40 million people and
putting an important burden on the healthcare system. Exogenous
insulin represents the predominant treatment modality for type 1
diabetes, but is associated with long-term complications. Islet cell
transplantation is a highly promising approach for treating type 1
diabetes aiming at reestablishing a physiological insulin secretion
through replacement of the endocrine tissue. Despite improving
preclinical and clinical results over the past decades, the need for
immunosuppression and donor shortage limits the clinical
application of this procedure. The implementation of porcine
pancreatic ICCs with porcine MSC might represent a promising
alternative to help to overcome the problem of donor shortage;
especially neonatal or juvenile pigs providing high islet yields.
Encapsulation techniques could resolve the need for
immunosuppression, shielding the islets from immune attacks
while still enabling the exchange of oxygen, insulin and nutrients.
Yet, delayed and impaired graft outcome due to immature islet cells
and the formation of pericapsular fibrosis continue to severely limit
the clinical application of encapsulated islet transplantation.
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