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A B S T R A C T   

Background: Chest X-ray radiography (CXR) has been widely considered as an accessible, feasible, and convenient 
method to evaluate suspected patients’ lung involvement during the COVID-19 pandemic. However, with the 
escalating number of suspected cases, traditional diagnosis via CXR fails to deliver results within a short period of 
time. Therefore, it is crucial to employ artificial intelligence (AI) to enhance CXRs for obtaining quick and ac-
curate diagnoses. Previous studies have reported the feasibility of utilizing deep learning methods to screen for 
COVID-19 using CXR and CT results. However, these models only use a single deep learning network for chest 
radiograph detection; the accuracy of this approach required further improvement. 
Methods: In this study, we propose a three-step hybrid ensemble model, including a feature extractor, a feature 
selector, and a classifier. First, a pre-trained AlexNet with an improved structure extracts the original image 
features. Then, the ReliefF algorithm is adopted to sort the extracted features, and a trial-and-error approach is 
used to select the n most important features to reduce the feature dimension. Finally, an SVM classifier provides 
classification results based on the n selected features. 
Results: Compared to five existing models (InceptionV3: 97.916 ± 0.408%; SqueezeNet: 97.189 ± 0.526%; 
VGG19: 96.520 ± 1.220%; ResNet50: 97.476 ± 0.513%; ResNet101: 98.241 ± 0.209%), the proposed model 
demonstrated the best performance in terms of overall accuracy rate (98.642 ± 0.398%). Additionally, compared 
to the existing models, the proposed model demonstrates a considerable improvement in classification time 
efficiency (SqueezeNet: 6.602 ± 0.001s; InceptionV3: 12.376 ± 0.002s; ResNet50: 10.952 ± 0.001s; ResNet101: 
18.040 ± 0.002s; VGG19: 16.632 ± 0.002s; proposed model: 5.917 ± 0.001s). 
Conclusion: The model proposed in this article is practical and effective, and can provide high-precision COVID- 
19 CXR detection. We demonstrated its suitability to aid medical professionals in distinguishing normal CXRs, 
viral pneumonia CXRs and COVID-19 CXRs efficiently on small sample sizes.   

1. Introduction 

1.1. Background 

The COVID-19 pandemic has presented a huge challenge to global 
health since February 2020. It is extremely important to screen and 
isolate all patients with suspected COVID-19 at their first point of con-
tact to break the chain of transmission. Chest imaging plays an essential 
role in the early diagnosis of patients with suspected COVID-19 chest 
infections because the chest X-ray radiology (CXR) can evaluate their 

lung abnormality and is readily available in community physician of-
fices, urgent care clinics and hospital emergency departments [1]. In the 
case of COVID-19, radiological appearance obtained in CXRs is related 
to RT-PCR examination and patient outcome [2]. Vancheri et al. 
confirmed the effectiveness of employing CXR as a first-line imaging 
modality in the diagnostic workflow of patients with suspected 
COVID-19 pneumonia. Their results substantiated that chest radiog-
raphy showed lung abnormalities in 75% of patients with confirmed 
SARS-CoV-2 infection, ranging from 63.3 to 83.9%, at 0–2 days and >9 
days from the onset of symptoms [3]. 

Nevertheless, the rapidly accelerating number of suspected COVID- 
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19 cases still leads to depletion of diagnostic resources due to the lack of 
physicians. Consequently, at present, it is imperative to utilize artificial 
intelligence (AI) in CXR, which can offer physicians quick and accurate 
diagnostic assistance, and therefore alleviate the shortage of medical 

resources and promote medical efficiency. 

1.2. Related work 

Recently, several researchers have proposed various models for the 
AI-assisted imaging diagnosis of COVID-19 and obtained some signifi-
cant results. Varela-Santos et al. proposed an initial experiment using 
image texture feature descriptors, as well as feed-forward and con-
volutional neural networks on several created databases with COVID-19 
images. Their work verified the effectiveness of the supervised learning 
model in the AI-assisted differential diagnosis between COVID-19 and 
other lung diseases [4]. Ozturk et al. proposed a model with classifica-
tion accuracy of 98.08% for binary classification (normal versus 
COVID-19) and 87.02% for multi-class classification tasks (normal 
versus viral pneumonia versus COVID-19), which still needs improve-
ment [5]. Zhang Yudong et al. introduced stochastic pooling to replace 
average pooling and max pooling with the traditional deep convolu-
tional neural network (DCNN) model, which achieved an accuracy of 
93.64% ± 1.42% in distinguishing COVID-19 cases from normal subjects 
[6]. Matteo et al. proposed a light convolutional neural network (CNN) 
design, based on the SqueezeNet, for efficient discrimination of 
COVID-19 CT images with respect to other community-acquired pneu-
monia and/or healthy CT images. Their architecture allows an accuracy 
of 85.03%, with fewer parameters and higher efficiency compared to 
that of the classical SqueezeNet [7]. Yan et al. designed an AI system to 
diagnose COVID-19 using multi-scale convolutional neural networks 
(MSCNNs), which can assess CT scan results [8]. Benbrahim et al. 
adopted a deep learning method using the Inceptionv3 model and the 
ResNet-50 model, and successfully realized classification of COVID-19 in 
chest X-ray images (the accuracies of those models were 99.01% and 
98.03%, respectively) [9]. Shayan established two methods, deep neural 
network (DNN) for image fractal features and convolutional neural 
network (CNN) for lung images, to identify new coronary chest 

Abbreviations 

COVID-19 Corona Virus Disease 2019 
CXR Chest X-ray 
CT Computed Tomography 
SVM Support Vector Machine 
SGDM Stochastic Gradient Descent with Momentum 
TP True Positive 
TN True Negative 
FP False Positive 
FN False Negative 
VGG Visual Geometry Group 
RBF Radial Basis Function 
DNN Deep Neural Networks 
CNN Convolutional Neural Networks  

Table 1 
Dataset used in this study.  

Class Training set Test set Total 

1 COVID-19 380 163 543 
2 Viral pneumonia 420 180 600 
3 Normal 420 180 600 
Total 1220 523 1743  

Fig. 1. Examples of three types of samples in the dataset: (A) Normal; (B) Viral pneumonia; (C) COVID-19.  

Fig. 2. An overview of model architecture: a transferred AlexNet for feature extraction, the ReliefF algorithm for feature selection and an SVM classifier.  
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radiograph images. The classification results demonstrated that the CNN 
architecture is better than the DNN model with an accuracy of 93.2% 
and a sensitivity of 96.1% [10]. Shervin et al. trained four commonly 
used convolutional neural networks, including ResNet-18, ResNet-50, 
SqueezeNet, and DenseNet-121, to classify suspected COVID-19 images 
[11]. Among them, SqueezeNet demonstrated the best performance, 
reaching a sensitivity of 98% and a specificity of 92%. Toraman et al. 

proposed a novel artificial neural network, Convolutional CapsNet, 
which processed chest X-ray images with capsule networks [12]; fast 
and accurate diagnostics for COVID-19 were attained via two different 
classifications: binary classification (COVID-19 and No-Findings) and 
multi-class classification (COVID-19, No-Findings, and Pneumonia); this 
method achieved accuracies of 97.24% and 84.22% for binary class and 
multi-class, respectively [12]. These previous studies to screen 
COVID-19 are based on deep learning methods processing CT images 
and X-ray radiographs; these precedents affirmed the feasibility of 
introducing AI in COVID-19 diagnosis. Linda Wang et al. proposed 
COVID-Net, a deep convolutional neural network design tailored for the 
detection of COVID-19 cases from chest X-ray (CXR) images [13]. Lee 
Ki-Sun et al. fine-tuned the structures of VGG16 and VGG19 convolu-
tional neural networks. Their experimental results showed a highest 
value for area under the receiver operating characteristic (ROC) curve 
(AUC) of 0.950 for COVID-19 classification in an experimental group 
fine-tuned with only 2/5 blocks of the VGG16 backbone network [14]. 
Chaimae et al. proposed CVDNet, a deep convolutional neural network 

Fig. 3. Structure of AlexNet used in this work.  

Table 2 
Pseudo-code of the ReliefF algorithm [25]. 

Table 3 
Parameters used in AlexNet training.  

Parameters Value 

Initial learn rate 5 × 10− 4 

Learn rate drop factor 0.1 
L2 regularization 1 × 10− 4 

Max epochs 6 
Mini batch size 32  
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(CNN) model to classify COVID-19 infection from normal and other 
pneumonia cases using chest X-ray images [15]. The proposed archi-
tecture is based on a residual neural network and is constructed using 
two parallel levels with different kernel sizes to capture local and global 
features of the inputs. Motamed et al. adopted a confrontation network 
(RANDGAN), which can detect images of unknown categories 
(COVID-19) and labeled categories (normal and viral pneumonia) from 
known networks without labeling and training data, but the effect is 
limited (the area under the ROC curve can only reach 0.77) [16]. 
However, these models use a single deep learning network whose pro-
cessing efficacy and accuracy remain to be further improved. According 
to Soumya Ranjan Nayak et al.‘s comprehensive study [17], the further 
development of effective deep CNN models for a more accurate 

diagnosis of COVID-19 infection is still in urgent need because the 
maximum accuracy value of single CNNs did not exceed 98.33% for 
binary classification (COVID-19 versus normal). 

Single neural network models usually need expanding structures to 
further improve the accuracy of the model, which complicates the model 
and prolongs training time. Researchers have proposed several hybrid 
structures to improve the accuracy and efficacy of machine learning 
models. Özkaya et al. used convolutional networks and an SVM on the 
classification task, but did not perform feature selection, and only 
distinguished normal chest radiographs from COVID-19 chest radio-
graphs, which has limited application scenarios [18]. Yu Xiang et al. 
combined three components including feature extraction, graph-based 
feature reconstruction, and classification to complete the binary classi-
fication task of COVID-19 and normal CXRs [19]. Their model achieved 
the best accuracy of 0.9872. However, these models use a single deep 
learning network, whose processing efficacy and accuracy remain to be 
further improved. 

1.3. Our work 

An advanced hybrid model with feature extraction, feature selection 
and classification components may help solve the accuracy and effi-
ciency issues in the differential diagnosis of COVID-19, common pneu-
monia and normal CXRs. To solve this problem, this paper proposes a 
three-step hybrid ensemble model comprising a feature extractor, 
feature selector, and classifier. First, an improved AlexNet serves as a 
feature extractor to extract the original image features. Subsequently, 
the ReliefF algorithm ranks the extracted features according to their 
importance. The best number of input features (n) is determined through 
the trial-and-error method, and the first n features are be input to the 
SVM classifier. Finally, the SVM classifier gives the classification results 

Fig. 4. The training curve of the model.  

Fig. 5. Classification accuracy of SVM classifier with different numbers of 
input features. 
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according to n selected features. Although the components of this hybrid 
model are individually relatively simple compared to the aforemen-
tioned single deep neural network, this model still manages to attain 
high accuracy under the synergistic effect of each component and thus 
excels the traditional single deep neural network in COVID-19 CXR 
detection. 

In this article, we introduce the dataset used in model training and 
validation, and elaborate the model architecture and its components 
(AlexNet, ReliefF and SVM). In the experiment section, the concrete 
procedures of model training will be explained based on three aspects: 
feature extraction, feature selection and classification. Then, the results 
of self-contrast and comparative studies are presented to illustrate the 
superiority of the proposed model. Finally, a discussion is given on the 
proposed model. 

2. Materials and methods 

2.1. Dataset 

To meet the input requirements of the AlexNet, the sizes of the im-
ages were converted to 227 × 227 × 3, before they were input to the 
model. The normal CXRs and viral pneumonia CXRs were obtained from 
the NIH Chest X-ray database [20], and the COVID-19 CXRs were 
collected from https://github.com/tawsifur/COVID-19-Chest-X-ray- 
Detection [21], and https://github.com/ieee8023/covid-chestxra 
y-dataset [22], (shown in Table 1). To ensure the fairness of training, 
each category of pictures was randomly selected from these databases. 
Fig. 1 shows examples of three types of samples in the dataset used in 
this study. 

Fig. 6. Structures of models used in self-contrast study: (A) original AlexNet, (B) improved AlexNet, (C) improved AlexNet + SVM, (D) improved AlexNet + ReliefF 
+ SVM. 

Fig. 7. Classification results of four models: (A) Original AlexNet, (B) Improved AlexNet, (C) Improved AlexNet + SVM, and (D) Proposed model (improved AlexNet 
+ ReliefF + SVM). The results displayed in this figure correspond to the results with the highest classification accuracy of each model. 
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2.2. Model architecture 

As shown in Fig. 2, the proposed model mainly consists of three 
parts: feature extraction by a transferred AlexNet), feature selection with 
the ReliefF algorithm and SVM classifier. 

In terms of feature extraction, all the images are input to the AlexNet, 
and the output of a certain layer of the network is regarded as the fea-
tures of the image for classification. Because computer-aided diagnosis 
systems and other medical image interpretation systems are usually 
unable to train convolutional neural networks from scratch, common 
features can be migrated from trained convolutional neural networks to 
be used as input classifiers for imaging tasks in transfer learning. 

In feature selection, the features extracted in the first step are sorted 
according to their importance using the ReliefF algorithm. Then the first 
few features that are most important for classification are selected by 
trial-and-error. The third part establishes the SVM model. When the 
features selected previously are input to the SVM model, it classifies the 
filtered features and obtain the final classification results. 

2.3. Components of the proposed model 

As mentioned in Section 2.2, the proposed model includes three 
parts: AlexNet, ReliefF and SVM. These three components are intro-
duced in detail in this section. 

2.3.1. AlexNet 
AlexNet was originally proposed by Alex Krizhevsky et al. at the 

University of Toronto. It uses two GPUs for calculations, which consid-
erably improves computational efficiency [23]. 

As a large network, AlexNet has 60 million parameters and 650,000 
neurons, requiring a large number of labeled samples to train [23], 
which is a requirement that the labeled COVID-19 CXR image resources 
are incapable of satisfying. Under these circumstances, transfer learning 
is a convenient and effective method widely used to train deep neural 
networks when the available labeled samples are not sufficient. 
Employing all the parameters in a pre-trained network as an initializa-
tion step can exploit features that learned from massive datasets. These 
layers are mainly used for feature extraction, and the obtained 

parameters can help the training to converge. Furthermore, 
high-performance GPU and CPU are required to train deep networks, but 
transfer learning can be implemented on common personal computers. 

In the proposed model, we improved AlexNet by replacing the last 
two layers (a fully connected layer with 1000 neurons and a softmax 
layer) with our layers: two fully connected layers with ten and three 
nodes (referring to three types of categories: normal, viral pneumonia 
and COVID-19), respectively, and a softmax layer (shown in Fig. 3). The 
rest of the parameters of the original model were preserved and served 
as the initialization. Then, the entire structure is divided into two parts: 
the pre-trained network and the transferred network. The parameters in 
the pre-trained network were already trained on ImageNet with millions 
of images, and the extracted features have been proven effective for 
classification. These parameters may require marginal adjustment to 
adapt to the new images. The parameters in the transferred network 
hold a small fraction of the entire network, which is appropriate for 
training on a small dataset. 

2.3.2. ReliefF 
ReliefF is a dimension reduction method developed by Kira and 

Rendell, which can help remove unnecessary attributes from the data set 
and save storage space, thus reducing computational complexity and 
saving model training time. In 1994, the ReliefF model was improved by 
enhancing the noise resistance in the dataset and making it suitable for 
multi-class problems by ignoring missing data [24]. ReliefF aims to 
reveal the correlations and consistencies present in the attributes of the 
dataset. 

The basic procedures of ReliefF are shown in Table 2 in pseudo-code 
[25]. In this work, the ReliefF algorithm is used to sort the extracted ten 
features based on their importance. The data used are the feature data of 
the training set, not the test set. After experimentation, we finally 
determined that only several of the most important features need to be 
used for classification to achieve the best classification speed and ac-
curacy, which will be further illustrated in the following sections. 

2.3.3. SVM 
Support vector machines (SVMs) are supervised learning methods 

developed by Vapnik based on statistical learning theory [24]. SVM 

Fig. 8. Confusion matrices of four models: (A) Original AlexNet (95.98%), (B) Improved AlexNet (98.09%), (C) Improved AlexNet + SVM (98.47%), and (D) 
Proposed model (improved AlexNet + ReliefF + SVM) (99.43%) The results displayed in the confusion matrix correspond to the results with the highest classification 
accuracy of each model. 
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performs the learning process with the dataset divided into training and 
test sets. It achieves data classification by determining a decision func-
tion and detecting the hyperplane that could distinguish the data. 

At present, SVMs have widespread applications in various disciplines 
for classification tasks such as text classification, facial recognition, 
handwritten character recognition, bioinformatics, and other fields. In 
solving multi-classification problems, SVMs divide the original classifi-
cation problem into two classification problems. Hence, when applied to 
multi-classification, the difficulty and complexity of training accord-
ingly increase in parallel with increasing number of sample categories. 
Reducing the amount of calculation and computational complexity is a 
known problem for SVMs, requiring new research solutions [24]. 
Herein, we propose to utilize the ReliefF algorithm to reduce the 
dimensionality of the sample data. 

3. Experiment 

3.1. Feature extraction 

The model was fine-tuned using the transfer learning method and the 

pre-trained AlexNet provided by MATLAB. The specific fine-tuning 
method involves adding a fully connected layer between layers 22 and 
23 (that is, between fc8 and drop7), with 10 neurons in the added layer 
(the outputs of this layer are features extracted for subsequent selec-
tion). The original fc8 layer has 1000 neurons, corresponding to the 
classification of 1000 types of pictures. Considering that our classifica-
tion results only included three types (normal, COVID-19, and ordinary 
viral pneumonia), the number of neurons in this layer was set to 3. 

To adapt the model to be more suitable for the classification goals of 
this study, after the model structure is adjusted, the training set is used 
to train the model to fine-tune the weights. After the model was trained, 
all the data were input to the model to obtain 10 features of a total of 
1743 pictures including the test set (521 pictures) and the training set 
(1222 pictures). The transferred AlexNet was trained by stochastic 
gradient descent with momentum (SGDM). The parameters used in 
training AlexNet are given in Table 3. The training curve of the model is 
shown in Fig. 4. 

3.2. Feature selection and classification 

Taking a specific experiment as an example, we explain how the best 
n features are determined. This study uses SVM to classify the data after 
feature screening, and the division of the training and test sets is 
consistent with Section 3.1. The kernel function used by SVM is the RBF 
kernel. 

As mentioned above, our proposed approach adopts an SVM to 
classify the previously extracted features. The classification accuracy of 
the SVM model is related to the number of input features. Inadequate 
features will lead to lower classification accuracy, while redundant 
features will result in a significant increase in model training time. 

Table 4 
Classification results.  

(A) Original AlexNet (n = 40) 

Classification Accuracy Specificity Sensitivity F-score 

1 COVID-19 96.864 ± 1.655% 98.244 ± 1.713% 91.656 ± 6.102% 94.704 ± 3.078% 
2 Viral pneumonia 96.272 ± 1.835% 92.110 ± 4.613% 97.833 ± 2.290% 94.803 ± 2.389% 
3 Normal 98.528 ± 0.675% 98.145 ± 1.767% 97.611 ± 1.978% 97.854 ± 0.996% 
Total 95.832 ± 1.895% 96.167 ± 1.540% 95.700 ± 2.007% 95.787 ± 1.953%  

(B) Improved AlexNet (n = 40) 

Classification Accuracy Specificity Sensitivity F-score 

1 COVID-19 97.897 ± 0.941% 98.980 ± 0.414% 94.233 ± 3.325% 96.516 ± 1.622% 
2 Viral pneumonia 97.648 ± 1.000% 94.656 ± 2.719% 98.833 ± 0.960% 96.676 ± 1.362% 
3 Normal 98.872 ± 0.229% 98.466 ± 1.208% 98.278 ± 1.155% 98.360 ± 0.329% 
Total 97.208 ± 0.955% 97.367 ± 0.821% 97.115 ± 1.027% 97.184 ± 0.977%  

(C) Improved AlexNet + SVM (n = 40) 

Classification Accuracy Specificity Sensitivity F-score 

1 COVID-19 98.834 ± 0.436% 98.279 ± 0.555% 97.975 ± 1.262% 98.123 ± 0.712% 
2 Viral pneumonia 98.642 ± 0.343% 97.289 ± 1.350% 98.833 ± 0.665% 98.047 ± 0.478% 
3 Normal 98.815 ± 0.217% 98.934 ± 0.546% 97.611 ± 0.644% 98.266 ± 0.320% 
Total 98.145 ± 0.404% 98.168 ± 0.384% 98.140 ± 0.426% 98.145 ± 0.410%  

(D) The proposed model (Improved AlexNet + ReliefF + SVM) (n = 40) 

Classification Accuracy Specificity Sensitivity F-score 

1 COVID-19 99.082 ± 0.335% 98.412 ± 0.577% 98.650 ± 0.950% 98.528 ± 0.540% 
2 Viral pneumonia 99.082 ± 0.369% 98.302 ± 1.061% 99.056 ± 0.375% 98.674 ± 0.528% 
3 Normal 99.120 ± 0.273% 99.218 ± 0.467% 98.222 ± 0.861% 98.715 ± 0.403% 
Total 98.642 ± 0.398% 98.644 ± 0.388% 98.643 ± 0.406% 98.639 ± 0.398%  

Table 5 
Classification time consumed by models (C) AlexNet + SVM and (D) AlexNet + ReliefF + SVM (n = 40).  

Models Feature extraction time/s Time for classifier/s Total/s 

(C) AlexNet + SVM 5.896 ± 0.001 0.028 ± 0.000 5.924 ± 0.001 
(D) AlexNet + ReliefF + SVM 5.896 ± 0.001 0.022 ± 0.001 5.917 ± 0.001  

Table 6 
Total time* consumed by models in comparative study (n = 40).  

Models Total/s 

SqueezeNet 6.602 ± 0.001 
InceptionV3 12.376 ± 0.002 
ResNet50 10.952 ± 0.001 
ResNet101 18.040 ± 0.002 
VGG19 16.632 ± 0.002 
AlexNet + ReliefF + SVM 5.917 ± 0.001 
* The time required for total classification in seconds.  
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Therefore, the ReliefF algorithm is used to sort the 10 features previ-
ously extracted by AlexNet, so that they are ranked from high to low in 
order of importance, and the trial-and-error method is adopted by 
inputting the first n features into the SVM model in turn to determine the 
optimal number of model input features. The division of the training and 
test sets is consistent with Section 3.1. We used the RBF kernel in SVM. 

In Fig. 5, it is shown that when the input of the SVM classifier is the 
top five important features, the accuracy of the classification results can 
reach 99.33%, which is the highest value compared with other numbers 
of input features. Although the accuracy can reach the same level when 
the first seven features are input, an increased number of input features 
means a longer model training time. Thus, we determined that the top 
five features given by the AlexNet and ReliefF algorithm were optimal 
for this application. 

However, the process presented here is only for a certain experiment. 

In the accuracy comparison in the following sections, we conducted 
several independent repeated experiments to determine the strength of 
the proposed model in terms of accuracy, specificity and sensitivity 
compared with some existing models. In each independent repeat 
experiment, the optimal feature number n is determined according to 
the specific experimental results, and the value of n is not always 5. 
However, in the application of the model, we only need to determine the 
value of the optimal feature number n once in the model training pro-
cess, which will not affect the generality of the model. 

In the following self-contrast study mentioned in Section 4.2, four 
models (A), (B), (C) and (D), shown in Fig. 6, are compared. The pro-
posed model (Model (D)) uses improved AlexNet, ReliefF and SVM, and 
the models (A) original AlexNet, (B) improved AlexNet, (C) improved 
AlexNet + SVM were also built to verify the effectiveness of the model 
components proposed in this article. 

Table 7 
AUC (Area under ROC curves) values. (AUC 1, 2, 3 are defined when true positive results are defined as 
COVID-19, viral pneumonia, and normal samples are accurately recognized, respectively). 

Fig. 9. Confusion matrix of (A) The proposed model (improved AlexNet + ReliefF + SVM) (99.43%); (B) InceptionV3 (98.47%); (C) SqueezeNet (97.51%); (D) 
ResNet-50 (97.90%); (E) ResNet-101 (98.27%); and (F) VGG19 (97.32%). The results displayed in the confusion matrix correspond to the results with the highest 
classification accuracy of each model. 

Fig. 10. Precision-recall curves of (1) proposed model (improved AlexNet + ReliefF + SVM); (2) InceptionV3; (3) SqueezeNet; (4) ResNet50; (5) ResNet101; and (6) 
VGG19: (A) Overall; (B) Magnified. 
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Fig. 11. Comparative result: performances of proposed method (improved AlexNet + ReliefF + SVM), SqueezeNet, InceptionV3, ResNet50, ResNet101 and VGG19 
(n = 40). 

Fig. 12. ROC curves of (A) improved AlexNet + ReliefF + SVM, (B) SqueezeNet, (C) InceptionV3, (D) VGG19, (E) ResNet50 and (E) ResNet101 when true positive 
results are defined as that COVID-19 samples are accurately recognized. 
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4. Results and discussion 

4.1. Metrics for evaluation 

The four metrics used for model evaluation are accuracy, specificity, 
sensitivity, and F-score. They are defined as follows: 

Accuracy =
TP + TN

TP + TN + FP + FN
× 100%  

Specificity =
TP

TP + FP
× 100%  

Sensitivity =
TP

TP + FN
× 100%  

F − score =
2TP

2TP + FP + FN
× 100%  

where TP (true positives) refers to the correctly predicted COVID-19 
cases, FP (false positives) refers to normal or common viral pneu-
monia cases that were classified as COVID-19 by a model, TN (true 
negatives) refers to normal or common viral pneumonia cases that were 
classified as non-COVID-19 cases, while FN (false negatives) refers to 
COVID-19 cases that were classified as normal or as common viral 
pneumonia cases. 

In this study, confusion matrices were also used in the model eval-
uation. The confusion matrix is an error matrix commonly used in 
evaluating the performance of supervised learning algorithm. In a 
confusion matrix, each column represents the predicted category, and 
the total number of each column represents the number of data pre-
dicted to be that category. Each row represents the true attribution 
category of the data, and the total number of data in each row represents 

the number of data instances of that category. 

4.2. Self-contrast study 

To verify the effectiveness of the model components proposed in this 
article, this section compares four models, namely (A) original AlexNet, 
(B) improved AlexNet, (C) improved AlexNet + SVM, and (D) the pro-
posed model (improved AlexNet + ReliefF + SVM). The same dataset 
division and training parameters are used to train each model, and the 
results are shown in Fig. 7, Fig. 8 and Table 4. 

It can be seen from the experimental results (Figs. 7 and 8, and 
Table 4) that all models have satisfactory accuracy. Compared with 
model (A), model (B) is optimized on the structure of the original 
AlexNet. From the results, the accuracy of the two is close, whereas 
model (B) (improved AlexNet) could contribute to the performance 
improvement of model (C) to a significant extent because if the model 
(C) is built on the basis of model (A) instead of model (B), it has to 
classify 1000 features, which makes the training time considerably 
longer while an accuracy improvement is not obvious. 

Model (C) uses AlexNet to extract the features of the original image 
and then establishes an SVM model to classify the extracted features. 
Comparing the results of models (B) and (C), it can be found that the 
accuracy of model (C) reaches 98.642 ± 0.398% and model (C) also has 
a better performance in terms of specificity, sensitivity, and F-score than 
model (B), which shows that model (C) has a significant improvement in 
performance on the basis of model (B). Model (C) is superior to model 
(B) because model (C) is an ensemble model that uses AlexNet as a 
feature extractor and SVM as a classifier. 

Moreover, model (D), our proposed model, is further improved based 
on model (C). In model (D), the ReliefF algorithm is used to further sort 
the features extracted by AlexNet, and the trial-and-error method is 

Fig. 13. Possible components in the proposed model structure.  

Fig. 14. Confusion matrix of (A) InceptionV3+ReliefF + SVM (98.27%); (B) SqueezeNet + ReliefF + SVM (98.09%); (C) AlexNet + ReliefF + Random Forest 
(98.66%); (D) AlexNet + ReliefF + ELM (99.04%); (E) AlexNet + PSO + SVM (99.04%); (F) AlexNet + mutInfFS + SVM (98.85%). 
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adopted to determine the optimal number of feature inputs to improve 
the classification performance of the SVM, thereby improving the ac-
curacy of the overall model. Additionally, it can be seen from Table 5 
that compared to model (C), as the number of feature inputs decreases, 
model (D) takes less time (5.917 ± 0.001s) than model (C) (5.924 ±

0.001s) to complete the classification task while the accuracy was 
improved from 98.145 ± 0.404% to 98.642 ± 0.398% (P < 0.05, n = 40, 
for details, see Supplement 5). From the perspective of model accuracy, 
model (D) has an accuracy rate of 98.642 ± 0.398%, which stands out 
among all models (A) –(D). 

In general, the performance of the four compared models progres-
sively improves with each, clearly demonstrating that in the proposed 
model, each component has a positive contribution to the performance 
improvement of the ensemble model. The integrated model proposed in 
the present work can achieve the task of CXR COVID-19 detection both 
accurately and effectively. 

4.3. Comparative study 

To verify the effectiveness of the proposed model, we compare the 
performance of the five existing models (InceptionV3 [9], VGG19 [26], 
SqueezeNet [27], ResNet50, ResNet101) and the proposed model and 
compare the experimental training set and test set divisions consistent 
with the previous article Tables 6 and 7 and Figs. 9–12 show the results 
of the comparative experiment. 

It can be seen from Fig. 11 that all three models have been fully 
trained and have good training accuracy. The experimental results show 
that the model proposed in this study has the highest accuracy rate. 
Compared to five existing comparison models (InceptionV3: 97.916 ±
0.408%; SqueezeNet: 97.189 ± 0.526%; VGG19: 96.520 ± 1.220%; 
ResNet50: 97.476 ± 0.513%; ResNet101: 98.241 ± 0.209%), the pro-
posed model has the best performance in the overall accuracy rate 
(98.642 ± 0.398%) (for details about statistical significance tests, see 
Supplement 4), which demonstrates that the model proposed in this 
article is practical and effective, and can provide high-precision COVID- 
19 CXR detection. In addition, as shown in Table 6, compared to the 
existing models, the model proposed in this study has a great improve-
ment in efficiency (taking only 5.917 ± 0.001s (n = 40) to classify the 
test set) because the proposed model has a simpler neural network 
structure. While ensuring accuracy, our model can significantly short-
entraining time. Meanwhile, it can be seen from Fig. 10 (PR curves) and 
12 (ROC curves) that our model shows satisfactory performance with an 
overall improvement in AUC values (shown in Table 7; other ROC curves 
for calculating AUC values 2 and 3 in the table are shown in Supplement 
6). In general, the ensemble model proposed in this study can accom-
plish the task of COVID-19 detection with improved efficiency and ac-
curacy than existing models. 

4.4. Further study 

As shown in Fig. 13, the three parts (feature extraction, feature se-
lection and classifier) of our hybrid model can be re-modeled with 
different algorithms. To verify the validity and generality of the model 
structure with different components, we replaced one component while 
keeping other components unchanged and re-conducted all the classi-
fication experiments. The confusion matrices and indexes of the models 
are shown in Figs. 14 and 15, respectively. 

It can be seen from the experimental results that the models using 
different components can still achieve satisfactory classification results. 
On the assumption that the data sets used are the same, our proposed 
model (improved AlexNet + ReliefF + SVM) has the highest accuracy 
value, which demonstrates the excellence of this approach. According to 
the experimental results, it can be found that the feature extraction 
component has the greatest impact on the accuracy of the model. As 
shown in the Supplement 1, when the InceptionV3, SqueezeNet, and 
AlexNet were used as feature extractors, the accuracy values were 
97.744 ± 0.531%, 97.533 ± 0.718% and 98.642 ± 0.398%, respec-
tively. Replacing the other two components (feature selector and clas-
sifier) had a relatively small impact on the performance of the model 
(see Supplements 2 and 3). Therefore, it becomes crucial to find a 
suitable network for feature extraction in performing this classification 

Fig. 15. Classification performances of models (A) using different feature ex-
tractors; (B) using different feature selectors; (C) using different final classifiers. 

Table 8 
Total classification time* of models in comparative study (n = 40).  

(A) Using different feature extractors. 

Models Total time/s 

AlexNet + ReliefF + SVM 5.917 ± 0.001 
InceptionV3 + ReliefF + SVM 6.428 ± 0.001 
SqueezeNet + ReliefF + SVM 5.918 ± 0.002  

(B) Using different feature selectors. 

Models Total time/s 

AlexNet + ReliefF + SVM 5.917 ± 0.001 
AlexNet + PSO + SVM 5.918 ± 0.001 
AlexNet + mutInfFS + SVM 5.918 ± 0.001  

(C) Using different final classifiers. 

Models Total time/s 

AlexNet + ReliefF + SVM 5.917 ± 0.001 
AlexNet + ReliefF + Random Forest 7.271 ± 0.001 
AlexNet + ReliefF + ELM 6.029 ± 0.001 

(* The time required for total classification in seconds.) 
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task. 
Meanwhile, as shown in Table 8, there are differences in the time 

needed for different networks to extract features. In addition to accu-
racy, the AlexNet we used as feature extractor has the least model 
running time (5.917 ± 0.001s), which demonstrates the efficiency of our 
proposed model (AlexNet + ReliefF + SVM) as presented in the previous 
section. 

5. Conclusion 

A three-step hybrid ensemble model, which comprises of a feature 
extractor, feature selector, and classifier, is proposed in this work. First, 
the improved AlexNet extracts the image features, and then the ReliefF 
algorithm sorts the extracted features according to their importance. 
The optimized number of input features (n) is acquired through the trial- 
and-error method, and the first n features are input to the SVM classifier. 
Finally, the SVM classifier gives the classification results. . Compared 
with five existing comparison models (InceptionV3: 97.916 ± 0.408%; 
SqueezeNet: 97.189 ± 0.526%; VGG19: 96.520 ± 1.220%; ResNet50: 
97.476 ± 0.513%; ResNet101: 98.241 ± 0.209%), the proposed model 
has the best performance in the overall accuracy rate (98.642 ±
0.398%), which demonstrates the feasibility and effectiveness of the 
proposed model. 

The superiority of the proposed model can be enumerated as follows: 
(1) On the whole, the final classification result of the model reached 
98.642 ± 0.398% proving its feasibility for COVID-19 CXR detection; (2) 
Compared with the direct application of neural networks for classifica-
tion, the hybrid method proposed in this article demonstrates its high 
accuracy. In addition, the transfer learning method adopted in this work 
can remarkably reduce the time required for deep learning network 
training and the size of training sets. Despite having only 1222 images as 
the training set for network training, this work still achieves satisfactory 
classification results; (3) Compared with a model without feature se-
lection (AlexNet + SVM), the proposed hybrid model (AlexNet + ReliefF 
+ SVM) is more accurate and less time-consuming. The reason is that 
model performance is not necessarily proportional to the number of 
input features because the data redundancy affects the speed and ac-
curacy of the algorithm and increases the difficulty of learning tasks; (4) 
The components in the hybrid model structure presented in this paper 
can also be replaced according to the characteristics of the data, which 
can maintain a good classification effectiveness. 
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